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Presentation, Force Estimation and Control of an Instrumented
platform dedicated to Automated Micromanipulation Tasks

Micky Rakotondrabe, Member, IEEE, Cédric Clévy, Member, IEEE, Kanty Rabenorosoa and Kamel NCIR

Abstract— This paper presents a platform used to
measure micromanipulation forces. The main interest
of the proposed platform is that it uses classical force
sensors with limited range and adapts these sensors to
that of micromanipulation forces. The proposed plat-
form, and an additional micropositioning device, are
afterwards used to develop a micromanipulation sys-
tem. To automate this system, we design two control
levels. First, an internal loop with a PID controller
is employed to improve the micropositioning device’s
performances. Then, an external loop based on an
incremental control law is implemented to control the
force. The automated system is finally used for the
micromanipulation task on rigid and non-rigid micro-
objects.

I. Introduction

The development of tools for micromanipulation and
microassembly knows fast progress during the last
decade. It is today possible to manipulate a wide variety
of microcomponents with sizes comprised between 10
µm to 1mm with a relative ease. Nevertheless, it is still
very difficult to automate such tasks. Developed solutions
are very rare and generally correspond to dedicated or
specific tasks [1][2].

The lack of automation in the micro-world is mainly
due to the specific and numerous difficulties that have to
be overcame at the microscale. Especially, automating
processes at the microscale requires very small sensors
able to measure precisely information the closer possible
of the area of interest. Vision based feedback control
already shows interesting results but contrary to the
macroscale, it is not sufficient in most cases (limitation in
the resolution, occulted parts, difficulties to get 2 or 3D
measurements with good refresh rate..). Moreover, sur-
face forces (pull-off, capillary...) are predominant at the
microscale and their influence can hardly been detected
without adequate force sensors. A previous study shows
that pull-off force (i.e. the force to apply to separate two
components) can reach 200 µm for 50x50 µm2 planar
contacts [3]. Consequently, convenient strategies have
to be used and force sensors able to take into account
contact forces are required [4].
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Up to now, few micromanipulators or microassembly
stations are based on contact force control [5][6][7]. This
is mainly due to the lack of small enough force sensors
able to measure forces (in the range of several hundreds
of microNewtons) with a good resolution (better than 1
µN) and a good enough signal to noise ratio. Recent de-
velopments display new and suited measurement devices
[8][9][10]. Nevertheless most of them are not applied for
the control of micromanipulation or microassembly tasks.
This additional step constitutes important difficulties
because micromanipulation tasks cause an alternation
of open and closed robotic structures that is source of
unstabilities. Moreover such a step also requires com-
plex model inversion. Additionally, micromanipulators
are generally fragile and only limited compliance can
be used to reduce risks to loose gripping components
(the presence of surface forces like pull-off prevents from
sliding strategies).

To contribute to these lacks, this paper will focus
on a force measurement device (design, development
and integration in a micromanipulation station) used
for the automated micromanipulation tasks. It enables
force control in one direction, in the range of 2mN and
guarantee a limited compliance (motion 100µm available
on the measurement range). This device will notably
be extremely helpful to control complex assembly tasks
like the assembly of hybrid MOEMS [11][12]. Despite
that the developed measurement device in this paper
is for 1 degree of freedom (dof) force measurement and
estimation, it can be used for multiple dof station with
axis decoupling, such as that in [13].

The core of this paper is the presentation and the force
estimation on an instrumented platform, its integration
into a micromanipulation system and the force control
with an end use of automated tasks. In the second
section, we present the developed instrumented platform.
The third section is dedicated to the characterization
and the force estimation on the platform. In the fourth
section, we develop a micromanipulation system based on
the platform and design control laws in order to perform
automated tasks with force control. Experimental results
end the paper.



II. Presentation of the instrumented
plateform

Fig. 1-a and b present the principle and the designed
instrumented platform respectively. It is based on:

• a table on which micro-objects to be manipulated or
pallets for micro-objects are placed,

• four compliant beams (beam-B) which allows a flex-
ure to the table when an external force F is applied
to the micro-objects. The four beams are two-end
embedded,

• one compliant beam (beam-A) to which a force sen-
sor is connected. This beam is one-end embedded,

• and the base and supports.
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Fig. 1. A picture of the instrumented platform.

When a manipulation force F appears during a mi-
cromanipulation or microassembly task, the table moves
due to the compliance of the four beams-B. In most of
cases, the range of F is inadequate to the measurement
ranges of the existing (micro)force sensors. The objective
of the beam-A is therefore to adapt the range of the force
sensor connected to it and the displacement linked to the
specified mechanical compliance. As a result, a force Fm

much different from the original force F is sensed by the
sensor. Beam-A and beam-B are designed accordingly
to the used force sensor and to the range of F to be
measured. In our case, we use a force sensor FT-S540
from Femtotools [14]) with a range of 0 → 170µN and
a resolution of some tens of nanoNewton. The choice
of the Femto-tools force sensor mainly depends on the
maximal sizes allowed for the mechanical structure and
on the range to be measured.

The objective being the estimation of F using the
available information Fm, the next section is focused on
the observer design.

III. Force estimation

A. Principle
Let F be the input and Fm be the output of the

instrumented platform. So we design in this section an

observer in order to reconstitute F using the available
information (Fig. 2-a). An intuitive way to trace F is to
precisely model the platform and use its inverse model
as an observer such as employed in [15] for piezoelectric
microactuators. Despite the simplicity of this approach,
it requires that the model (which is a transfer function) is
inversible, i.e. bicausal and bi-stable. Such a condition is
often not respected because most of systems models are
strictly causal. To overcome this condition, we propose to
use an observer with the structure presented in Fig. 2-
b, where F̂ is the estimate of F . In fact this structure
has been used to efficiently compensate the creep non-
linearity in piezoelectric microactuators without model
inversion [16].
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Fig. 2. Bloc diagram of the force observer.

To compute the observer gains D1(s) and D2(s), let
us compute the model of the platform(Fig. 2-b):

Fm(s)
F (s)

= K + G(s) (1)

where K is any strictly positive real and G(s) a
transfer function. This model structure is advised when
one wants to avoid direct model inversion [16].

Always using Fig. 2-b, the observer transfer function
is derived:

F̂ (s)
Fm(s)

=
1

1
D1(s)

+ D2(s)
(2)

The objective is that the estimate F̂ is equal to the
input F , i.e F̂ (s)

F (s) = 1 ⇔ F̂ (s)
Fm(s) = F (s)

Fm(s)
. Using the

previous condition and (Eq.1) and (Eq.2), we deduct the
observer gains:

D1(s) = 1
K , D2(s) = G(s) (3)

These results demonstrate that there is no inversion
of transfer functions in the observer, and therefore no
bi-causality and bi-stability condition on the platform
model is required.



B. Modeling and identification of the platform
In order to identify the gain K and the transfer G(s),

we apply a force F to the plateform and report the
measured Fm. To apply F , we use a micropositioning
device (the P-611 NanoCube device from PI [17]) with
another femtotools force sensor at its extremity. This
force sensor, having a range of 0 → 2000µN , serves
as end-effector for the micropositioning device and also
used to measure F for characterization and identification.
Initially, this end-effector and the platform are at their
limit contact such as F = 0. Applying a reference input
to the micropositioning device generates a similar input
of F . The measurement of the different signals and the
control of the device are performed using the Matlab-
Simulink c© software, a computer and a dSPACE-board
with a refresh rate of 1ms.

First, we apply a step input to the micropositioning
device. It generates a force constant F to the platform.
We report the measured signals F and Fm. Afterwards,
we settle a value of K. Then, using the datas Fm and F ,
the (Eq.1), the ARMAX method (Auto Regressive and
Moving Average eXogenous) and Matlab c© software,
we identify the transfer G(s). Fig. 3 pictures the experi-
mental result and the simulation of the identified model
and shows its good accuracy. We have:




K = 0.001

G(s) =
0.01·(s2−154s+6.7×105)(s2+1958s+1.9×106)

(s2+167s+6.7×105)(s2−0.27s+7×105)

(4)

0 50 100 150 200 250
0

10

20

30

40

50

60

[ ]t ms

[ ]mF µN

: experimental result

- - -   : model simulation

Fig. 3. Step response of the instrumented platform.

In the second experiment, we check the static charac-
teristics of the platform. For that, a sawtooth F signal
is applied and the curve Fm versus F is plotted. Fig. 4
shows that the system is linear and the previously iden-
tified model well coincides to the experimental result.
The maximal error - obtained at nearly 45µN - is 5%
(= 2.5µN

45µN ). It is noticed that if an object with a certain
mass is placed on the platform, it could modify the model

structure and parameters and therefore the observer.
However, since our concern is the manipulation of micro-
objects - i.e. with negligible mass -, the model uncertainty
is negligible.
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Fig. 4. Static characteristic (Fm vs F ) of the instrumented
platform.

C. Implementation of the observer

Using the observer scheme in Fig. 2-b, the observer
gains in (Eq.3) and the identified model as in (Eq.4),
the observer was implemented in Matlab-Simulink.
The refresh rate (1ms) was chosen accordingly to the
dynamics G(s) which has a bandwith of 1500rad/s.

The first experiment consists in applying a step input
to the previously presented micropositioning device. It
generates a constant force F after a certain transient
part. This transient part is due to the dynamics of the
device and of its end-effector (the second force sensor).
Fig. 5 pictures the measurement of F and the estimate F̂
and shows that the transient parts of both well coincide.

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

[ ]t ms

[ ]F̂ µN

[ ]F µN

force [µN]

: real force

- - -    : estimate force

Fig. 5. Transient part of the estimate F̂ and of the applied force
F .

Afterwards, a sawtooth input F is applied to the
platform thanks to the micropositioning device and its



end-effector. Fig. 6 shows the static characteristics of F̂

relative to F . As ∂F̂
∂F ≈ 1, it is deducted that the observer

is enough accurate.
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Fig. 6. The estimate F̂ vs the applied force F .

IV. Application to force control

In this section, an application of force control in
micromanipulation task is presented. It consists in using
a micromanipulator or a microrobot that moves towards
the micro-objects until the manipulation force F is equal
to a desired value. The micro-objects are placed on the
developed platform and the force F is estimated by the
previous observer. The proposed application example fits
to many tasks in micromanipulation: characterization
of the stiffness of biological cells, pick-and-place tasks,
friction characterization, etc.

A. Presentation of the complete system

The previously presented micropositioning NanoCube
device with its end-effector (the femtotools force sensor)
is used as micromanipulator. This device has a position-
ing range of 0 → 100µm and a resolution of 1nm. The
developed platform and the observer serve as sensor. The
experimental setup is pictured in Fig. 7. The steps of the
task application is as follows:

• a pallet with micro-objects is placed on the table of
the platform,

• the micropositioning device is initially enough far
from the platform such as there is no contact be-
tween the end-effector and the micro-objects,

• when a reference manipulation force Fr is provided
by the user, the device approaches towards the
micro-objects,

• when a contact appears, the micromanipulator con-
tinues to move until F = Fr. Then, it stops moving.

B. Control principle of the complete system

Fig. 8 presents a schematic view of the whole system
and its force control:

• the estimate force F̂ is used as feedback,

beam A

beam B

force sensor micro-objectspallet

nanocube device end-effector

Fig. 7. The experimental setup for the force control.

• the controller Σ provides the control signal to the
NanoCube device to let it move towards the micro-
objects until F̂ = Fr,

• to improve the performances of the NanoCube de-
vice, it will be controlled using an internal loop
controller. The objective mainly concerns the can-
cellation of the overshots and the diminution of the
settling time of the NanoCube. Furthermore, this
controller is used to reject the disturbance effect to
the NanoCube, especially the reaction force, when
the contact between it and the micro-object appears.
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Fig. 8. Principle scheme of the force control of the whole system.

Fig. 9 gives the bloc diagram of the closed-loop control.
The internal loop used to improve the performances of
the NanoCube is based on a PID controller. We use
a Ziegler-Nichols tuning to adjust its parameters. We
propose to use an incremental control law with deadzone
for Σ. Indeed, its simplicity and ease of numerical imple-
mentation make it very practical in the fields of robotics.
We define Σ as follows:
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Fig. 9. Bloc diagram of the force control.

∑
: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

IF εF > πF DO
dr(k) = dr(k − 1) + dincr

ELSEIF εF < −πF DO
dr(k) = dr(k − 1) − ddecr

ELSE
dr(k) = dr(k − 1)

END

(5)

where:
• εF = Fr − F̂ is the error,
• πF indicates an accuracy of measurement which is

linked to the noises. We choose πF = 2µN ,
• dr(k) and dr(k−1) are the displacement reference for

the NanoCube device at time (kTs) and ((k − 1) Ts)
respectively, with Ts = 1ms being the refresh rate,

• dincr and ddecr are the increment and decrement
constants respectively. In our case, we choose dincr =
ddecr = 1nm. Their values are in general chosen ac-
cordingly to the stiffness of the manipulated micro-
objects. If the micro-object has a very high stiffness,
the increment should be very low in order to avoid
vibrations at the contact and in order to avoid
the destruction of the micro-object and/or of the
micromanipulator.

C. Experimental results
Our first experiment concerns the manipulation of

a rigid micro-object. Fig. 10 shows the experimental
results, where d is the displacement of the NanoCube
micropositioning device. A reference force Fr = 1200µN
is applied at time t = 1.5s. As there is initially no-
contact between the end-effector and the micro-object,
the NanoCube approaches. At nearly t = 31.5s, the
contact is obtained. The NanoCube continues to move
forward while the manipulation force increases until
1200µN . At time t = 47s, we set the reference to
Fr = 0µN , as a result the NanoCube retracts until the
output force is zero.

The speed of the NanoCube, theoretically defined by
V = dincr

Ts
, can also be experimentally checked through

the figure: dd
dt = 1

[
µm
s

]
. We remark that this speed stays

unchanged even during the contact, which demonstrates
that the PID internal controller well rejects the reaction
force (disturbance) applied to the NanoCube. On the
other hand, the stiffness of the manipulated micro-object

can be characterized from the figure. During the contact,
we have:

Kstiff =
dF̂

dt
· dt

dd
=

1200 [µN ]
1.65 [µm]

= 727
[
N

m

]
(6)
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Fig. 10. Force control with a rigid micro-object.

In the second experiment, we use a non-rigid micro-
object. The same experimental conditions and analysis
than with the previous micro-object were used. The
results are pictured in Fig. 11. It can be easily checked
that the speed of the NanoCube still stays unchanged
despite the type of manipulated micro-object. Finally,
we characterize the stiffness of the micro-object using
the method in (Eq.6), we have:

Kstiff = 60
[
N

m

]
(7)

V. Conclusion

The objectives of this paper are the presentation of a
new force measurement system (instrumented platform),
its integration in a micromanipulation system and the
control and automation of the whole system.

First, the instrumented platform is presented. Its main
function is to adapt the limited range of existing force
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Fig. 11. Force control with a non-rigid micro-object.

sensor to the range necessary in micromanipulation and
microassembly contexts. For that, the platform is based
on a set of beams and a dynamic observer. The instru-
mented platform is afterward used in a micromanipula-
tion system and an automated micromanipulation task
based on force control is performed. While the platform
serves as the feedback measurement, a micropositioning
device is used as the actuator. Two levels of control law
are proposed. A PID internal loop is first used to improve
the performances of the micropositioning device. Then,
an external loop is employed to control the force and
to automate the task. We use an incremental control
law for the external loop because of its simplicity of
implementation making it very suited for robotics and
therefore microrobotics applications. Finally, tests on
the automated micromanipulation system with different
objects were performed and show the great interest
of the platform in many applications such as objects
characterization, microassembly etc.

In future tasks, the developed micromanipulation sys-
tem will be completed by additional micromanipulators
and will be used to perform complete microassembly
applications notably for hybrid MOEMS assembly.

Acknowledgment

This work is supported by the Region Franche-
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