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Abstract 
This paper focuses on the performance evaluation of the parallel manipulators for milling of composite 
materials. For this application the most significant performance measurements, which denote the ability of 
the manipulator for the machining are defined. In this case, optimal synthesis task is solved as a 
multicriterion optimization problem with respect to the geometric, kinematic, kinetostatic, elastostostatic, 
dynamic properties. It is shown that stiffness is an important performance factor. Previous models operate 
with links approximation and calculate stiffness matrix in the neighborhood of initial point. This is a reason 
why a new way for stiffness matrix calculation is proposed. This method is illustrated in a concrete industrial 
problem. 
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1 INTRODUCTION 

Currently, parallel manipulators have become more and 
more popular for a variety of technological processes, 
including high-speed precision machining [1] [2]. This 
growing attention is inspired by their essential advantages 
over serial manipulators, which have already reached the 
dynamic performance limits. In contrast, parallel 
manipulators are claimed to offer better accuracy, lower 
mass/inertia properties, and higher structural rigidity (i.e. 
stiffness-to-mass ratio) [3]. 

These features are induced by their specific kinematic 
structure, which resists to the error accumulation in 
kinematic chains and allows convenient actuators 
location close to the manipulator base. This makes them 
attractive for innovative robotic systems, but practical 
utilization of the potential benefits requires development 
of efficient stiffness analysis techniques, which satisfy the 
computational speed and accuracy requirements of 
relevant design procedures. 

Generally, the stiffness analysis evaluates the effect of 
the applied external torques and forces on the compliant 
displacements of the end-effector. Numerically, this 
property is defined through the “stiffness matrix”, which 
gives the relation between the translational/rotational 
displacement and the static forces/torques causing this 
transition [4]. Similar to other manipulator properties 
(kinematical, for instance), the stiffness essentially 
depends on the force/torque direction and on the 
manipulator configuration [5]. 

Several approaches exist for the computation of the 
stiffness matrix, such as the Finite Element Analysis 
(FEA), the matrix structural analysis (MSA), and the 
virtual joint method (VJM). Each of methods has their own 
assumptions and in general approximate/linearized the 
stiffness model with adequate accuracy for the specific 
problem. Let us consider the recent modification of the 

VJM proposed by the authors [6]. It allows extending it to 
the over-constrained manipulators and applying it at any 
workspace point, including the singular ones. The 
method is based on a multidimensional lumped-
parameter model that replaces the link flexibility by 
localized 6-dof virtual springs that describe both the 
linear/rotational deflections and the coupling between 
them. The spring stiffness parameters are evaluated 
using FEA modelling to take into account real shape of 
the manipulator components. This gives almost the same 
accuracy as FEA but with essentially lower computational 
effort because it eliminates re-meshing through the 
workspace. 

In contrast to previous works, the novelty of this paper 
appears in the computation of the stiffness matrix for the 
loaded mode in the neighborhood of static equilibrium 
with true dimensions links.  

This paper focuses on the performance evaluation of the 
milling process for the composite materials via enhancing 
the precise stiffness model for the compliance errors 
estimation.  VJM is used for the stiffness modeling. It 
incorporates accurate stiffness properties of links via 
improved FEA-based stiffness calculation algorithm. This 
leads to adequate estimation of deflections and allows 
improving accuracy of manufacturing via accurate 
planning of the technological process.   

The reminder of the paper is organized as follows. In the 
Section 2, it is defined the set of problems which are 
considered in the paper. Section 3 presents performance 
evaluation factors. Section 4 proposes a new method for 
the stiffness modeling of parallel manipulator. Section 5 
illustrate the efficiency of the propose technique on the 
Orthoglide manipulator by specializing it for milling of 
bathroom component. And, finally, section 6 summarizes 
the main contributions of the paper. 



2 PROBLEM STATEMENT 

The main problem to be solved in this article is the 
accuracy evaluation during the manufacturing step for 
specific parallel manipulators and technological process. 
Position accuracy and performances characteristics for 
the industrial manipulators depend on the technological 
process, kinetostatic and geometry properties of both 
manipulator and workpiece. Therefore specializing of the 
manipulator for the current manufacturing process with 
respect to the required performances properties allows 
increasing the position accuracy of the tool.   

Mechanical stiffness is one of the most important 
properties, which have influence on the position accuracy 
of low mass parallel mechanisms. As it is mentioned in [7] 
Cartesian stiffness is a nonlinear function of the external 
loading and depends on the configuration of the 
manipulator and, as result, of the position of end effector 
in the workspace [8]. The computed Cartesian stiffness 
both depends on the stiffness of the links and stiffness 
model accuracy.  

So the aim of this article is to specialize a parallel 
manipulator for the milling of products made of composite 
material with known geometric sizes. The idea is to 
improve the accuracy for the high-speed milling via mass 
reduction and improving of the stiffness model. 

 

3 PERFORMANCE EVALUATION 

Let us present here the most essential technology-
oriented performance measures that are used in the 
design process of a machine-tool. They may be classified 
into two groups: 

 the measures based on geometric, kinematic and 
kinetostatic properties; these measures are based on 
simple models that evaluate the geometric, kinematic 
and kinetostatic properties of a mechanism. Their 
specificity is that they only use the primary geometric 
parameters of the mechanism, i.e., the size of the 
base, the length of links, etc. 

 the measures based on dynamic, elastostatic and 
elastodynamic properties; these measures mostly use 
more complicated models. Their specificity is that they 
not only use the primary geometric parameters of the 
mechanism, but also the secondary geometric 
parameters, as for example, the cross-section of links. 

Let us now describe them. 

3.1 Geometric, kinematic and kinetostatic 
performances 

The most commonly used geometric, kinematic and 
kinetostatic performances are: 

 the velocity transmission factors;  

For appreciating the speed capability of a manipulator, 
several kinematic performance indices are defined using 
the Jacobian matrix J (see [10]), such as the condition 
number, the largest/smallest singular value (also called 
the maximal/minimal transmission factor and denoted as 

max
vk  and min

vk , respectively – Figure 1a), the dexterity, 

the manipulability, etc.  However, as mentioned by Merlet 
in [10], the previously cited indices does not take into 
account the „technological reality‟ of the mechanism, as 
they are based on the use of the Euclidian norm of the 

input velocity vector Φ  (|| Φ || being considered equal to 
1) while it is clear that each actuator may have a velocity 

i
   [– max

i
 , max

i
 ], where i

  and max
i
  are the actual 

and maximal velocities for the actuator i (i = 1 to n). Thus, 
it is necessary to redefine the transmission factors. 

Two types of transmission factors may be used: (i) the 
velocity transmission factors along all directions of the 
workspace; in such a case, the unit square is mapped 
into a parallelepiped (Figure 1b) and (ii) the velocity 
transmission along some particular directions of the 
workspace; in such a case, the unit square is mapped 
into a hexagon (Figure 1c) [9]. 

 

(a)   mapping of the unit sphere 

 

(b)   mapping of the unit cube. 

 

(c)   mapping of the velocity transmission in the xy plane. 

Figure 1: Mapping, using the Jacobian matrix. 

 

 the accuracy transmission factors;  

The accuracy of a mechanism may be due to different 
factors. However, as pointed out by Merlet [11], active-
joint errors are the most significant source of errors in a 
properly designed, manufactured, and calibrated parallel 
robot. The classical approach consists in considering the 
first order approximation that maps the input error to the 
output error: 

ΦJp δδ   (1) 

where  represents the vector of the active-joint errors, 

p the vector of end-effector errors. This method will 
give only an approximation of the end-effector maximum 
error, but at an optimisation stage, this model may be 
sufficient.  

It is possible to show that, due the use of the expression 
(1) as the accuracy model, the accuracy transmission 
factors are similar to the velocity transmission factors. 
More information about the computation of these 
transmission factors is proposed in [9]. 

 the force transmission factors;  

For 3-DOF translational parallel manipulators, the input 

efforts  are related to the forces f applied on the platform 
by the following relation: 



 

τJf
T

  (2) 

Looking at expression (2), it appears that the relationship 
for the accuracy is similar to the relationship for the 
velocity, but J

–T
 is used instead to J. Moreover, it is also 

clear that the effort i of one actuator is comprised 

between –
max

 and +
max

, 
max

 being the maximal effort 
admissible by the actuated pair. So, the force 
transmission factors may be computed in the same 
manner as the velocity transmission factors. The maximal 
and minimal force and moment transmission factors will 

be denoted as min
fk and max

fk  respectively. To have more 

information about the computation of these transmission 
factors, the reader is proposed to refer to [9]. 

 the size of the workspace;  

Using the set of geometric parameters, the workspace W 
may be generated using the kinematic equations and the 
(passive and active) joint limits [3]. Since, for the 
considered application, the desired regular workspace is 
a parallelepiped W0 of size {a0 × b0 × c0}, the relevant 
measure may be defined by the largest similar object 
W

abc 
= {µa0 × µb0 × µc0} inscribed in W, i.e. 

 WWTTWTW 0
T

0  )(maxarg),();(
,




abc  (3) 

where µ, T are respectively the scalar scaling factor and 
the coordinate transformation operator in the Cartesian 
space. An algorithm that is able to compute the size 
largest parallelepiped inside a given workspace is 
presented in [9] 

Let us now introduce the dynamic, elastostatic and 
elastodynamic performances. 

3.2 Dynamic, elastostatic and elastodynamic 
performance 

The most commonly used dynamic, elastostatic and 
elastodynamic performances are: 

 the total mass of the robot;  

This is probably the simplest performance measure. The 
masses of the different elements of a robot have a direct 
influence on its dynamic behaviour. For one given 
structure with fixed value of links length, the robot that will 
have the smallest mass will be the one with the smallest 
input efforts, and as a result, the highest acceleration 
capacity. 

 the input efforts;  

The input efforts, denoted as , depend on the mass and 
axial moment of inertia of links, such as friction in joints 
and position, velocity and acceleration of the robot. There 
expression is given by: 

fJqGqqqCqqMτ
T

 )(),()(   (4) 

where M is the mass matrix, C the matrix of the Coriolis, 

centrifugal and viscous friction effects, G is the matrix of 

the gravity and Coulomb friction effects. q, q  and q  

represent the vectors of the positions, velocities and 
accelerations of the actuators. f is an external force 
applied on the platform. Generally, it is considered that, 
given a desired trajectory, the robot that has the lowest 
input efforts along the trajectory has the best 
performance. 

 the maximal deformations;  

For parallel manipulators, elasticity is an essential 
performance measure since it is directly related to the 
positioning accuracy and the payload capability. 
Mathematically, this benchmark is defined by the stiffness 

matrix K, which describes the relation between the 

linear/angular displacements t  of the end-effector and 

the external forces/torques f applied on the tool: 

tKf δ  (5) 

It is obvious that elasticity is highly dependent upon 
geometry, materials and link shapes that are completely 
defined with the CAD model. The stiffness matrix may be 
computed using three methods: the finite element 
analysis (FEA) [12, 13], the matrix structural analysis 
(SMA) [14, 15] and the virtual joint method (VJM) 
[6, 16, 17]. 

Whatever will be the way to compute the deformations of 
the robot, the mechanism that will have the best 
elastostatic performances will be the one that will have 
the smallest deformations under a given force, along a 
specific trajectory or in the totality (or some portions) of 
the workspace. 

External forces are caused by the coupling of the tool 
and machining piece. But previous stiffness models 
calculate stiffness matrix in the neighborhood of initial 
point and operate with links approximations. Such 
models can‟t guarantee good accuracy. Therefore let us 
consider the stiffness model improvement and 
deflections evaluation.   

 

4 STIFFNESS MODEL  

4.1 Problem of stiffness modeling 

To evaluate the manipulator stiffness, let us apply the 
VJM method that assumes that the traditional rigid model 
is extended by adding virtual joints, which describe 
stiffness of the actuator and links. Thus, the end-effector 
position for each chain of the manipulator can be 
described as  

( , )t g q θ  (6) 

where (...)g  is the geometry function which depends on 

the passive q  and virtual joint θ coordinates, the vectors 

1 2
( , , ..., )

T

n
q q qq  includes all passive joint coordinates, 

the vector 
1 2

( , , ..., )
T

m
θ     collects all virtual joint 

coordinates, n  is the number of passive joins, m  is the 

number of virtual joints.  

This expression includes both traditional geometric 
variables (passive and active joint coordinates) and 
stiffness variables (virtual joint coordinates).  

To evaluate the manipulator ability to respond to external 
forces and torques, it is necessary to introduce additional 
equations that define the virtual joint reactions to the 
corresponding spring deformations. For analytical 
convenience, corresponding expressions may be 
collected in a single matrix equation 

 
θ θ

τ K θ  (7) 

where  ,1 , 2 ,
, , ...,

T

m


θ
τ

  
    is the aggregated vector of 

the virtual joint reactions,  , , ...,diag
θ θ,1 θ,2 θ,m

K K K K  is 

the aggregated spring stiffness matrix of the size mm, 

and 
,iθ

K  is the spring stiffness matrix of the 

corresponding link.  

For the compliant link, the matrix K can be computed 
using the FEA-based techniques, which usually produce 
rather accurate result. Using the FEA, the stiffness matrix 
K (or its inverse k) is evaluated from several numerical 
experiments, each of which produces the vectors of 

linear and angular deflections (t, ) corresponding to the 



applied force and torque (F, M). Then, the desired matrix 
is computed from the linear system  

1 1

1 1

... ...

... ...

m m

m m



   
    
   

F F t t
k

M M φ φ
 (8) 

where [ ]
  is pseudoinverse of the rectangle matrix, m is 

the number of experiments ( 6m ) and the matrix 

pseudoinverse is replaced by the inverse in the case of 

6m . It is obvious that this case with special 

arrangement of the forces and torques is numerically 
attractive (for more detail see [18]).  

In order to increase accuracy it is worth to improve the 
deflection estimation technique. It is proposed to evaluate 

(t, ) from the displacement field describing transitions of 
rather large number of nodes located in the neighborhood 
of reference point (RP).  

To formulate this problem strictly, let us denote the 
displacement field by a set of vector couples 

{ , | 1, 2, ..., }
i i

i n p p  where the first component ip  define 

the node initial location (before applying the force/torque), 

ip  refers to the node displacement due to the applied 

force/torque, and n is the number of considered nodes. 
Then, assuming that all the nodes are close enough to 
the reference point, this set can be approximated by a 
“rigid transformation”  

tpRpp  iii )( ,   1, 2, ...,i n  (9) 

that includes as the parameters the linear displacement t 

and the orthogonal 33 matrix R that depends on the 

rotational displacement . Then, the problem of the 
deflection estimation can be presented as the best fit of 
the considered vector field by equation (4) with respect to 
six scalar variables incorporated in t, R.  

In general case, the desired stiffness model is defined by 
a non-liner relation  

( )F ξ Δt  (10) 

that describes resistance of a mechanism to deformations 

Δt caused by an external force/torque F  [1]. It should be 

noted that the mapping Δt  F  is strictly mathematically 

defined and physically tractable in all cases, including 
under-constrained kinematics and singular configurations 
of the manipulator. However, the converse is not true.  

In engineering practice, function (...)ξ is usually linearized 

in the neighborhood of the static equilibrium ( , )q θ  

corresponding to the end-effector position t  and external 

loading F . For the unloaded mode, i.e. when F 0  and 


0

θ 0  the stiffness model is expressed by a simple 

relation  

( , ) 
0 0

F K q θ Δt  (11) 

where K is 66 „„stiffness matrix” and the vector 

0 01 02 0
( , , ..., )

T

n
q q qq  defines the equilibrium configuration 

corresponding to the end-effector location 
0

t , in 

accordance with the manipulator geometry.  

However, for the loaded mode, stiffness model have to be 
defined in the neighborhood of the static equilibrium that 

corresponds to another manipulator configuration ( , )q θ , 

which is caused by external forces F . In this case, the 
stiffness model describes the relation between the 

increments of the force δF and the position δt   

( , ) F K q θ t   (12) 

where  
0

q q Δq  and  
0

θ θ Δθ  denote the new 

position of the manipulator, Δq  and Δθ  are the 

deviations of the passive joint and virtual spring 
coordinates. 

Hence, the problem of the stiffness modeling in the 
loaded mode may be divided into two sequential 
subtasks: (i) stiffness model identification from the vector 
field of displacements and (ii) linearization of relevant 
force/position relations in the neighborhood of the loaded 
configuration. Let us consider these two sub-problems 
consequently. 

4.2 Stiffness model identification 

To estimate the desired deflections (t, ), let us apply the 
least square technique that leads to minimization of the 
sum of squared residuals  

tR

tpRpp
,

n

i

iiif min)(

1

2
 



  (13) 

with respect to the vector t and the orthogonal matrix R 

representing the rotational deflections . The specificity 
of this problem (that does not allow direct application of 
the standard methods) are the orthogonally constraint 

IRR 
T  and non-trivial relation between elements of the 

matrix R and the vector . To reduce the computational 

efforts, let us linearize the rotational matrix R [18]. This 
allows to rewrite equation of the „rigid transformation‟ (9) 
in the form  

niii ,1;  tpp   (14) 

that can be further transformed into a linear system of the 
following form 

  niii ,1; 







p

t
PI


 (15) 

where iP  is a skew-symmetric matrix corresponding to 

the vector ip . Then, applying the standard least-square 

technique and shifting the origin of the coordinate system 

to the point  




n

i ic n
1

1
pp  leading to expression  
















































































n

i

i
T
i

n

i

i

n

i

i
T
i

n

1

11

1

1

ˆ
ˆˆ

pP

p

PP0

0I
t


 (16) 

that requires inversion of the matrix of size 33. Here, 

following the adopted notation iP̂  is a skew-symmetric 

matrix corresponding to the vector cii ppp ˆ .  

By its general principle, the FEA-modeling is an 
approximate method that produces some errors caused 
by the discretization. Beside, even for the perfect 
modeling, the deflections in the neighborhood of the 
reference point do not exactly obey the equation (4). 
Hence, it is reasonable to assume that the „rigid 
transformation‟ (9) incorporates some random errors  

niiiii ,1;)(  εtpRpp   (17) 

that are supposed to be independent and identically 
distributed Gaussian random variables with zero-mean 

and standard deviation .  



 

In the frame of this assumption, the expression for the 
deflections (16) can be rewritten as  

























n

i

i
T
i

n

i

i
T
i

n

i

in

1

1

1

ο

1

1o ˆˆˆ; εPPPεtt   (18) 

where the superscript „o‟ corresponds to the „true‟ 
parameter value. This justifies usual properties of the 
adopted point-type estimator (16), which is obviously 
unbiased and consistent. Furthermore, the variance-

covariance matrices for t,  may be expressed as  

   

1

1

2
2

ˆˆcov;cov

















 

n

i

i
T
i

n
PPIt 


  (19) 

allowing to evaluate the estimation accuracy using 
common confidence interval technique.  

Another practical question is related to detecting zero 
elements in the compliance matrix or, in other word, 
evaluating the statistical significance of the computed 
values compared to zero. Relevant statistical technique 
[19] operates with the p-values that may be easily 

converted in the form ak  , where k is usually from 3 to 5 

and the subscript „ a ‟ refers to a particular component of 

the vectors t, .  

To evaluate the standard deviation  describing the 
random errors ε , one may use the residual-based 

estimator obtained from the expression 

2

1

2
)63()(E 


















n

n

i

iii tpRpp  . (20) 

The latter may be easily derived taking into account that, 
for each experiment, the deflection filed consist of n 
three-dimensional vectors that are approximated by the 
model containing 6 scalar parameters. Moreover, to 
increase accuracy, it is prudent to aggregate the squared 
residuals for all FEA-experiments and to make relevant 

estimation using the coefficient 2
)63( mn  , where m is 

the experiments number. 

In addition, to increase accuracy and robustness, it is 
reasonable to eliminate outliers in the experimental data. 
They may appear in the FEA-field due to some 
anomalous causes, such as insufficient meshing of some 
elements, violation of the boundary conditions in some 
areas of the mechanical joints, etc. The simplest and 
reliable method that is adopted in this paper is based on 
the „data filtering‟ with respect to the residuals. 

4.3 Stiffness model in the loaded mode 

To compute the desired stiffness matrix, let us consider 
the neighborhood of the loaded configuration and assume 
that the external force and the end-effector location are 

incremented by some small values F , t . Besides, let 

us assume that a new configuration satisfies the 
equilibrium conditions [7]. Hence, it is necessary to 
consider simultaneously two equilibriums corresponding 

to the manipulator state variables ( , , , )F q θ t  and 

( , , , )       F F q q θ θ t t . Relevant equations of statics 

may be written as  

; 0
T T

q 
    F J K θ F J     (21) 

and  

     

   

;

0

T

T

        

     

θ θ θ

q q

F F J J K θ θ

F F J J

   (22) 

where ( , )
q

J q θ  and ( , )


J q θ  are the differentials of the 

Jacobians due to changes in ( , )q θ . Besides, in the 

neighborhood of ( , )q θ , the kinematic equation may be 

also  presented in the linearized form:  

( , ) ( , )
q

   δt J q θ δθ J q θ δq , (23) 

Hence, after neglecting the high-order small terms and 
expending the differentials via the Hessians of the 

function ( , )
T

  g q θ F  , equations (21), (22) may be 

rewritten as  

( ) ( ) ( )

( ) ( ) ( )

T F F

q

T F F

q qq q

   



          

        

J q,θ F H q,θ q H q,θ θ K θ

J q,θ F H q,θ q H q,θ θ 0
 (24) 

and the general relation for the stiffness matrix in the 
loaded mode can be presented as  

1
F T F F

F qq q

T F F T F F F F

q q qq q q



     

     

   
   

        

K KJ k J J J k H

J H k J H H k H
 (25) 

Hence, the presented technique allows computing the 
stiffness matrix in the presence of the external load and 
to generalize previous results both for serial kinematic 
chains and for parallel manipulators.  

 

5 APPLICATION EXAMPLE 

5.1 Industrial problem 

Let us demonstrate the efficiency of our design approach 
on a concrete problem coming from the industrial sector 
of the region of Nantes (France). One of the most 
important activity areas of this region is the 
manufacturing of bathroom components (shower cabin, 
washbasin, bathtub, etc.). Most of parts used during the 
assembly process are made of thermosetting materials. 
The main operations achieved on these parts is trimming, 
i.e. the suppression of the edges of the parts in order to 
obtain a good surface roughness.  

The tools used for milling are specific mills, which are 
composed of a large number a diamond glued on its 
surface. Therefore the number of tooth is supposed to be 
infinite. However, the use of these specific tools allows 
the simplification of the model for computing the milling 
forces.  

Let us consider the trimming operation depicted at 
Figure 2. The milling force may be decomposed into two 
components, denoted as Ft (the tangential force) and Ff 
(the radial force) (the vertical component can be 
neglected for such kind of operation  

 

 

Figure 2: Trimming operation for composite material. 

The machines tools that are used for the trimming of the 
bathroom components proposed on the Figure 3 must be 



designed such as they attain the following characteristics: 

- workspace W
abc

 of size {0.5 m × 0.5 m × 0.5 m}; 

- ||vxy|| = 60 m/min (vxy contains the components of 

the platform velocity vector v in the xy plane); 

- ||fxy|| = 300 N (fxy contains the components of the 

external effort vector f in the xy plane); 

- ||pxy|| = 0.25 mm (pxy contains the components of 

the platform deformations vector p in the xy plane). 

 

5.2 Architecture of the manipulator 

For the milling process let us specialize the Orthoglide 
manipulator (Figure 4) [20]. This architecture was built in 
Institut de Recherche en Communications et 
Cybernetique de Nantes (IRCCyN) and satisfies the 
following design objectives: cubic Cartesian workspace of 

size 200200200 mm
3 

(while for selection treatment 

required workspace 200200200 mm
3
), Cartesian 

velocity and acceleration in the isotropic point of 1.2 m/s 
and 14 m/s

2
; payload of 4 kg; transmission factor range 

0.5–2.0. The legs nominal geometry is defined by the 
following parameters:  L = 310 mm, d = 100 mm, r = 31 
mm where L, d are the parallelogram length and width, 
and r is the distance between the kinematic parallelogram 
and the tool centre point. Stiffness model (elements and 
whole model) of Orthoglide manipulator is presented 
in [18].  

5.3 Performance evaluation  

Since the workspace of the Orthoglide manipulator is 
lower than required for milling, the length and cross-
section of the bar element was increased. Using 
proposed technique for the stiffness model identification, 
the new stiffness matrix for the bar element was obtained 
(Table 1). 

Now let us compute the displacements caused by the 
forces during milling of the composite material. The three 
subtasks are considered: estimation of the force size, 
estimation of the displacement through the whole 
workspace and analyzing of the force direction.  

Force direction analysis. Here let us plot errors for the 
constant force (300 N) rotating it from -180 to 180 deg for 
four typical work points: original configuration (x=y=z=0), 
two opposite corners of workspace x=y=z=-200 and 
x=y=z=300 and point for nonsymmetrical configuration of 
the manipulator (x=-200, y=300, z=0). Results are 
presented on Figure 5. Figures 5a-d show the size of 
deflections for each direction of the force and represent it 
in polar coordinates, while Figures 5e-h show ellipses of 
deflections in the Cartesian coordinates. As we can see 
the compliance of the manipulator depends on the 
direction of external force and on the workpoint. Only for 
the isotropic work point (x=y=z=0) it is constant for each 
direction. The lowest and the highest compliant directions 

of the manipulator differ on /2. For the work point 
x=y=z=-200, the manipulator is 7 times stronger in the 
direction 135/-45 deg than in the direction 45/-135 deg. 
The maximum compliance is 20% higher than for the 
single force (Fx, Fy) along the principal directions x and y 
of the frame. For the work point x=y=z=300, a force 
oriented along the principal axes of the frame causes 
deformations 20% less than for the worst direction and 
50% more than for the strongest direction. It should be 
noted that in the workpoint (x=-200, y=300, z=0), forces 
along x and y directions cause different deformations. 
Along the x direction, the deformations are close to the 
minimum, while along the y direction, they are close to 
the maximum. The rate between the maximal and 
minimal deformations is about 7.  

Force size analyses. Results for the same four 
workpoints are presented on Figure 6. The force-
deflection relationship for the force less than 1000 N is 
linear, but depends on the manipulator configuration. 
Another conclusion is that in the work point x=y=z=0, the 
required accuracy can be satisfied for the force up to 
600 N, while for all other tested workpoints, it can be 
satisfied only for forces inferior to 100 N. Moreover, 
taking into account the force direction, maximum 
compliance errors for the force 300 N may raise up to 1 
mm and more. 

 

 

Figure 3: Typical examples of bathroom components 
manufactured in the region of Nantes (France). 

Figure 4: CAD model of Orthoglide manipulator  

 

Model 
Compliance matrix elements 

k11 mm/N
 

k22 mm/N k33 mm/N k44 rad/N∙mm k55 rad/N∙mm k66 rad/N∙mm 

Original Bar [18]  4.55×10
-5

 2.33×10
-1

 5.08×10
-2

 2.88×10
-5

 1.50×10
-6

 7.19×10
-6

 

Revised Bar 3.10×10
-5

 3.54×10
-1

 6.91×10
-2

 0.39×10
-5

 0.33×10
-6

 1.74×10
-6

 

Table 1: Stiffness of bar element 

 

Workspace analysis. For the accuracy control through 
the whole workspace, error maps for opposite planes 

(z = -200 mm Figure 7a and z = 300 mm Figure 7c) and 
for the “zero plane” (z = 0 mm Figure 7b) of workspace 



 

are presented. It should be noted that the position 
accuracy depends on the configuration of the manipulator 
and vary from 0,1 mm to more than 0.5 mm for z=-200 
and z=300. The accuracy of the “zero plane” is satisfied 
for the operation, while for z=-200 mm, guaranteed 

accuracy is only 0.4 mm, and for z=300, 0.5 mm. But 
milling in the strongest direction of the manipulator leads 
to an accuracy more than 0,2 mm. So, optimizing the 
milling process for the specialized Orthoglide manipulator 
may improve the accuracy more than 3 times. 
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Figure 5: Norm of the deformations of the end-effector as a function of the direction   phi of the planar force F= 300 N: 

(a)-(d) in the polar coordinates ( 2 2
x y     ); (e)-(h) in the Cartesian coordinates 
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Figure 6: Force-Deflections relationship in the four test points 
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Figure 7: Error maps for the revised manipulator 

 

 

6 SUMMARY 

The accuracy of milling of composite materials depends 
on the number of factors such as accurate kinematic and 

stiffness modeling, performance evaluation, force control, 
planning of milling process and others. This paper 
contributes to the methodology, which is used for the 
accurate stiffness modeling for the manipulator and it 



links for the estimation of the deflections errors. It allows 
evaluating compliance errors caused by the technological 
process and detecting strongest and lowest directions for 
the compliance errors. Using this information for the 
planning of the milling process allows increasing the 
accuracy of processing of the pieces made of composite 
materials.  

The method is efficiently illustrated on the milling of 
bathroom components produced in the Nantes region. 
For the manufacturing, Orthoglide manipulator was 
revised, and deformations for different forces and work 
points were presented. The results allow estimating the 
accuracy of technological process and improving it by the 
accurate planning of the milling.   

While analyzing the modeling results, the several 
directions for prospective research activities were 
identified. They include accurate modeling of milling, 
improving stiffness of the manipulator for the working 
direction and compliance deformation compensation in 
the milling process.  
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