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INFINITELY TRANSITIVE ACTIONS ON REAL AFFINE SUSPENSIONS

A group G acts infinitely transitively on a set Y if for every positive integer m, its action is m-transitive on Y . Given a real affine algebraic variety Y of dimension greater than or equal to 2, we show that, under a mild restriction, if the special automorphism group of Y (the group generated by one-parameter unipotent subgroups) is infinitely transitive on each connected component of the smooth locus Y reg , then for any real affine suspension X over Y , the special automorphism group of X is infinitely transitive on each connected component of X reg . This generalizes a recent result by Arzhantsev, Kuyumzhiyan, and Zaidenberg over the field of real numbers.
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Introduction

In this note the algebraic varieties are affine with ground field of characteristic zero. Let Y be such a variety and let f be a non-constant polynomial function on Y . Recall that the suspension over Y along f is the hypersurface X ⊆ Y ×A 2 given by the equation uv-f (y) = 0.

The paper [START_REF] Arzhantsev | Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity[END_REF] shows that in many situations the infinite homogeneity of an affine variety induces the infinite homogeneity of its iterated suspensions. Namely, if the special automorphism group of an affine variety Y of dimension at least two acts infinitely transitively on the smooth locus of Y and if at every smooth point of Y the tangent space is spanned by the tangent vectors to the orbits of one-parameter additive subgroups, then every suspension over Y satisfies the same two properties. The proof in such generality is however valid provided that the ground field is algebraically closed. When the ground field is R, it is proved that the same result holds under two restrictions: the smooth locus of Y is connected and the function f is surjective. The aim of this note is to settle the real case for any Y and any f . Note that the notion of affine suspension was introduced in [KZ99] as a particular instance of an affine modification. The latter is an important tool to understand the structure of birational morphisms between affine varieties, see [D05]. Note also that infinite transitivity, sometimes called very transitivity, was recently studied in the context of real algebraic geometry, see [START_REF] Huisman | The group of automorphisms of a real rational surface is n-transitive[END_REF][START_REF] Huisman | Automorphisms of real rational surfaces and weighted blow-up singularities[END_REF][START_REF] Blanc | Geometrically rational real conic bundles and very transitive actions[END_REF].

Infinitely transitive actions

We recall the notations and state the main results. Definition 1. A suspension over an affine variety Y is a hypersurface X ⊆ Y × A 2 given by an equation uv-f (y) = 0, where f ∈ R[Y ] is non-constant. In particular, dim X = 1+dim Y , Key words and phrases. infinite transitive action, real algebraic variety, suspension MSC2010 14R20 , 14P99 .
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and the projection on the first factor induces a natural map π : X → Y.

Definition 2. We say that the action of a group G on a set Y = Y 1 ⊔Y 2 ⊔. . .⊔Y s is infinitely transitive on each connected component if for every s-tuple (m 1 , . . . , m s ), it is transitive on (m 1 + . . . + m s )-tuples of the form (P 1 1 , . . . , P 1 m 1 , P 2 1 , . . . , P 2 m 2 , . . . , P s 1 , . . . , P s ms ) , where P i j ∈ Y i are pairwise distinct. For an algebraic variety X, let the special automorphism group SAut(X) be the subgroup of Aut(X) generated by all of its one-parameter subgroups isomorphic to the additive group (R, +). Note that the action of SAut(X) does not mix regular and singular points.

Let Y be an algebraic variety over R. We say that a point y ∈ Y is flexible if the tangent space T y Y is spanned by the tangent vectors to the orbits H • y of one-parameter subgroups

H ⊆ SAut(Y ), H ∼ = (R, +). The variety Y is called flexible if every smooth point y ∈ Y reg is.
Theorem 1 (Infinite transitivity on each connected component). Let Y be an affine algebraic variety defined over R and

f ∈ R[Y ]. Assume that for each connected component Y i of Y reg , the dimension dim Y i ≥ 2 and f is non-constant on Y i .
If Y is flexible and the action of SAut(Y ) on Y reg is infinitely transitive on each connected component, then the suspension X = Susp(Y, f ) is flexible and SAut(X) acts on X reg infinitely transitively on each connected component.

Remark 1. When Y reg is connected and f (Y reg ) = R, the result is given by [AKZ10, Theorem 3.3]. Notice that under these conditions, X reg is also connected.

Remark 2. If X reg is not connected, then SAut(X) is not even one-transitive on X reg . Indeed, the action of SAut(X) on X fixes each connected component of X: every special automorphism g admits a decomposition h j (1), where each h i is a one-parameter additive group. For any x ∈ X, the arc t → h i (t) • x then connects x to g • x.

Remark 3. The number of connected components can grow on each step even if we started with a variety Y whose non-singular part Y reg is connected. Indeed, if f is positive on one of the connected components, say on Y 1 , then the set {(y, u, v) | uv = f (y), y ∈ Y 1 } splits into {(y, u, v), u > 0, v > 0} and {(y, u, v), u < 0, v < 0}. We may choose one connected component of the suspension and further perform suspensions over this connected component.

As a preliminary part of Theorem 1, we prove the following theorem.

Theorem 2 (Infinite transitivity on one connected component). Let Y be an affine algebraic variety defined over R and f ∈ R[Y ]. Assume that Y reg contains a flexible connected component Y 1 of dimension at least 2 such that SAut(Y ) acts infinitely transitively on Y 1 and f | Y 1 is non-constant. Let X 1 be a connected component of the smooth locus of the suspension Susp(Y 1 , f ) ⊆ X = Susp(Y, f ). Then X 1 is flexible and SAut(X) acts infinitely transitively on X 1 .

Note that the new paper [START_REF] Arzhantsev | Flexible varieties and automorphism groups[END_REF] proves that over an algebraically closed field, an affine variety X of dimension ≥ 2 is flexible if and only if SAut(X) is infinitely transitive on X reg and, even more, if and only if SAut(X) is one-transitive.

Affine modifications and lifts of automorphisms

In this section we prove the basic results of the theory over the real numbers. The main part is close to the treatment in [START_REF] Arzhantsev | Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity[END_REF]§3].

For every geometrically irreducible algebraic variety X over the ground field C, there is a natural one-to-one correspondence between locally nilpotent derivations (LND's) δ on C[X] and algebraic actions of one-parameter subgroups (C, +) ∼ = H δ ⊆ SAut(X). Namely, given a locally nilpotent derivation δ, the corresponding action is the exponential

(t, f ) → ∞ k=0 t k k! δ k (f ).
Conversely, for every algebraic action σ of a subgroup (C, +) ∼ = H ⊆ SAut(X), the derivation along the tangent vector field to the orbits of σ, given by σ(t,f )-f t | t=0 is an LND, see [F06, § 1.5]. The lemma below shows that the same is true for R.

Let G be a group. Recall that a G-module V is rational if each v ∈ V belongs to a finite dimensional G-invariant linear subspace W ⊆ V and the G-action on W defines a homomorphism of algebraic groups G → GL(W ). A G-algebra is an algebra with a structure of G-module.

Lemma 1. There are one-to-one correspondences between locally nilpotent derivations of R[X], unipotent subgroups (R, +) ⊆ Aut(X), and structures of rational (R, +)-algebras on R[X].

Proof. For an LND D, the corresponding (R, +)-algebra is defined by the following formula:

t : f = exp(tD)(f ) = f + tD(f ) + t 2 2! D 2 (f ) + . . . .
For any fixed f there exists a natural N with D N (f ) = 0, so this formula gives a polynomial in t. Hence, f belongs to a (R, +)-invariant linear subspace f, D(f ), . . . , D N -1 (f ) , which shows that R[X] is rational as a (R, +)-algebra.

Conversely, let (A, t → ϕ t ) be a rational (R, +)-algebra. Let us define

D(f ) = d dt | t=0 ϕ t (f ), f ∈ A.
The main point is to prove that for each f ∈ A some power D N (f ) vanishes. Consider a finite dimensional invariant subspace W ⊆ R[X], f ∈ W . Obviously, D preserves W and the action of exp(D) on W ⊗ R C is unipotent. By the Lie-Kolchin theorem, the action of D is upper-triangular in some basis of W ⊗ R C. This means in particular that D N = 0 for some N. Note that the actions of D on W and of D on W ⊗ R C were originally given by the same matrix, hence, this matrix is nilpotent, and the derivation D on R[X] is in fact locally nilpotent.

Here is the geometric counterpart of the affine suspensions introduced above. Let X = Susp(Y, f ) be a suspension of Y given by Definition 1. Consider the cylinder Y × A 1 over Y , where

A 1 = R[v]. Then Susp(Y, f ) is the blow-up of Y × A 1 with center (f, v) along v, which is a particular instance of an affine modification, see [KZ99, Example 1.4].
Let δ 0 be an LND on R[Y ] and let H δ 0 be the associated (R, +)-action on Y . Recall the construction of an LND δ 1 which lifts δ 0 to X (see [AKZ10, Lemma 3.3] or [START_REF] Kaliman | Affine modifications and affine hypersurfaces with a very transitive automorphism group[END_REF]). Let δ ′ be the lift of δ 0 on R[Y × A 1 ] defined by δ ′ (v) = 0 and consider a product δ 1 = qδ ′ by a polynomial q(v) such that q(0) = 0. Choosing q such that the value of δ 1 on u preserves the relation δ 1 (uv -f (y)) = 0, we get an LND on R[X] which satisfies

δ 1 (g) = q(v)δ 0 (g) for all functions g ∈ R[Y ], δ 1 (v) = 0, (1) δ 1 (u) = q(v) v δ 0 (f ).
There is some freedom in the choice of q(v). All the derivations obtained in this way annihilate the function v ∈ R[X], and the corresponding actions preserve the sections

V c = {v = c} ∩ X.
Notice that X can also be considered as the blow-up of Y × Spec R[u], and the lifts of LNDs obtained in this way annihilate the function

u ∈ R[X].
We denote by G v (resp. G u ) the subgroup of SAut(X) generated by one-parameter subgroup lifted from

Y × Spec R[v] (resp. Y × Spec R[u]). Recall the following.
Lemma 2. [AKZ10, Lemma 3.2] Let Y be an affine variety over a field of characteristic 0 and X be a suspension of Y . Then the restriction π :

X ⊂ Y × A 2 → Y of the canonical projection satisfies π(X reg ) = Y reg .
We denote by Y reg = Y 1 ⊔ . . . ⊔ Y s the decomposition of Y reg into connected components. If f is not surjective, then the suspension over a connected component Y i of Y reg is either connected or consists of two components: if f | Y i does not attain zero, it may be assumed positive, u and v neither attain zero, but can be either both negative, or both positive.

For every c ∈ R the hyperplane section {v = c} ⊂ X will be denoted by V c . We denote by v(P ) the v-coordinate of a point P ∈ X.

Given k distinct constants c 1 , . . . , c k ∈ R \ {0}, we let Stab v c 1 ...c k be the subgroup of G v fixing pointwise the hypersurfaces V cs ⊆ X, s = 1, . . . , k. Observe that, as a subgroup of G v , the group Stab v c 1 ...c k stabilizes all the levels V c of the function v ∈ R[X] Gv . Likewise, let Stab u c 1 ...c k ⊂ G u be the subgroup of maps inducing the identity on the levels U cs of the function u ∈ R[X] Gu . Lemma 3. If the action of SAut(Y ) on Y reg is infinitely transitive on each connected component, then for every distinct values c 0 , c 1 , . . . , c k ∈ R \ {0}, the group Stab v c 1 ...c k acts infinitely transitively on each connected component of V c 0 ∩ X reg . The same is true for the action of Stab u c 1 ...c k on U c 0 ∩ X reg . Proof. Let P 1 , . . . , P m and Q 1 , . . . , Q m be two m-tuples of distinct points of V c 0 ∩ X reg . Since π restricts to an isomorphism V c 0 ∩ X reg → π(X reg ) = Y reg , we get π(P j ) = π(P l ) and π(Q j ) = π(Q l ) for j = l. Moreover, two points belong to the same connected component of V c 0 ∩ X reg if and only if their projections belong to the same connected component of Y reg . As a consequence, there exists a special automorphism ψ such that ψ • π(P j ) = π(Q j ), ∀j. The special automorphism ψ decomposes into exponentials of LND's. We lift each of these derivations using the polynomial q(z) = αz(z -c 1 ) . . . Proof. (See [AKZ10, Lemma 3.6]) We may assume that f | Y 1 is non-constant. Choose two points y 1 , y 2 ∈ Y 1 such that f (y 1 ) = c 1 < c and f (y 2 ) = c 2 > c. They can be joined by a smooth path l in Y 1 . There exists a tubular neighborhood U of l diffeomorphic to a cylinder ∆ × I, where I = [0, 1] and ∆ is a ball of dimension dim ∆ = dim Y 1 -1 ≥ 1. So there is a continuous family of paths joining y 1 and y 2 within U such that any two of them meet only at their ends y 1 and y 2 . By continuity, on each of these paths there is a point y ′ with f (y ′ ) = c. In particular, the level set f -1 (c) is infinite.

Lemma 5. Let Y be an affine variety over R and X be a suspension of

Y . Let Y 1 ⊂ Y be a connected component of Y reg of dimension at least two, f ∈ R[Y ] such that 0 ∈ Int f (Y 1 ),
and X 1 be the suspension over Y 1 . If Y 1 is flexible and the action of SAut(Y ) is infinitely transitive on Y 1 , then for every set of distinct points P 1 , . . . , P m of X 1 there exists a special automorphism ϕ ∈ SAut(X) such that ϕ • P j ∈ U 0 ∪ V 0 for all j.

Proof. We follow the proof of [AKZ10, Lemma 3.5]. We say that the point

P i = (R i , u i , v i ) ∈ X 1 is hyperbolic if u i v i = 0, i.e. P i ∈ U 0 ∪ V 0 .
We have to show that the original collection can be moved by means of a special automorphism so that all the points become hyperbolic. Suppose that P 1 , . . . , P l are already hyperbolic while P l+1 is not, where l ≥ 0. By recursion, it is sufficient to move P l+1 off U 0 ∪ V 0 while leaving the points P 1 , . . . , P l hyperbolic. It is enough to consider the following two cases: Case 1: u l+1 = 0, v l+1 = 0, and Case 2: u l+1 = v l+1 = 0. We claim that there exists an automorphism ϕ ∈ SAut(X) leaving P 1 , . . . , P l hyperbolic such that in Case 1 the point ϕ • P l+1 is hyperbolic as well, and in Case 2 this point satisfies the assumptions of Case 1.

In Case 1 we divide P 1 , . . . , P l+1 into several disjoint pieces M 0 , . . . , M k according to different values of v so that P i ∈ M j ⇔ v i = c j , where c j = 0. Assuming that M 0 = {P i 1 , . . . , P ir , P l+1 }, where i k ≤ l for all k = 1, . . . , r, we can choose an extra point

P ′ l+1 ∈ (V c 0 ∩ X 1 ) \ U 0 . Indeed, since c 0 = v l+1 = 0, we have V c 0 ∼ = Y 1 . We have dim Y 1 ≥ 2, hence dim(V c 0 ∩ X 1 ) \ U 0 = dim Y 1 ≥ 2.
By Lemma 3 the subgroup Stab v c 1 ,...,c k ⊆ G v acts (r + 1)-transitively on V c 0 ∩ X 1 . Therefore we can send the (r + 1)-tuple (P i 1 , . . . , P ir , P l+1 ) to (P i 1 , . . . , P ir , P ′ l+1 ) fixing the remaining points of M 1 ∪ . . . ∪ M k . This confirms our claim in Case 1.

In Case 2 we have P l+1 = (R l+1 , 0, 0) ∈ X 1 . It follows from Lemma 2 that R l+1 = π(P l+1 ) belongs to Y reg and df (R l+1 ) = 0 in the cotangent space T * R l+1 Y . The variety Y 1 being flexible, there exists an LND

∂ 0 ∈ Der R[Y ] such that ∂ 0 (f )(R l+1 ) = 0. Let q(v) = v(v -v 1 )(v - v 2 ) . . . (v -v l ) be a polynomial in R[v]
and choose a set of generators x 1 , . . . , x s of the algebra R[Y ]. Then, as in (1), the derivation ∂ 0 can be extended to

∂ 1 ∈ Der R[X] via ∂ 1 (x i ) = q(v)∂ 0 (x i ), i = 1, 2, . . . , s , ∂ 1 (v) = 0 , ∂ 1 (u) = q(v) v ∂ 0 (f ) .
Due to our choice, ∂ 1 (u)(P l+1 ) = 0. Hence the action of the associate one-parameter unipotent subgroup H(∂ 0 , q) = exp(t∂ 1 ) pushes the point P l+1 out of U 0 . So the orbit H(∂ 0 , q) • P l+1 meets the hypersurface U 0 ⊆ X 1 in finitely many points. Similarly, for every j = 1, 2, . . . , l the orbit H(∂ 0 , q) • P j ⊆ U 0 meets U 0 in finitely many points. Let ϕ = exp(t

0 ∂ 1 ) ∈ H(∂ 0 , q) ⊆ G v .
For a general value of t 0 ∈ R the image ϕ • P j lies outside U 0 for all j = 1, 2, . . . , l + 1. Since the group H(∂ 0 , q) preserves v, the points ϕ • P 1 , . . . , ϕ • P l are still hyperbolic. Interchanging the roles of u and v, we achieve that the assumptions of Case 1 are fulfilled for the new collection ϕ • P 1 , . . . , ϕ • P l , ϕ • P l+1 , as required.

Infinite transitivity on one connected component

This section is devoted to the proof of Theorem 2. Recall that Y is an affine variety defined over R, f ∈ R[Y ] is non-constant, and X = Susp(Y, f ). Let Y 1 be a connected component of Y reg , and let X 1 be a connected component of Susp(Y 1 , f ) ∩ X reg . Lemma 6. Let m be a positive integer and let P 1 , . . . , P m be m points in X 1 . There exist an automorphism g ∈ SAut(X) and a nonzero real number α such that for each i = 1, . . . , m the number αv(g

• P i ) is an interior point of f | Y 1 .
Moreover, for any finite sets of real numbers U disjoint from {u(P i )} and V disjoint from {v(P i )}, the automorphism g can be chosen in

Stab u U , Stab v V .
Proof. Acting with G v , we may assume that the m points P 1 , . . . , P m have pairwise distinct ucoordinates. Acting further with G u , we may assume that these points have also pairwise distinct values their v-coordinates.

The proof depends on the behavior of f . If 0 is an interior point of f (Y 1 ), we let g = Id and choose α small enough. Then all αv(P i ) are close to 0, and thus are interior points of f (Y 1 ).

If f | Y 1 is unbounded and f | Y 1 > 0, we let g = Id and choose α great enough. All αv(P i ) are then large enough and are thus interior points of f (Y 1 ). In the case f | Y 1 is unbounded and f | Y 1 < 0, the same argument works.

It remains to consider a bounded function f , that is f (Y 1 ) = [a, b]. This splits into two cases: either ab = 0, or ab = 0.

Case 1. Without loss of generality we may suppose that 0 < a < b. Let v i = v(P i ) and u i = u(P i ). Consider the connected component X 1 of the suspension over Y 1 such that all v i > 0, and all u i > 0. Let v max and v min be the maximal and minimal values of v(P 1 ), . . . , v(P m ).

If v max /v min < b/a, we let g = Id. Then for any α ∈]a/v min , b/v max [, it is clear that all real numbers αv i are interior points of f (Y 1 ).

Otherwise, if v max /v min b/a, we need a non-trivial automorphism g. Fix ε > 0. Note that, acting with the group G v , any point P ∈ {P 1 , P 2 , . . . , P m } can be mapped to a point P ′ such that f (P ′ ) is very close to b, while all the other points are fixed. Indeed, for a general

ε 1 < ε, the real number b-ε 1 v(P ) ∈ {u 1 , . . . , u m }. Let R in Y 1 be such that f (R) = b -ε 1 . We endow R with two extra coordinates u = b-ε 1 v(P ) , v = v(P ) and get P ′ = (R, b-ε 1 v(P ) , v(P )) ∈ X 1
. Let W = {v(P 1 ), . . . , v(P m )} \ {v(P )}, the point P can be mapped to P ′ by an element g 1 of the group Stab v W . Thus for a general ε 1 < ε, the automorphism g 1 of X satisfies g 1 • P j = P j for P j = P , and f (g 1 • P ) > b -ε.

Choose P = P i such that v(P i ) = v max , P i = (R i , u i , v max ). As described above, we map P i to

P ′ i = (R ′ , b-ε 1 v i , v i ) such that f (R ′ ) = b -ε 1 .
Then, interchanging u and v, and interchanging a and b, there is an element of G u which maps P ′ i to

P ′′ i = (R ′′ , b-ε 1 v i , (a+ε 2 )v i b-ε 1 ) such that f (R ′′ ) = a + ε 2 . Note that v(P ′′ i ) < a+ε b-ε v(P i ).
If v max /v min ≥ b/a for the new set P 1 , . . . , P ′′ i , . . . , P m , we repeat this procedure. This process is finite since at each step the product v(P 1 ) . . . v(P m ) reduces by a factor at least a+ε b-ε . Finally, we get m points g • P 1 , . . . , g • P m such that v max /v min < b/a.

Case 2. One of a and b equals zero. Using Lemma 5, we map the given m-tuple P 1 , . . . , P m in X 1 to points P ′ 1 , . . . , P ′ m ∈ X 1 \ (U 0 ∪ V 0 ). A sufficiently small α then fulfills the required condition.

To prove the second part of the lemma, we run the proof once again but we add an extra condition while performing the lift of an automorphism from Y to X. Namely, for an automorphism in G u , we multiply the polynomial q by u∈U q(u), and for an automorphism in G v , we multiply the polynomial q by v∈V q(v).

Proof of Theorem 2. Fix two m-tuples of distinct points P 1 , . . . , P m and Q 1 , . . . , Q m in X 1 . By Lemma 6, up to the action of SAut(X), there exists α ∈ R \ {0} such that αv(P i ) belongs to Int f (Y 1 ) and αv(Q i ) ∈ Int f (Y 1 ) for all i = 1, . . . , m. We denote by c 1 , . . . , c k the distinct values of the v-coordinates of the given 2m points. We split the set {P 1 , . . . , P m , Q 1 , . . . , Q m } into k subsets according to the v-coordinate. For each i, the set V c i ∩ U α ∩ X 1 is infinite by Lemma 4. In particular, for each i, we get # (V c i ∩ U α ∩ X 1 ) ≥ 2m. By Lemma 3, there exists 

g i ∈ Stab v c 1 ,...,č i ,...,c k such that g i {P 1 , . . . , P m , Q 1 , . . . Q m } ∩ V c i ⊂ V c i ∩ U α
ξ n (R)   = n . It follows that ∂ (i) 0 (f )(R) = 0 for some index i ∈ {1, . . . , n}. Let now P = (R, u 0 , v 0 ) ∈ X 1 be a point such that π(P ) = R. Since u 0 v 0 = f (R) = 0, the point P is hyperbolic. Performing a lift as in (1) with q(v) = v, we obtain n LNDs ∂ (1) 1 , . . . , ∂ (n) 1 ∈ Der R[X], where ∂ (j) 1 = ∂ (j) 1 (∂ (j) 0 , v).
Interchanging u and v and letting j = i, we get another LND

∂ (i) 2 = ∂ (i) 2 (∂ (i) 0 , u) ∈ Der R[X].
Let us show that the corresponding n + 1 vector fields span the tangent space T R X at R, as required. We can view ∂

(1) 1 , . . . , ∂ (n) 1 , ∂ (i) 2 as LNDs in Der R[Y ][u, v]
preserving the ideal (uvf ), so that the corresponding vector fields are tangent to the hypersurface

X = {uv -f (R) = 0} ⊆ Y × A 2 .
The values of these vector fields at the point P ′ ∈ X yield an (n + 1) × (n + 2)-matrix

E =      v 0 ξ 1 (R) ∂ (1) 0 (f )(R) 0 . . . . . . . . . v 0 ξ n (R) ∂ (n) 0 (f )(R) 0 u 0 ξ i (R) 0 ∂ (i) 0 (f )(R)      .
The first n rows of E are linearly independent, and the last one is independent from the preceding since

∂ (i) 0 (f )(R) = 0. Therefore rk(E) = n + 1 = dim X.
So these locally nilpotent vector fields indeed span the tangent space T P X at P , as claimed.

Infinite transitivity on each connected component

In this section we prove Theorem 1. As above, Y is an affine variety defined over R, f ∈ R[Y ] is non-constant, and X = Susp(Y, f ). Moreover, we assume that SAut(Y ) acts infinitely transitively on each connected component of Y reg . Recall that v(P ) denotes the v-coordinate of the point

P ∈ X ⊆ Y × Spec R[u, v].
Lemma 8. Assume that Y is a flexible variety. For every finite set of points P 1 , . . . , P m in X reg , there exists an automorphism g ∈ SAut(X) such that all v(g • P i ) are pairwise distinct, and all u(g • P i ) are pairwise distinct.

Proof. We cannot use the starting argument of the proof of Lemma 6, since several points of X may have the same projection in Y .

We denote the set of projections π(P 1 ), . . . , π(P m ) by {R 1 , . . . , R m ′ }. Note that all R i belong to Y reg by Lemma 2. Up to a special automorphism of X we can assume that all f (R i ) are pairwise distinct. This is possible since f is non-constant on each connected component, and the action of SAut(Y ) on Y is infinite transitive on each connected component. Consider the images of P 1 , . . . , P m under the projection ρ : X → Spec R[u, v]. If π(P i ) = π(P j ), the projections ρ(P i ) and ρ(P j ) cannot coincide. Otherwise f (R i ) = u i v i = u j v j = f (R j ). If π(P i ) = π(P j ), we get also ρ(P i ) = ρ(P j ) since the points P i and P j are distinct.

Thanks to Lemma 5, keeping ρ(P i ) = ρ(P j ) if P i = P j , we may assume that u(P i ) = 0 and v(P i ) = 0 for each i. We split the set {P 1 , . . . , P m } into several subsets M 1 ⊔. . .⊔M k according to the v-coordinate. Let c i ∈ R be such that M i ⊆ V c i . Using Lemma 3, we act by an element of k i=1 Stab v c 1 ,...,č i ,...,c k to get m points with pairwise distinct u-coordinates. Arguing likewise with Stab u -actions, we get m points with pairwise distinct u-and v-coordinates.

Proof of Theorem 1. We denote by s the number of connected components of Y reg and we suppose that the action of SAut(Y ) on Y reg is infinitely transitive on each connected component. Consider a suspension X = Susp(Y, f ) and decompose X reg = X 1 ⊔ . . . ⊔ X s ′ into connected components. Recall that over each connected component of Y reg there is either one or two connected components of X reg . Fix some integers m ′ 1 , m ′ 2 , . . . , m ′ s ′ such that m ′ j = m and choose two (m ′ 1 + . . . + m ′ s ′ )-tuples P = {P 1 , . . . , P m } and Q = {Q 1 , . . . , Q m } in X such that for each j, the component X j contains exactly m ′ j points of P and m ′ j points of Q. Let S = P ∪ Q = {S 1 , . . . S 2m }.

By Lemma 8 applied to S, we may suppose that the values of the v-coordinates are pairwise distinct and that the values of the u-coordinates are also pairwise distinct.

  (z -c k ) where α ∈ R\{0} is determined by q(c 0 ) = 1. (Compare [AKZ10, Lemma 3.4].) Lemma 4. Let Y 1 ⊂ Y be a connected component of Y reg of dimension at least two. Then for every continuous function f : Y → R and for each c ∈ Int f (Y 1 ), the level set f -1 (c) is infinite.

∈

  and g i fixes all the points belonging to ∪ j =i V c j . Let us denote byP ′ 1 , . . . , P ′ m , Q ′ 1 , . . . , Q ′ m ∈ U α the images by g k • . . . • g 1 . Since the action of Stab u ∅ = G u on U α is infinitely transitive by Lemma 3, there exists a special automorphism mapping the m-tuple P ′ 1 , . . . , P ′ m to Q ′ 1 , . . . , Q ′ m . Lemma 7.If SAut Y acts infinitely transitively on Y 1 where dim Y 1 2, then the flexibility of Y 1 implies the flexibility of any connected component X 1 of Susp(Y 1 , f ), Proof. Clearly, X 1 is flexible if one point P = (R, u, v) ∈ X 1 is and if the group SAut(X) acts transitively on X 1 . Since the function f ∈ R[Y 1 ] is non-constant, df (R) = 0 at some point R ∈ Y 1 with f (R) = 0. Due to our assumption Y 1 is flexible. Hence there exist n locally nilpotent derivations ∂ Der R[Y ], where n = dim Y = dim Y 1 , such that the corresponding vector fields ξ 1 , . . . , ξ n span the tangent space T R Y , i.e.
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We want to choose an s ′ -tuple of values α = (α 1 , . . . , α s ′ ) such that for all S i ∈ X j the number α j v(S i ) is an interior point of f | X j . To this end, we repeatedly apply Lemma 6 proceeding on one connected component at each step. Notice that we need to preserve the condition that the values of the v-coordinates are pairwise distinct and that the values of the u-coordinates are also pairwise distinct. At jth step, we let U = {u(S i ), S i ∈ X j } and V = {v(S i ), S i ∈ X j } and we use g ∈ Stab u U , Stab v V given by Lemma 6. Such a choice of g provides that g • S i = S i for S i ∈ X j . To control the condition that all u-values are pairwise distinct and all v-values are pairwise distinct for S i ∈ X j , we require the following. For each one-parameter subgroup h(t) acting in the course of the proof of Lemma 6 (recall that it is non-trivial only for S i ∈ X j ), the conditions on t are

This is true for generic t. At each step we get an α j which fits for all S i ∈ X j . We may choose the α i pairwise distinct. At the end, we get a collection α = (α 1 , . . . , α s ′ ), as required.

We construct an automorphism g 0 mapping S to (X

) as the product of 2m automorphisms, each of them fixing all the points but one. Since all vvalues are pairwise distinct, to map S i , we let q(v) = βv k =i (v -v(S k )) where β satisfies q(v(S i )) = 1. If S i ∈ X j , using the lift defined by q (see (1)), we map S i to X j ∩ U α j . Notice that for {g 0 • S 1 , . . . , g 0 • S 2m }, the u-values are no longer pairwise distinct.

To map g 0 • P 1 , . . . , g 0 • P m onto g 0 • Q 1 , . . . , g 0 • Q m , we use, for each i, the infinite transitivity of the group Stab u α 1 ,..., αi ,...,α s ′ , multiplying the corresponding LNDs on R[Y ] by the polynomial q(u) = γu(u -α 1 ) . . . ˇ (u -α i ) . . . (u -α s ′ ) where γ is such that q(α i ) = 1. In this way, for each i, we fix the points lying off the ith connected component. Finally we get an automorphism g which maps g 0 • P 1 , . . . , g 0 • P m to g 0 • Q 1 , . . . , g 0 • Q m . Hence, g -1 0 gg 0 maps the m-tuple P 1 , . . . , P m to Q 1 , . . . , Q m , as required.