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INFINITELY TRANSITIVE ACTIONS ON REAL AFFINE SUSPENSIONS

KARINE KUYUMZHIYAN AND FRÉDÉRIC MANGOLTE

Abstract. A groupG acts infinitely transitively on a set Y if for every positive integerm, its
action is m-transitive on Y . Given a real affine algebraic variety Y of dimension greater than
or equal to 2, we show that, under a mild restriction, if the special automorphism group of Y
(the group generated by one-parameter unipotent subgroups) is infinitely transitive on each
connected component of the smooth locus Yreg, then for any real affine suspension X over Y ,
the special automorphism group of X is infinitely transitive on each connected component
of Xreg. This generalizes a recent result by Arzhantsev, Kuyumzhiyan, and Zaidenberg over
the field of real numbers.

Introduction

In this note the algebraic varieties are affine with ground field of characteristic zero. Let Y
be such a variety and let f be a non-constant polynomial function on Y . Recall that the
suspension over Y along f is the hypersurface X ⊆ Y ×A2 given by the equation uv−f(y) = 0.

The paper [AKZ10] shows that in many situations the infinite homogeneity of an affine
variety induces the infinite homogeneity of its iterated suspensions. Namely, if the special
automorphism group of an affine variety Y of dimension at least two acts infinitely transitively
on the smooth locus of Y and if at every smooth point of Y the tangent space is spanned by
the tangent vectors to the orbits of one-parameter additive subgroups, then every suspension
over Y satisfies the same two properties. The proof in such generality is however valid provided
that the ground field is algebraically closed. When the ground field is R, it is proved that
the same result holds under two restrictions: the smooth locus of Y is connected and the
function f is surjective. The aim of this note is to settle the real case for any Y and any f .

Note that the notion of affine suspension was introduced in [KZ99] as a particular instance
of an affine modification. The latter is an important tool to understand the structure of
birational morphisms between affine varieties, see [D05]. Note also that infinite transitiv-
ity, sometimes called very transitivity, was recently studied in the context of real algebraic
geometry, see [HM09, HM10, BM10].

1. Infinitely transitive actions

We recall the notations and state the main results.

Definition 1. A suspension over an affine variety Y is a hypersurface X ⊆ Y ×A2 given by

an equation uv−f(y) = 0, where f ∈ R[Y ] is non-constant. In particular, dimX = 1+dim Y ,
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2 AU1 AND AU2

and the projection on the first factor induces a natural map

π : X → Y.

Definition 2. We say that the action of a group G on a set Y = Y 1⊔Y 2⊔. . .⊔Y s is infinitely

transitive on each connected component if for every s-tuple (m1, . . . , ms), it is transitive on

(m1 + . . .+ms)-tuples of the form

(P 1
1 , . . . , P

1
m1
, P 2

1 , . . . , P
2
m2
, . . . , P s

1 , . . . , P
s
ms
) ,

where P i
j ∈ Y i are pairwise distinct.

For an algebraic variety X , let the special automorphism group SAut(X) be the sub-
group of Aut(X) generated by all of its one-parameter subgroups isomorphic to the additive
group (R,+). Note that the action of SAut(X) does not mix regular and singular points.

Let Y be an algebraic variety over R. We say that a point y ∈ Y is flexible if the tan-
gent space TyY is spanned by the tangent vectors to the orbits H · y of one-parameter
subgroups H ⊆ SAut(Y ), H ∼= (R,+). The variety Y is called flexible if every smooth
point y ∈ Yreg is.

Theorem 1 (Infinite transitivity on each connected component). Let Y be an affine algebraic

variety defined over R and f ∈ R[Y ]. Assume that for each connected component Y i of Yreg,
the dimension dimY i ≥ 2 and f is non-constant on Y i.

If Y is flexible and the action of SAut(Y ) on Yreg is infinitely transitive on each connected

component, then the suspensionX = Susp(Y, f) is flexible and SAut(X) acts on Xreg infinitely

transitively on each connected component.

Remark 1. When Yreg is connected and f(Yreg) = R, the result is given by [AKZ10, Theo-
rem 3.3]. Notice that under these conditions, Xreg is also connected.

Remark 2. If Xreg is not connected, then SAut(X) is not even one-transitive on Xreg. Indeed,

the action of SAut(X) on X fixes each connected component of X: every special automor-

phism g admits a decomposition
∏
hj(1), where each hi is a one-parameter additive group.

For any x ∈ X, the arc t→
∏
hi(t) · x then connects x to g · x.

Remark 3. The number of connected components can grow on each step even if we started

with a variety Y whose non-singular part Yreg is connected. Indeed, if f is positive on one

of the connected components, say on Y 1, then the set {(y, u, v) | uv = f(y), y ∈ Y 1} splits

into {(y, u, v), u > 0, v > 0} and {(y, u, v), u < 0, v < 0}. We may choose one connected

component of the suspension and further perform suspensions over this connected component.

As a preliminary part of Theorem 1, we prove the following theorem.

Theorem 2 (Infinite transitivity on one connected component). Let Y be an affine alge-

braic variety defined over R and f ∈ R[Y ]. Assume that Yreg contains a flexible connected

component Y 1 of dimension at least 2 such that SAut(Y ) acts infinitely transitively on Y 1

and f |Y 1 is non-constant. Let X1 be a connected component of the smooth locus of the sus-

pension Susp(Y 1, f) ⊆ X = Susp(Y, f). Then X1 is flexible and SAut(X) acts infinitely

transitively on X1.

Note that the new paper [AFKKZ10] proves that over an algebraically closed field, an affine
variety X of dimension ≥ 2 is flexible if and only if SAut(X) is infinitely transitive on Xreg

and, even more, if and only if SAut(X) is one-transitive.
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2. Affine modifications and lifts of automorphisms

In this section we prove the basic results of the theory over the real numbers. The main
part is close to the treatment in [AKZ10, §3].

For every geometrically irreducible algebraic variety X over the ground field C, there is a
natural one-to-one correspondence between locally nilpotent derivations (LND’s) δ on C[X ]
and algebraic actions of one-parameter subgroups (C,+) ∼= Hδ ⊆ SAut(X). Namely, given a

locally nilpotent derivation δ, the corresponding action is the exponential (t, f) 7→
∑∞

k=0
tk

k!
δk(f).

Conversely, for every algebraic action σ of a subgroup (C,+) ∼= H ⊆ SAut(X), the derivation

along the tangent vector field to the orbits of σ, given by σ(t,f)−f

t
|t=0 is an LND, see [F06,

§ 1.5]. The lemma below shows that the same is true for R.
Let G be a group. Recall that a G-module V is rational if each v ∈ V belongs to a

finite dimensional G-invariant linear subspace W ⊆ V and the G-action on W defines a
homomorphism of algebraic groups G→ GL(W ). A G-algebra is an algebra with a structure
of G-module.

Lemma 1. There are one-to-one correspondences between locally nilpotent derivations of R[X ],
unipotent subgroups (R,+) ⊆ Aut(X), and structures of rational (R,+)-algebras on R[X ].

Proof. For an LND D, the corresponding (R,+)-algebra is defined by the following formula:

t : f = exp(tD)(f) = f + tD(f) +
t2

2!
D2(f) + . . . .

For any fixed f there exists a natural N with DN(f) = 0, so this formula gives a polynomial
in t. Hence, f belongs to a (R,+)-invariant linear subspace 〈f,D(f), . . . , DN−1(f)〉, which
shows that R[X ] is rational as a (R,+)-algebra.

Conversely, let (A, t 7→ ϕt) be a rational (R,+)-algebra. Let us define

D(f) =
d

dt
|t=0 ϕt(f), f ∈ A.

The main point is to prove that for each f ∈ A some power DN(f) vanishes. Consider
a finite dimensional invariant subspace W ⊆ R[X ], f ∈ W . Obviously, D preserves W and
the action of exp(D) on W ⊗R C is unipotent. By the Lie-Kolchin theorem, the action of D
is upper-triangular in some basis of W ⊗R C. This means in particular that DN = 0 for
some N . Note that the actions of D on W and of D on W ⊗R C were originally given by the
same matrix, hence, this matrix is nilpotent, and the derivation D on R[X ] is in fact locally
nilpotent. �

Here is the geometric counterpart of the affine suspensions introduced above. Let X =
Susp(Y, f) be a suspension of Y given by Definition 1. Consider the cylinder Y ×A1 over Y ,
where A1 = R[v]. Then Susp(Y, f) is the blow-up of Y ×A1 with center (f, v) along v, which
is a particular instance of an affine modification, see [KZ99, Example 1.4].

Let δ0 be an LND on R[Y ] and let Hδ0 be the associated (R,+)-action on Y . Recall the
construction of an LND δ1 which lifts δ0 to X (see [AKZ10, Lemma 3.3] or [KZ99]). Let δ′

be the lift of δ0 on R[Y × A1] defined by δ′(v) = 0 and consider a product δ1 = qδ′ by a
polynomial q(v) such that q(0) = 0. Choosing q such that the value of δ1 on u preserves the
relation δ1(uv − f(y)) = 0, we get an LND on R[X ] which satisfies
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δ1(g) = q(v)δ0(g) for all functions g ∈ R[Y ],

δ1(v) = 0,(1)

δ1(u) =
q(v)

v
δ0(f).

There is some freedom in the choice of q(v). All the derivations obtained in this way annihilate
the function v ∈ R[X ], and the corresponding actions preserve the sections Vc = {v = c}∩X .
Notice that X can also be considered as the blow-up of Y × SpecR[u], and the lifts of LNDs
obtained in this way annihilate the function u ∈ R[X ].

We denote by Gv (resp. Gu) the subgroup of SAut(X) generated by one-parameter sub-
group lifted from Y × SpecR[v] (resp. Y × SpecR[u]). Recall the following.

Lemma 2. [AKZ10, Lemma 3.2] Let Y be an affine variety over a field of characteristic 0
and X be a suspension of Y . Then the restriction π : X ⊂ Y × A2 → Y of the canonical

projection satisfies π(Xreg) = Yreg.

We denote by Yreg = Y 1 ⊔ . . . ⊔ Y s the decomposition of Yreg into connected components.
If f is not surjective, then the suspension over a connected component Y i of Yreg is either
connected or consists of two components: if f |Y i does not attain zero, it may be assumed
positive, u and v neither attain zero, but can be either both negative, or both positive.

For every c ∈ R the hyperplane section {v = c} ⊂ X will be denoted by Vc. We denote
by v(P ) the v-coordinate of a point P ∈ X .

Given k distinct constants c1, . . . , ck ∈ R \ {0}, we let Stabv
c1...ck

be the subgroup of Gv

fixing pointwise the hypersurfaces Vcs ⊆ X , s = 1, . . . , k. Observe that, as a subgroup
of Gv, the group Stabv

c1...ck
stabilizes all the levels Vc of the function v ∈ R[X ]Gv . Likewise,

let Stabu
c1...ck

⊂ Gu be the subgroup of maps inducing the identity on the levels Ucs of the

function u ∈ R[X ]Gu .

Lemma 3. If the action of SAut(Y ) on Yreg is infinitely transitive on each connected compo-

nent, then for every distinct values c0, c1, . . . , ck ∈ R \ {0}, the group Stabv
c1...ck

acts infinitely

transitively on each connected component of Vc0 ∩ Xreg. The same is true for the action of

Stabu
c1...ck

on Uc0 ∩Xreg.

Proof. Let P1, . . . , Pm and Q1, . . . , Qm be two m-tuples of distinct points of Vc0 ∩ Xreg.
Since π restricts to an isomorphism Vc0 ∩ Xreg → π(Xreg) = Yreg, we get π(Pj) 6= π(Pl)
and π(Qj) 6= π(Ql) for j 6= l. Moreover, two points belong to the same connected component
of Vc0 ∩Xreg if and only if their projections belong to the same connected component of Yreg.
As a consequence, there exists a special automorphism ψ such that ψ · π(Pj) = π(Qj), ∀j.
The special automorphism ψ decomposes into exponentials of LND’s. We lift each of these
derivations using the polynomial q(z) = αz(z−c1) . . . (z−ck) where α ∈ R\{0} is determined
by q(c0) = 1. (Compare [AKZ10, Lemma 3.4].) �

Lemma 4. Let Y 1 ⊂ Y be a connected component of Yreg of dimension at least two. Then

for every continuous function f : Y → R and for each c ∈ Int f(Y 1), the level set f−1(c) is

infinite.

Proof. (See [AKZ10, Lemma 3.6]) We may assume that f |Y 1 is non-constant. Choose two
points y1, y2 ∈ Y 1 such that f(y1) = c1 < c and f(y2) = c2 > c. They can be joined by
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a smooth path l in Y 1. There exists a tubular neighborhood U of l diffeomorphic to a
cylinder ∆ × I, where I = [0, 1] and ∆ is a ball of dimension dim∆ = dimY 1 − 1 ≥ 1. So
there is a continuous family of paths joining y1 and y2 within U such that any two of them
meet only at their ends y1 and y2. By continuity, on each of these paths there is a point y′

with f(y′) = c. In particular, the level set f−1(c) is infinite. �

Lemma 5. Let Y be an affine variety over R and X be a suspension of Y . Let Y 1 ⊂ Y be

a connected component of Yreg of dimension at least two, f ∈ R[Y ] such that 0 ∈ Int f(Y 1),
and X1 be the suspension over Y 1. If Y 1 is flexible and the action of SAut(Y ) is infinitely

transitive on Y 1, then for every set of distinct points P1, . . . , Pm of X1 there exists a special

automorphism ϕ ∈ SAut(X) such that ϕ · Pj 6∈ U0 ∪ V0 for all j.

Proof. We follow the proof of [AKZ10, Lemma 3.5]. We say that the point Pi = (Ri, ui, vi) ∈
X1 is hyperbolic if uivi 6= 0, i.e. Pi 6∈ U0 ∪ V0. We have to show that the original collection
can be moved by means of a special automorphism so that all the points become hyperbolic.
Suppose that P1, . . . , Pl are already hyperbolic while Pl+1 is not, where l ≥ 0. By recursion,
it is sufficient to move Pl+1 off U0 ∪ V0 while leaving the points P1, . . . , Pl hyperbolic. It is
enough to consider the following two cases:
Case 1: ul+1 = 0, vl+1 6= 0, and
Case 2: ul+1 = vl+1 = 0.
We claim that there exists an automorphism ϕ ∈ SAut(X) leaving P1, . . . , Pl hyperbolic such
that in Case 1 the point ϕ · Pl+1 is hyperbolic as well, and in Case 2 this point satisfies the
assumptions of Case 1.

In Case 1 we divide P1, . . . , Pl+1 into several disjoint pieces M0, . . . ,Mk according to dif-
ferent values of v so that Pi ∈ Mj ⇔ vi = cj , where cj 6= 0. Assuming that M0 =
{Pi1 , . . . , Pir , Pl+1}, where ik ≤ l for all k = 1, . . . , r, we can choose an extra point P ′

l+1 ∈
(Vc0 ∩X

1) \ U0. Indeed, since c0 = vl+1 6= 0, we have Vc0
∼= Y 1. We have dimY 1 ≥ 2, hence

dim(Vc0 ∩X
1) \ U0 = dimY 1 ≥ 2.

By Lemma 3 the subgroup Stabv
c1,...,ck

⊆ Gv acts (r+1)-transitively on Vc0 ∩X
1. Therefore

we can send the (r + 1)-tuple (Pi1 , . . . , Pir , Pl+1) to
(Pi1 , . . . , Pir , P

′
l+1) fixing the remaining points of M1 ∪ . . . ∪ Mk. This confirms our claim

in Case 1.
In Case 2 we have Pl+1 = (Rl+1, 0, 0) ∈ X1. It follows from Lemma 2 that Rl+1 = π(Pl+1)

belongs to Yreg and df(Rl+1) 6= 0 in the cotangent space T ∗
Rl+1

Y . The variety Y 1 being flexible,

there exists an LND ∂0 ∈ DerR[Y ] such that ∂0(f)(Rl+1) 6= 0. Let q(v) = v(v − v1)(v −
v2) . . . (v−vl) be a polynomial in R[v] and choose a set of generators x1, . . . , xs of the algebra
R[Y ]. Then, as in (1), the derivation ∂0 can be extended to ∂1 ∈ Der R[X ] via

∂1(xi) = q(v)∂0(xi), i = 1, 2, . . . , s ,

∂1(v) = 0 ,

∂1(u) =
q(v)

v
∂0(f) .

Due to our choice, ∂1(u)(Pl+1) 6= 0. Hence the action of the associate one-parameter unipotent
subgroup H(∂0, q) = exp(t∂1) pushes the point Pl+1 out of U0. So the orbit H(∂0, q) · Pl+1

meets the hypersurface U0 ⊆ X1 in finitely many points. Similarly, for every j = 1, 2, . . . , l the
orbit H(∂0, q) ·Pj 6⊆ U0 meets U0 in finitely many points. Let ϕ = exp(t0∂1) ∈ H(∂0, q) ⊆ Gv.
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For a general value of t0 ∈ R the image ϕ · Pj lies outside U0 for all j = 1, 2, . . . , l + 1. Since
the group H(∂0, q) preserves v, the points ϕ ·P1, . . . , ϕ ·Pl are still hyperbolic. Interchanging
the roles of u and v, we achieve that the assumptions of Case 1 are fulfilled for the new
collection ϕ · P1, . . . , ϕ · Pl, ϕ · Pl+1, as required. �

3. Infinite transitivity on one connected component

This section is devoted to the proof of Theorem 2. Recall that Y is an affine variety defined
over R, f ∈ R[Y ] is non-constant, and X = Susp(Y, f). Let Y 1 be a connected component
of Yreg, and let X1 be a connected component of Susp(Y 1, f) ∩Xreg.

Lemma 6. Let m be a positive integer and let P1, . . . , Pm be m points in X1. There exist an

automorphism g ∈ SAut(X) and a nonzero real number α such that for each i = 1, . . . , m the

number αv(g · Pi) is an interior point of f |Y 1.

Moreover, for any finite sets of real numbers U disjoint from {u(Pi)} and V disjoint

from {v(Pi)}, the automorphism g can be chosen in 〈Stabu
U , Stab

v
V〉.

Proof. Acting with Gv, we may assume that the m points P1, . . . , Pm have pairwise distinct u-
coordinates. Acting further with Gu, we may assume that these points have also pairwise
distinct values of their v-coordinates.

The proof depends on the behavior of f . If 0 is an interior point of f(Y 1), we let g = Id and
choose α small enough. Then all αv(Pi) are close to 0, and thus are interior points of f(Y 1).

If f |Y 1 is unbounded and f |Y 1 > 0, we let g = Id and choose α great enough. All αv(Pi)
are then large enough and are thus interior points of f(Y 1). In the case f |Y1

is unbounded
and f |Y1

< 0, the same argument works.

It remains to consider a bounded function f , that is f(Y 1) = [a, b]. This splits into two
cases: either ab 6= 0, or ab = 0.

Case 1. Without loss of generality we may suppose that 0 < a < b. Let vi = v(Pi)
and ui = u(Pi). Consider the connected component X1 of the suspension over Y 1 such
that all vi > 0, and all ui > 0. Let vmax and vmin be the maximal and minimal values
of v(P1), . . . , v(Pm).

If vmax/vmin < b/a, we let g = Id. Then for any α ∈]a/vmin, b/vmax[, it is clear that all
real numbers αvi are interior points of f(Y 1).

Otherwise, if vmax/vmin > b/a, we need a non-trivial automorphism g. Fix ε > 0. Note that,
acting with the group Gv, any point P ∈ {P1, P2, . . . , Pm} can be mapped to a point P ′ such
that f(P ′) is very close to b, while all the other points are fixed. Indeed, for a general ε1 < ε,
the real number b−ε1

v(P )
6∈ {u1, . . . , um}. Let R in Y 1 be such that f(R) = b− ε1. We endow R

with two extra coordinates u = b−ε1
v(P )

, v = v(P ) and get P ′ = (R, b−ε1
v(P )

, v(P )) ∈ X1. Let

W = {v(P1), . . . , v(Pm)} \ {v(P )}, the point P can be mapped to P ′ by an element g1 of the
group Stabv

W . Thus for a general ε1 < ε, the automorphism g1 of X satisfies g1 · Pj = Pj for
Pj 6= P , and f(g1 · P ) > b− ε.

Choose P = Pi such that v(Pi) = vmax, Pi = (Ri, ui, vmax). As described above, we
map Pi to P

′
i = (R′, b−ε1

vi
, vi) such that f(R′) = b − ε1. Then, interchanging u and v, and

interchanging a and b, there is an element of Gu which maps P ′
i to P ′′

i = (R′′, b−ε1
vi
, (a+ε2)vi

b−ε1
)

such that f(R′′) = a + ε2. Note that v(P ′′
i ) <

a+ε
b−ε

v(Pi).
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If vmax/vmin ≥ b/a for the new set P1, . . . , P
′′
i , . . . , Pm, we repeat this procedure. This

process is finite since at each step the product v(P1) . . . v(Pm) reduces by a factor at least a+ε
b−ε

.
Finally, we get m points g · P1, . . . , g · Pm such that vmax/vmin < b/a.

Case 2. One of a and b equals zero. Using Lemma 5, we map the given m-tuple P1, . . . , Pm

in X1 to points P ′
1, . . . , P

′
m ∈ X1 \ (U0 ∪ V0). A sufficiently small α then fulfills the required

condition.
To prove the second part of the lemma, we run the proof once again but we add an

extra condition while performing the lift of an automorphism from Y to X . Namely, for an
automorphism in Gu, we multiply the polynomial q by

∏

u∈U q(u), and for an automorphism
in Gv, we multiply the polynomial q by

∏

v∈V q(v). �

Proof of Theorem 2. Fix two m-tuples of distinct points P1, . . . , Pm and Q1, . . . , Qm in X1.
By Lemma 6, up to the action of SAut(X), there exists α ∈ R \ {0} such that αv(Pi) belongs
to Int f(Y 1) and αv(Qi) ∈ Int f(Y 1) for all i = 1, . . . , m. We denote by c1, . . . , ck the distinct
values of the v-coordinates of the given 2m points. We split the set {P1, . . . , Pm, Q1, . . . , Qm}
into k subsets according to the v-coordinate. For each i, the set Vci ∩ Uα ∩X1 is infinite by
Lemma 4. In particular, for each i, we get # (Vci ∩ Uα ∩X1) ≥ 2m. By Lemma 3, there
exists gi ∈ Stabv

c1,...,či,...,ck
such that gi

(
{P1, . . . , Pm, Q1, . . . Qm} ∩ Vci

)
⊂ Vci ∩ Uα and gi fixes

all the points belonging to ∪j 6=iVcj . Let us denote by P
′
1, . . . , P

′
m, Q

′
1, . . . , Q

′
m ∈ Uα the images

by gk ◦ . . . ◦ g1. Since the action of Stabu
∅ = Gu on Uα is infinitely transitive by Lemma 3,

there exists a special automorphism mapping the m-tuple P ′
1, . . . , P

′
m to Q′

1, . . . , Q
′
m. �

Lemma 7. If SAut Y acts infinitely transitively on Y 1 where dimY 1 > 2, then the flexibility

of Y 1 implies the flexibility of any connected component X1 of Susp(Y 1, f),

Proof. Clearly, X1 is flexible if one point P = (R, u, v) ∈ X1 is and if the group SAut(X)
acts transitively on X1. Since the function f ∈ R[Y 1] is non-constant, df(R) 6= 0 at some
point R ∈ Y 1 with f(R) 6= 0. Due to our assumption Y 1 is flexible. Hence there exist n

locally nilpotent derivations ∂
(1)
0 , . . . , ∂

(n)
0 ∈ DerR[Y ], where n = dimY = dimY 1, such that

the corresponding vector fields ξ1, . . . , ξn span the tangent space TRY , i.e.

rk





ξ1(R)
...

ξn(R)



 = n .

It follows that ∂
(i)
0 (f)(R) 6= 0 for some index i ∈ {1, . . . , n}.

Let now P = (R, u0, v0) ∈ X1 be a point such that π(P ) = R. Since u0v0 = f(R) 6= 0, the
point P is hyperbolic. Performing a lift as in (1) with q(v) = v, we obtain n LNDs

∂
(1)
1 , . . . , ∂

(n)
1 ∈ DerR[X ], where ∂

(j)
1 = ∂

(j)
1 (∂

(j)
0 , v).

Interchanging u and v and letting j = i, we get another LND

∂
(i)
2 = ∂

(i)
2 (∂

(i)
0 , u) ∈ DerR[X ].

Let us show that the corresponding n+ 1 vector fields span the tangent space TRX at R, as

required. We can view ∂
(1)
1 , . . . , ∂

(n)
1 , ∂

(i)
2 as LNDs in DerR[Y ][u, v] preserving the ideal (uv−

f), so that the corresponding vector fields are tangent to the hypersurface

X = {uv − f(R) = 0} ⊆ Y × A
2 .
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The values of these vector fields at the point P ′ ∈ X yield an (n+ 1)× (n+ 2)-matrix

E =








v0ξ1(R) ∂
(1)
0 (f)(R) 0

...
...

...

v0ξn(R) ∂
(n)
0 (f)(R) 0

u0ξi(R) 0 ∂
(i)
0 (f)(R)







.

The first n rows of E are linearly independent, and the last one is independent from the

preceding since ∂
(i)
0 (f)(R) 6= 0. Therefore rk(E) = n+ 1 = dimX . So these locally nilpotent

vector fields indeed span the tangent space TPX at P , as claimed. �

4. Infinite transitivity on each connected component

In this section we prove Theorem 1. As above, Y is an affine variety defined over R,
f ∈ R[Y ] is non-constant, and X = Susp(Y, f). Moreover, we assume that SAut(Y ) acts
infinitely transitively on each connected component of Yreg. Recall that v(P ) denotes the
v-coordinate of the point P ∈ X ⊆ Y × SpecR[u, v].

Lemma 8. Assume that Y is a flexible variety. For every finite set of points P1, . . . , Pm

in Xreg, there exists an automorphism g ∈ SAut(X) such that all v(g · Pi) are pairwise

distinct, and all u(g · Pi) are pairwise distinct.

Proof. We cannot use the starting argument of the proof of Lemma 6, since several points
of X may have the same projection in Y .

We denote the set of projections π(P1), . . . , π(Pm) by {R1, . . . , Rm′}. Note that all Ri

belong to Yreg by Lemma 2. Up to a special automorphism of X we can assume that all f(Ri)
are pairwise distinct. This is possible since f is non-constant on each connected component,
and the action of SAut(Y ) on Y is infinite transitive on each connected component. Consider
the images of P1, . . . , Pm under the projection ρ : X → SpecR[u, v]. If π(Pi) 6= π(Pj), the
projections ρ(Pi) and ρ(Pj) cannot coincide. Otherwise f(Ri) = uivi = ujvj = f(Rj). If
π(Pi) = π(Pj), we get also ρ(Pi) 6= ρ(Pj) since the points Pi and Pj are distinct.

Thanks to Lemma 5, keeping ρ(Pi) 6= ρ(Pj) if Pi 6= Pj , we may assume that u(Pi) 6= 0 and
v(Pi) 6= 0 for each i. We split the set {P1, . . . , Pm} into several subsetsM1⊔. . .⊔Mk according
to the v-coordinate. Let ci ∈ R be such thatMi ⊆ Vci. Using Lemma 3, we act by an element

of
∏k

i=1 Stab
v
c1,...,či,...,ck

to get m points with pairwise distinct u-coordinates. Arguing likewise
with Stabu-actions, we get m points with pairwise distinct u- and v-coordinates. �

Proof of Theorem 1. We denote by s the number of connected components of Yreg and we
suppose that the action of SAut(Y ) on Yreg is infinitely transitive on each connected com-
ponent. Consider a suspension X = Susp(Y, f) and decompose Xreg = X1 ⊔ . . . ⊔ Xs′ into
connected components. Recall that over each connected component of Yreg there is either one
or two connected components ofXreg. Fix some integersm′

1, m
′
2, . . . , m

′
s′ such that

∑
m′

j = m
and choose two (m′

1 + . . .+m′
s′)-tuples P = {P1, . . . , Pm} and Q = {Q1, . . . , Qm} in X such

that for each j, the component Xj contains exactly m′
j points of P and m′

j points of Q.
Let S = P ∪Q = {S1, . . . S2m}.

By Lemma 8 applied to S, we may suppose that the values of the v-coordinates are pairwise
distinct and that the values of the u-coordinates are also pairwise distinct.
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We want to choose an s′-tuple of values α = (α1, . . . , αs′) such that for all Si ∈ Xj the
number αjv(Si) is an interior point of f |Xj . To this end, we repeatedly apply Lemma 6
proceeding on one connected component at each step. Notice that we need to preserve the
condition that the values of the v-coordinates are pairwise distinct and that the values of
the u-coordinates are also pairwise distinct. At jth step, we let U = {u(Si), Si 6∈ Xj}
and V = {v(Si), Si 6∈ Xj} and we use g ∈ 〈Stabu

U , Stab
v
V〉 given by Lemma 6.

Such a choice of g provides that g · Si = Si for Si 6∈ Xj. To control the condition that
all u-values are pairwise distinct and all v-values are pairwise distinct for Si ∈ Xj, we require
the following. For each one-parameter subgroup h(t) acting in the course of the proof of
Lemma 6 (recall that it is non-trivial only for Si ∈ Xj), the conditions on t are

v(h(t) · Si) 6∈ V, u(h(t) · Si) 6∈ U for Si ∈ Xj ;

v(h(t) · Si1) 6= v(h(t) · Si2), u(h(t) · Si1) 6= u(h(t) · Si2)

for distinct Si1, Si2 ∈ Xj .

This is true for generic t. At each step we get an αj which fits for all Si ∈ Xj. We may
choose the αi pairwise distinct. At the end, we get a collection α = (α1, . . . , αs′), as required.

We construct an automorphism g0 mapping S to (X1∩Uα1
)⊔ (X2∩Uα2

)⊔ . . .⊔ (Xs′ ∩Uαs′
)

as the product of 2m automorphisms, each of them fixing all the points but one. Since all v-
values are pairwise distinct, to map Si, we let q(v) = βv

∏

k 6=i(v − v(Sk)) where β satisfies

q(v(Si)) = 1. If Si ∈ Xj , using the lift defined by q (see (1)), we map Si to X
j ∩Uαj

. Notice
that for {g0 · S1, . . . , g0 · S2m}, the u-values are no longer pairwise distinct.

To map g0 · P1, . . . , g0 · Pm onto g0 · Q1, . . . , g0 · Qm, we use, for each i, the infinite tran-
sitivity of the group Stabu

α1,...,α̌i,...,αs′
, multiplying the corresponding LNDs on R[Y ] by the

polynomial q(u) = γu(u−α1) . . .
ˇ︷ ︸︸ ︷

(u− αi) . . . (u−αs′) where γ is such that q(αi) = 1. In this
way, for each i, we fix the points lying off the ith connected component. Finally we get an
automorphism g which maps g0 · P1, . . . , g0 · Pm to g0 · Q1, . . . , g0 · Qm. Hence, g−1

0 gg0 maps
the m-tuple P1, . . . , Pm to Q1, . . . , Qm, as required. �
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