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Abstract. The paper presents a methodology for the enhanced stithmadgsis of parallel manip-
ulators with internal preloading in passive joints. It aakes into account influence of the external
loading and allows computing both the non-linear “load-tgfbn” relation and the stiffness ma-
trices for any given location of the end-platform or actogtdrives. Using this methodology, it is
proposed the kinetostatic control algorithm that allowsnprove accuracy of the classical kine-
matic control and to compensate position errors causeddsyieldeformations in links/joints due
to the external/internal loading. The results are illustaby an example that deals with a par-
allel manipulator of the Orthoglide family where the intafpreloading allows to eliminate the
undesired buckling phenomena and to improve the stiffredise neighborhood of its kinematic
singularities.
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1 Introduction

Parallel manipulators have become very popular in manystii applications
due to their inherent advantages of providing better aoyuiawer mass/inertia
properties, and higher structural rigidity compared tdrtkerial counterparts[[l].
These features are induced by the specific kinematic stejctthich eliminates
the cantilever-type loading and allows to minimize defleasi caused by external
torques and forces. One recent development in this areahvidhitargeted at high-
precision manipulation, is a replacing the standard pagsiuts by preloaded ones,
which contain internal passive springs eliminating thektesh or ensure some de-
gree of static balancingﬂ[ﬂ 3]. This modification obvioushproves the manipula-
tor performances but requires some revision of existiriftnsts analysis techniques
that are in the focus of this paper.

In most of previous works, the manipulator stiffness arialygs based on the
linear modeling assumptions which ignore influence of theereal or internal
forces [#[b[J6[]7]8]. Consequently, relevant techniquesageted at linearization
of the “force-deflection” relation in the neighborhood oé thon-loaded equilibrium,


anatol.pashkevich@emn.fr, alexandr.klimchik@emn.fr, damien.chablat@irccyn.ec-nantes.fr

2 A. Pashkevich, A. Klimchik and D. Chablat

which is perfectly described by the stiffness matf{x[[d,. ¥dwever, in the case of
non-negligible internal and/or external loading, the rpatator may demonstrate
essentially non-linear behaviour, which is not exposed@ unloaded casg JL1].
In particular, the loading may potentially lead to multiglguilibriums, to bifurca-
tions of the equilibriums or to static instability of certananipulator configurations
L9, 131

This paper presents an extension of our previous resuffsdévoted to the
stiffness analysis of parallel manipulators by genenadjzhem for case of inter-
nal preloading [1]5] in the passive joints. It implements Wiual joint method
(VIM) of Salisbary ] and Gosseliﬂl?] that describes toenpliance of the
manipulator elements by a set of localized multi-dimenai@prings separated by
rigid links and perfect joints. The proposed techniqueveslaomputing the loaded
equilibrium, finding the full-scale “load-deflection” re¢ilan and evaluating the cor-
responding stiffness matrices for any given location ofthé-platform or actuating
drives ]. It is also developed a kinetostatic controbaidnm that allows to im-
prove accuracy of the classical kinematic control and tomemsate position errors
caused by elastic deformations in links/joints due to themmal/internal loading.

The remainder of this paper is organized as follows. SeQiaefines the re-
search problem and basic assumptions. Section 3 dealsavitputing of the loaded
static equilibrium and corresponding “load-deflectionfatmn. Section 4 focuses
on its linearization and evaluation of the stiffness matB8ection 5 presents the
kinetostatic control algorithm. Section 6 contains ansiltative example. And fi-
nally, Section 7 summarizes the main results and contdhati

2 Manipulator model

Let us consider a general parallel manipulator that is ca@agmfn serial kine-
matic chains connecting a fixed base and a moving platformrEigy. It is assumed,
that the chain architecture ensures kinematic control efrtfanipulator but may
introduce some redundant constraints that improve thditygFollowing the VIM-
concept], let us presents the manipulator chains asesegs of pseudo-rigid
links separated by rotational or translational joints oé arf the following types:
(i) perfect passive joints ; (ii) preloaded passive joihttinclude auxiliary flexible
elements; (iii) virtual flexible joints that describe conapice of the actuators and
manipulator links; (iv) actuating joints. Using this natat the geometrical model
of the chain may be written as

t=9(p,9,9,6), (1)

where the vectot = (p, ¢)rT includes the Cartesian positign= (x, y, z)' and
orientationg = (¢x, ¢y, ¢,) of the end-platformp is the vector of actuated coor-
dinates (they are constant for static analysis), the vegtmntains coordinates of
all perfect passive joints, the vectérincludes coordinates of the preloaded pas-
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Fig. 1 Typical parallel manipulator and VIM-model of its kineneathain.
(Ac - actuator; Ps - Passive joint)
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Fig. 2 Examples of auxiliary springs in preloaded passive joints.

sive joints, and the vectd collects coordinates of all virtual springs describing
elasticity of the links and joints.

The above mentioned elements of the kinematic chain difféneir static char-
acteristics. In particular, the joints (i) and (iii) are debed by the standard expres-

sions [14]

Tq=0 and 19=Kg-8 (2)

where1q and 19 are the generalized force/torque reactions corresportdirige
aggregated vectors of the passive joint coordingt@sd virtual joint coordinate8;
K is the generalized stiffness matrix of all virtual springewever, the preloaded
passive joints (i) may include both linear and non-lineaxibary springs, some
examples of which are shown in Figdfe 2. In this paper, we déBcribe statics of
the preloaded joints by a general expression

Tg =Ky -h(d — o) 3)

wherety is the generalized force/torque reactions corresponditiget aggregated
vectors of the preloaded joint coordinai2sd, defines the preloading valuk;s
is the generalized stiffness matrix of preloaded jointsl, #e vector functiom(...)
is assumed to be piecewise-linear, such that each of itarscamponents(...)
can be expresses either as the differeffte- Jip), or its positive or negative part
[9i — o] T, [9i — Sio]~ (see Figure 2 for details).

Using these assumptions, let us derive the stiffness mddieéa@onsidered ma-
nipulator and sequentially consider the following subkpems: (i) computing the
loaded static equilibrium and obtaining the “load-deflectirelation; (ii) lineariza-
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tion of this relations in the neighborhood of this equilibri and computing the
stiffness matrix; (iii) developing the kinetostatic casitalgorithm, which allows to
compensate position errors caused by the elastic defansadind preloading.

3 Static equilibrium

Let us obtain first the configuration of each kinematic cHajirf,3) and external
forceF that correspond to the static equilibrium with the end-pt@nationt. Ob-
viously, it is a dual problem compared to the classical ctatialysis but it is more
reasonable here because of strictly parallel structurbeo€onsidered manipulator
(see Figure 1). The latter allows applying the same teclatigall kinematic chains
(with the same end-point location) and to compute the toti@real loading as the
sum of the partial loadings.

Taking into account the assumption on the piecewise-lipegperty of the func-
tion h(.), let us perform regrouping of the variables. In particular,each current
configuration of the chain, the coordinates of the prelogaessive joints described
by the vectord may be separated into two patlg anddq , where the first one
corresponds to the active state of the auxiliary springsla@decond part describes
non-active springs (see Figure 2 for geometrical integi@n). This allows replac-
ing the original set of the configuration variablgg 8,3 ) by a set of two vectors
(@, é), whered aggregates the joint coordinat@s Jq) that currently are passive
and the vectof collects all spring coordinaté®, 94) (both virtual and passive).

Using these notations and applying the virtual work techejdhe static equilib-
rium equation of the kinematic chain may be written as

35 F=Rg-(6—8); Jj-F=0 (4)

whereF is the external force applied at the end-point of the chhiaﬂ,\/\ectoréoT =
[0T, pl] aggregates the spring preloadings (which is obviously f@rthe virtual
springs) K g = diag K g,K 3 ), andJg, Jq are the kinematic Jacobians derived from
(1) by differentiating it with respect té, §. This system of equation (4) combined
with the geometrical model (1), which must be rewritten inrte of the redefined
variables

t=9(§,0). (5)

This yields the desired joint coordinates of the static Eoyiiim for a separate kine-
matic chain with given end-point location.

Since the derived system is highly nonlinear, in generad @adesired solution
can be obtained only numerically. In this paper, it is praub® use the following
iterative scheme
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[Fiﬂ] _ [JQ(Qi, ) Kt J5(@i,6) Jq(i, J] [ﬂ
GIi+1 )
o ) (6)
B1=Kg" - Jp(ai,
& =t—9(Gi.0)+3qG.6) 8 +Jo(@.8) (6 + )
where the starting poir(téo,qo) is also computed iteratively, started from a near-
est unloaded configuration where the joint coordinates aséyeobtained from the
inverse kinematic model. On the following iterations, tqimve convergence, the
system variables are slightly randomly disturbed. As fefidrom computational

experiments, the proposed iterative algorithm possesghsrrgood convergence
(3-5 iterations are usually enough).

4 Stiffness matrix

To compute the desired stiffness matrix, let us considemgighborhood of the
equilibrium configuration and assume that the externalef@med the end-effector
location are incremented by some small vald€s ot. Besides, let us assume that
a new configuration also satisfies the equilibrium condgiddence, it is neces-
sary to consider simultaneously two equilibriums corresfiog to the manipulator
state variable$F,q, 0,t) and(F + 0F,q+ 89,6 + 66,t + dt). Relevant equations
of statics may be written as

JGF=Ke(8 - &); JGF=0; -
3

o+0Jg)" (F+03F)=Kg(8—6p+036); (3q+08Jq)  (F+8F)=0

wheredJq(§, 8) anddJg(§, 8) are the differentials of the Jacobians due to changes
in (§, 8). Besides, in the neighborhood(@f, 6), the kinematic equation (5) may be
also presented in the linearized form:

ot =1Je(d, 6)-86+34(a, 6)- 54, (8)
Hence, after neglecting the high-order small terms and redipg the differen-
tials via the Hessians of the functidh= g(q, é)TF

AGq = 0°W/0a%; HGe = 0°w/06% Rip= (A" = 0°w/04 08, (9)
equations (7) may be rewritten as

)
T(& B SF (D). A
q
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Besides, here the variabd# can be eliminated analyticallyd = k§ - 3} - 6F +
k -Hp,- 86, wherek§ = (Kg — Fi5,) . This leads to a system of matrix equations
with unknownsdF anddd
3o K31 jq+je-R5-H5q].[6F][6t]

e 90 N = 11
Jg+ng-kg-Jg ng+ng-k';-H';q 54 0 (1)

from which the desired Cartesian stiffness matrix of thertlka, may be obtained
by direct inversion of the the left-hand side and extracfirogn it the upper-left
sub-matrix of size & 6:

[ 2)-

Finally, when the stiffness matrices for all kinematic c¢tsaare computed, the
stiffness of the entire multi-chain manipulator can be by simple summation
Ks =3 ;Kqi. Itshould be noted that, because of presence of the paesits, jthe
stiffness matrix of a separate serial kinematic chain i@gsingular, but aggrega-
tion of all the manipulator chains of a parallel manipulgtosduce a non-singular
stiffness matrix.

Jo-K5-3)  Iq+Je-K5-RG, 177
6 Ko Yo qT Y6 Ry Tpg (12)

3T OF O F 3T OF OF i F . [OF

5 Kinetostatic control

In robotics, the manipulator motions are usually generatadg the inverse kine-
matic model that allows computing the input (referenceaig for actuatorp cor-
responding to the desired end-effector locatio”hlowever, for manipulators with
preloaded passive joints, the kinematic control becomasapplicable because of
changes in the end-platform location due to the internalit Hence, in this case,
the control must be based on the inverse kinetostatic mbdetakes into account
both the manipulator geometry and elastic properties difhiks and joints ].

Using results from the previous sections, the desired #®/&metostatic trans-
formation can be performed iteratively, in the followingywa

Step#1. For given target location of the end-platfotptompute initial values of
the actuated coordinatgs by applying the inverse kinematic transformation.

Step#2. For current values of the actuated coordinggeand target location of
the end-platfornt, find the equilibrium configuration for each kinematic chain
and compute the corresponding total external Ioaﬂ?flgequired to achieve the
target location.

Step#3. If the computed external loading is less than the prescréyeat, i.e.
\F'Z] < €r, stop the algorithm, otherwise continue the next step

Step#4. Repeat Step#2 several times in the neighborhood of therdisodution
pi and evaluate numerically the matﬂ'gp = (3Fiz/0pi describing the sensitivity
of F with respect t.
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Fig. 3 Architecture of the Orthoglide manipulator and its planarsion.

Step#5. Compute new value of the actuated coordinges = pi — S;:p*l -F
and repeat the algorithm starting from Step#2.

As follows from simulation results, this algorithm demaasts good conver-
gence and can be used both for on-line and off-line trajggitamning. It was suc-
cessfully applied to the case-study presented in the fatig\Bection.

6 Application example

Let us apply the proposed techniques to the stiffness asalfshe planar manip-
ulator of the Orthoglide family (Figure 3). For illustratigpurposes, let us assume
that the only source of the manipulator elasticity is comegad in actuated drives,
while the passive joints may be preloaded by (i) standaghlisprings, or (i) non-
linear springs with mechanical stop-limit (see Figure 2details).

For this manipulator, the kinematic model includes a sideameterl (the
leg length) and the dexterous workspace was defined as thienonaxsquare area
that provides the velocity (and force) transmission faciarthe rangg0.5, 2.0].
Using the critical point technique developed for this typmanipulators@Q], itwas
proved that the desired square vertices are located in timésfig, (—p, — p) and
Q2(p, p), wherep = 0.45 L. Besides, the square cent®g(0, 0) is isotropic with
respect to the velocity and force transmission. The pararsief the actuating drives
are also assumed identical and their linear stiffness istéeinasKy. The auxiliary
springs incorporated in the passive joints adjacent to teators are described
by two parameters: the angular stiffness coeffickeptand the activation angl,
that defines the preloading activation point. During sirtiata the manipulator end-
point was displaced by valukin the directionQpQ; or QuQ2, and it was computed
corresponding magnitude for external fofee

The stiffness analysis results are summarized in FigurBsaéd in Table 1. As
follows from them, the original manipulator (without pralting in passive joints)
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Fig. 4 Force-deflection relatior’8 = f(A/L) in critical points:
(DKs =0; (2)Kg =0.01Kg L% (3)Kyg =0.1Kg L2
(case of preloading with linear springs).
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(a) without preloading (b) with non-linear preloading

Fig. 5 Compliance maps for cases of: (a) manipulator without jdileg;
(b) manipulator with preloading non-linear springs with = 0.5 Kg L? anddg = 11/12 (b).

demonstrates rather low stiffness in the neighborhood efpthint Q,, which is
roughly 4 times lower than in the isotropic poiRg. In contrast, the linear stiffness
in the pointQ; is twice higher than in the poir®y. Besides, in the poind,, the
external loading may provoke the buckling phenomenon thaaiised by a local
minimum of the force-deflection relation. In this case, tisahce-to-singularity is
essentially lower that it is estimated from the kinematmatlel and the manipulator
may easily loose its structural stability.

To improve the manipulator stiffness and to avoid the bungkiin the neigh-
borhood ofQ,, the passive joints were first preloaded by linear springh ac-
tivation angledg = 0. As follows from Figure 4, the preloading with parameter
Ks = 0.1Kg L2 allows completely eliminate buckling and improves thefiséis by
the factor of 2.3. On the other hand, the stiffness in thetsd)g andQ; changes
non-essentially, by 10% and 5% respectively. Hence, witpeaet to the stiffness,
such preloading has positive impact.

The only negative consequence of such preloading is retatetlanges of the
actuator control strategy. In fact, instead of standareiatic control, it is nec-
essary to apply the kinetostatic control algorithm preséih Section 5. It allows
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Table 1 Manipulator stiffness for different linear preloading.

Stiffness in preloaded joints Ky =0 001KgL? 0.05KglL? 0.1KglL?

PointQp (isotropic point)

Actuating joint coordinatep L L L L
Manipulator stiffnes« Ko 101Ky 1.05Ky 110Ky

PointQ; (neighborhood of “bar” singularity)

Actuating joint coordinatep  0.437L 0.433L 0.419L 0.402L
Manipulator stiffnes¥ 2.276Kqg 2.286Kg 2.329Kg 2.382Kg

PointQ; (neighborhood of “flat” singularity)

Actuating joint coordinatep  1.345L 1.356L 1.399L 1.453L
Manipulator stiffnes« 0.24Kg 0.27Kg 0.39Kg 0.55Kg
Critical forceF¢, 0.020Ky L 0.027Ky L — —

compensating the position errors caused by elastic def@nsadue to the internal
preloading and to achieve the target end-point locatioh wibdified values of the
actuated joint coordinates. As follows from Table 1, copmesling adjustments of
the joint coordinates may reachl@ and are not negligible for most of applications.

The most efficient solution that eliminates this problem sing of non-linear
springs with mechanical stop-limits that are activated@hpproaching t€,. For
instance, as follows from dedicated study, the preloadiititihe parameterky =
0.5 Kg L?, 89 = 1/12 provides almost the same improvement®jnas the linear
spring while preserving usual control strategies if thdqading is not activated.
The efficiency of this approach is illustrated by the commimamaps presented in
Figure 5.

7 Conclusions

Recent advances in mechanical design of robotic manipsléead to new parallel
architectures that incorporates internal preloading sspa joints allowing to im-
prove accuracy but leading to revision of existing stiffnasalysis techniques. This
paper presents new results in this area that allow simudtasig evaluate influence
of internal and external loading and compute both the nioeali “load-deflection”
relation and the stiffness matrices for any given locatibithe end-platform or
actuating drives. Using this methodology, it is proposetkimetostatic control al-
gorithm that allows to improve accuracy of the classicakkiatic control and to
compensate position errors caused by elastic deformatidimks/joints due to the
external/internal loading. The efficiency of this techrédsi confirmed by an appli-
cation example that deals with a parallel manipulator of2hinoglide family where
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the internal preloading allows to eliminate the undesireckbng phenomena and
to improve the stiffness in the neighborhood of its kinematngularities.

In future, these results will be generalized to other tydgereloading that may
be generated by external gravity-compensation mechargahalso applied to mi-
cromanipulators with flexure joints.

Acknowledgements The work presented in this paper was partially funded by tbgiéh “Pays
de la Loire” (project RoboComposite).

References

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

. Merlet, J.-P.: Parallel Robots. 2nd ed, Springer-VeNag York Inc, (2006)
. Arsenault M., Gosselin C.: Kinematic and static analgés3-PUPS spatial tensegrity mech-

anism. Mechanism and Machine Thed;, 162-179 (2009)

. Griffis M.: Preloading compliant couplings and the apgbitity of superposition. Mechanism

and Machine Theoryi1, 845-862 (2006)

. Ceccarelli M., Carbone G.: A stiffness analysis for CaBaNCassino Parallel Manipulator).

Mechanism and Machine Theo8y (5), 427-439 (2002)

. Company O., Krut S., Pierrot F.: Modelling and prelimindesign issues of a 4-axis parallel

machine for heavy parts handling. Journal of Multibody Dyies 216, 1-11 (2002)

. Chen S., Kao |.: Conservative Congruence Transformdtipdoint and Cartesian Stiffness

Matrices of Robotic Hands and Fingers. The Internationairdal of Robotics Research
19(9), 835-847 (2000)

. Alici, G., Shirinzadeh, B.: The stiffness matrix in elaatly articulated rigid-body systems.

Multibody System Dynamic&8(2), 169-184 (2007)

. Ciblak N., Lipkin H.: Synthesis of Cartesian Stiffness Robotic Applications. In: IEEE In-

ternational Conference on Robotics and Automation (ICRXtroit, MI, 21472152 (1999).

. Kovecses J., Angeles J.: The stiffness matrix in eldtieaticulated rigid-body systems:

Multibody System Dynamic&8(2), 169-184 (2007)

Quennouelle C., Gosselin C.: Stiffness Matrix of Cowmtli Parallel Mechanisms. In:
Springer Advances in Robot Kinematics: Analysis and Des3@1-341 (2008)

Timoshenko S., Goodier J. N.: Theory of elasticity, 3dMdGraw-Hill, New York (1970)
Su, H.J. and McCarthy, J.M.: A polynomial homotopy fotation of the inverse static anal-
ysis of planar compliant mechanisms. Journal of Mechamesign128 776-786 (2006)
Carricato M., Duffy J., Parenti-Castelli V.: Catastiemnalysis of a planar system with flex-
ural pivots. Mechanism and Machine The@%, 693-716 (2002)

Pashkevich A., Chablat D., Wenger Ph.: Stiffness aisatfoverconstrained parallel manip-
ulators. Mechanism and Machine Thedr; 966-982 (2009)

Crane C. D., Bayat J., Vikas V., Roberts R.: Kinematidysigof a planar tensegrity mech-
anism with pre-stressed springs. In: Springer AdvancesoinoRKinematics: Analysis and
Design, 419-427 (2008)

Salisbury J.: Active Stiffness Control of a ManipulaiorCartesian Coordinates. In: 19th
IEEE Conference on Decision and Control, 87-97 (1980)

Gosselin C.: Stiffness mapping for parallel maniputattEEE Transactions on Robotics and
Automation6(3), 377-382 (1990)

Pashkevich A., Klimchik A., Chablat D., Wenger Ph.:f&gfs analysis of multichain parallel
robotic systems with loading. Journal of Automation, Meliobotics & Intelligent Systems
3(3), 75-82 (2009)

Chablat D., Wenger Ph.: Architecture Optimization of@GF Parallel Mechanism for Ma-
chining Applications, the Orthoglide. IEEE Transactions Robotics and Automatioh9(3),
403-410 (2003)



