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Abstract: The biased transformation is introduced for continuous random variables. It is proved in the paper that 

the biased transformation works for the generalized Pareto, the generalized extreme value and the normal 

distribution. The biased transformation works for important continuous distributions of the exponential family as 

an approximation; this is demonstrated with the aid of simulations. The new transformation can be used for the 

Anderson-Darling test for the gamma and beta distribution. The power of the new test procedure is validated by 

simulations. Finally, a first powerful test is available for the beta distribution although the power function is 

poor. The χ2
-test has lower power. The Kolomogorov-Smirnov test for a fully specified distribution has almost 

no power in the application for the beta distribution with estimated parameters. The practical relevance of the 

new test for he beta distribution is demonstrated in an analysis of meteorological data. 

 

Keywords: beta distribution, gamma distribution, goodness-of-fit test, transformation 

 

1 Introduction 

The following transformation and test procedures have been researched by chance as the author 

was trying out different transformation methods in flood statistics and was looking into 

publications for a goodness-of-fit test for the gamma distribution. It is possible to use the found 

biased transformation to test the goodness-of-fit for the gamma distribution. But there exist 

already efficient tests for the gamma distribution (Stephens 1986). Except this, there is no 

practicable and specific goodness-of-fit test for the beta distribution so far. This was the 

motivation to research the biased transformation for some random distribution and to research 

the power of the test using biased transformation for the gamma and the beta distribution. 

The beta and the gamma distributions are very famous and are explained in different 

publications e.g. by Johnson et al. (1994, 1995). 
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The goodness-of-fit of an estimated distribution can be tested by the Chi-Squared test for a 

sample. This and related tests are explained by Moore (1986). There is no special consideration 

of the type of distribution in this test. The EDF-tests (empirical distribution function tests) 

consider the type of distribution. Different types of EDF-tests are published like the Anderson 

Darling test (Anderson and Darling 1952, 1954), Cramer von Mieses Test and Watson Test – 

both introduced by Watson (1961), the Kuiper test (Kuiper 1960) and the famous Kolmogorov-

Smirnov test (Kolmogorov 1933). The critical values of EDF-test are published by Stephens in 

different publications (1974, 1976) for different types of distributions. A summary for the EDF-

test for different types of distributions is given by Stephens (1986). The EDF-test for normality 

with the best power is the Anderson Darling test (Landry and Lepage 1992). The moment tests 

are not often used. The basics of this test type are explained by Bowman and Shento (1986). The 

theory of a moment test is discussed for beta distributions by Li and Papadopoulos (2002) but 

contains a mistake (a moment is divided by itself) and the power of this test approach is small 

(Li and Papadopoulos 2002, Tab. 1-3). 

Generally each continuously variable can be transformed into another random variable by any 

continuously function which is defined in the ranges of these random variables. The power 

transformation of Box and Cox (1964) is an important family of transformation. The goal of 

these transformations is the normalisation of the random variable. A further transformation 

implies the application of Copulas (Sklar 1959, Carley and Taylor 2000). The continuously 

random variables are transformed to uniform distributed variables by using the marginal 

distribution or by using the EDF. The approach to use a transformation for goodness-of-fit test 

is introduced already by Quesenberry (1986). 

The biased transformation (BT) is introduced here and is explained in the second section. In the 

third section is shown that BT works as an approximation for the normal, gamma and beta 

distribution. Furthermore the BT is applied in an EDF- test procedure for the gamma and the 

beta distribution in sections 4 and 5. The benefit of the new test procedure for the beta 

distribution is demonstrated in the section 6 with weather data. The results are summarised and 

discussed in the last section. The theoretical research for the BT for the generalised Pareto 
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distribution (GPD), the generalised extreme value distribution (GEV) and the normal 

distribution is given in the appendix. 

2 The Biased Transformation  

A continuous random variable XA with cumulated distribution function (CDF) FA can generally be 

transformed to another XB with CDF FB with the transformation function xB(xA), which is 

 [ ])(1
AABB xFFx −= . (1) 

F
-1

 is the symbol for the inverse function with x=F
-1

(F(x)). A further biased transformation (BT) is 

introduced here with 

 [ ])(1
ABCD xFFx −= . (2) 

The type of CDF FA and FB is identical and likewise the type of CDF FC and FD is identical, but the 

parameter vectors θ don’t need to be equal - θA≠θB and θC≠θD. Furthermore the type of FA and FB need 

not to be identical to distribution FC and FD. The functions and distributions are distinguished by the 

capitals A to D. All CDF are continuous in the relevant ranges. The probability density function (PDF) 

is the derivative f(x) of the CDF F(x) with respect to the random variable. This includes the 

assumption that the CDF is differentiable in the relevant range. The CDF FB and FC are of interest and 

be used in this paper. The corresponding random variables XB and XC are not used here. 

The transformation implies that 

 [ ] )()( AAADD xFxxF =  and (3) 

 [ ] [ ] )(/)()()( ABADCAAADD xfxxfxfxxf = . (4) 

The transformation is called “biased” because FA(xA)≠FB(xA) in equation 2. The biases are described 

by the bias function FB(FA) where FB(FA)=FB(xA) with FA(xA). Equation 2 is the transformation 

xD(xA,θB,θC), and from this the functions θD(θA,θB,θC) can be deduced. The transformation is an 

assumption until it is proved for the concrete distribution types. It has to be shown in a proof that 

either equation 3 or 4 is right for the functions x4(x1,θ2,θ3) and θ4(θ1,θ2,θ3). 

The BT works for some distributions. This is demonstrated by the research of the generalised Pareto 

distribution (GPD) and the generalised extreme value distribution (GEV). The distributions, 
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theorems and simple proofs are formulated in the appendix. Furthermore, the BT works exactly 

for the normal distribution with the PDF 

 ( ) [ ] 0,)2/()(exp2/1)(
22 >−−= σσµπσ xxf  (5) 

The theorem and the proof for BT of the normal distributed XA and XD is described in the appendix. 

3 The BT as an Approximation for Some Continuous 
Distributions of the Exponential Family 

The exponential family includes the normal, the gamma and the beta distribution. The PDF for the 

gamma distribution is denoted Γ(α) as a gamma function of α with 

( ) ( ) [ ] 0,0,0,)(//exp/)(
1 >>≥Γ−= − αλαλλλ α

xxxxf . 

The PDF for the beta distribution is denoted Β(α,β) as beta function of α and β with 

0,0,10),,(/)1()( 11 >>≤≤Β−= −− βαβαβα xxxxf . 

There are no elementary solutions for the integral of the CDF of the beta distribution, the gamma 

distribution and the normal distribution. But the CDF can be computed numerically. 

The BT can be used for the gamma, beta and normal distribution as an approximation. 

Assumption: If XA with FA is normal, beta or gamma distributed, and FB is the same type of CDF as FA 

with θA≠θB but not with |θA-θB|>>0, then XA can be transformed with FC according equation 2 to XD. 

FC has any θc and FD of XD can be approximated by the same type of FC. 

The basic idea for the validation is the following. Samples of a uniform distributed random variable U 

(0≤u≤1) can be simulated. From this sample, the sample of XA can be computed by using the inverse 

function with defined and simulated values of θA. The sample of XD can be computed with the sample 

of XA and any defined and simulated values of θB and θC. The parameter vector of the samples of XA 

and XD can be estimated by the maximum likelihood method (ML). The goodness-of-fit of FA(xA, θ̂   A) 

and FD(xD, θ̂   D) can be evaluated with the real probability which is the simulated and known sample of 

U. The validation values of goodness-of-fit are defined here with ∆max and ∆2
 

)ˆ,(max
..1

max θii
ni

xFu −=∆
=

, 
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[ ]
n

xFu
n

i
ij∑

=
−

=∆ 1

2

2

)ˆ,( θ
. 

The definition of ∆max is comparable with the test value of the Kolmogorov-Smirnov test of fit. The 

definition of ∆2
 is similar to the mean squared error of parameter estimation. The values ∆max and ∆2

 

are random variables as well. If the assumption is right for the defined range of parameters of 

transformation θB and θC, then the distribution of ∆max and ∆2
 of XA is equal or very similar to the 

distribution of ∆max and ∆2
 of XD; and ∆max and ∆2

 should be strongly correlated for XA and XD. 

Simulations have been carried out in a broad range of parameters and sample sizes to validate the 

assumption. θA and θC are simulated in a defined range. θB have to be defined with θB= θA+∆θ with the 

simulated θA and a simulated ∆θ in a defined range of ∆θ which is rather narrow. If the difference ∆θ is 

to large the approximations of F(x) for the normal, beta or gamma distribution could result in FB(xA)=1 

or FB(xA)=0. If FC
-1

(1) or FC
-1

(0) results in infinity or negative infinity, the transformation has to be 

cancelled. 

The empirical distributions of ∆max and ∆2
 are plotted here for graphical comparisons with the position 

)1/(ˆ += niPi
. 

The Kolomogorov-Smirnov test for homogeneity (Birnbaum and Hall 1960) is used to validate that the 

distributions of ∆max of XA and ∆max of XD are the same population and the distributions of ∆2
 of XA 

and ∆2
 of XD are the same population. The test value Dn1,n2 of the test of homogeneity of the two the 

samples of ∆2
 is written 

{ })(ˆ)(ˆmax 2
2

2
12,1

2
∆−∆=

∆
FFD nn

 

and for ∆max in the same manner. The test values should be smaller than the critical value for a 

significance of α=10% or higher. H0 (the same population) is not rejected. 

Three variants for the sample size n for XA and XD were simulated with n=10, 100 and 1000. For each 

variant of sample size and distribution type of FA and FD, 1000 simulations were carried out. The ML 

estimation of the parameters was carried out for beta and gamma distributions with an exactness of  

10
-4

%. For the different variants, the following ranges of parameters were defined: 
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- If XA is gamma distributed, then the parameters were simulated with αA=1.0…3.5 and 

λA=0.5...4.0 uniformly distributed. The parameters of FB were simulated with αB=αA+∆α, ∆α=-

0.2…0.2 uniformly distributed and λB=λA+∆λ, ∆λ=-0.2…0.2 uniformly distributed. 

- If XA is beta distributed the parameters were simulated with αA=0.75...4.0 and βA=0.75…4.0 

uniformly distributed. The parameters of FB were simulated with α2=αA+∆α, ∆α=-0.25…0.25 

uniformly distributed and βB=βA+∆β, ∆β=-0.25...0.25 uniformly distributed. 

- If XA is normally distributed, the parameters were simulated with µA=-0. 5...0.5 and 

σA=0.75...1.25 uniformly distributed. The parameters of FB were simulated with µB=µA+∆µ, 

∆µ=-0.25…0.25 uniformly distributed and σB=σA+∆σ, ∆σ=-0.25…0.25 uniformly distributed. 

The parameters of FC were simulated independent of θA in the following ranges: 

- If FC(x) is the CDF of a gamma distribution, the parameter αC was simulated in the range 

αC=0.7…4.0 uniformly distributed and the parameter λC was simulated in the range 

λC=0.7…4.0 uniformly distributed. 

- If FC(x) is the CDF of a beta distribution, the parameter αC was simulated in the range 

αC=0.7…4.0 uniformly distributed and the parameter βC was simulated in the range βC=0.7...4.0 

uniformly distributed. 

- If FC(x) is the CDF of a normal distribution, the parameter µC was simulated in the range αC= -

1…1 uniformly distributed and the parameter σC was simulated in the range σC=0.5…1 

uniformly distributed. 

The important point of the BT is the bias function FB(FA). The dimension of the bias functions of the 

simulations are shown by the extreme of FB(xA) for the simulated parameters θA and θB and the mean 

values of the absolute difference |FB(xA)-FA(xA)| for the simulated parameters θA and θB as function of 

FA in Fig. 1. The bias of BT of simulated samples is large. The good results of the simulation can not 

be explained with a small bias in BT. The result of the simulation is a validation of the assumption. It 

can be seen in Figures 2a and b with the distributions of ∆max and ∆2
 for the case that XA is normally 

distributed. The plotted values of ∆max and ∆2
 of the different variants of FC and XD result in very 

similar curves. It is the same for the case that XA is gamma or beta distributed. The test values of the 
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Kolmogorov-Smirnov test of homogeneity for two samples are in Tab. 1. All values Dn1; n2 are much 

smaller than the critical value of 0.048 for the level of significance of 10% for the 1000 simulations 

(number of simulations = sample size here). H0 – the same population – is never rejected. The BT 

works for the normal, beta and gamma distribution as a good approximation in the range of the 

simulations. The sample size n does not influence the result. The correlation of the validation values of 

goodness-of-fit is very high and in a small range around r=0.98. It is clear in Figures 2a and b that the 

transformation for XA to XD as normal distribution is exactly as shown in proof in the appendix. 

If a beta or gamma distribution is transformed into a normal distribution with transformation 

parameters of FB which differ not much from the parameters FA of XA, than the fit of an 

estimated normal distribution FD for XD should not be influenced by the parameters of FB and Fc 

according to the simulation results. The parameters of Fc should not influence the fit of XD 

according to the simulation results. 

4 The Application of the BT for the Anderson-Darling Test 
for the Gamma Distribution 

There are EDF tests of goodness-of-fit with the hypothesis H0 that the sample is from the assumed 

distribution with the estimated parameters and with the defined level of significance. The level of 

significance is the share of rejections although the assumption H0 is correct. The transformed variable 

XD has almost the equal quality of goodness-of-fit as the variable XA as shown earlier. The results of 

the goodness-of-fit test should almost be the same for XD and likewise for XA. The different shares of 

rejection of the test hypothesis H0, even if H0 is right – an error of the first kind - should be almost 

equal. The power should be almost equal likewise. The power is the share of rejection if H0 is false. 

The error of second kind is the share of acceptance of a false hypothesis H0.  

The power function is the probability of rejection dependent on estimated parameter. The parameters 

of CDF are the independent variables in the power function. The probability of rejection should 

increase strong if the absolute difference between the parameters in the power function and the 

estimated parameters increase. This power function is not good in the test with the BT because the 

basics of the BT. But the test with the BT may be used only for the ML-estimated parameters. 

Furthermore, the power of the test can be very high independent of the poor power function. It is 
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tested with BT if the sample is from a family of distributions. This approach is not new. It has been 

already introduced by Quesenberry (1986, equation 6.2). 

The approach is used concretely for the Anderson-Darling test (Anderson and Darling 1952, Stephens 

1974). The test value is A
2
 with 

[ ]{ }∑
=

−+−+−−−=
n

j
ini xFxFinnA

1
1

2 )ˆ,(1ln())ˆ,(ln()12(/1 θθ . 

The test value has to be adopted for normal distributions with  

( )222*
/25.2/75.01 nnAA ++= . 

The critical values are 1.035 for the level of significance of 1%, 0.752 for the level of significance of 

5% and 0.631 for the level of significance of 10%. Only the Anderson-Darling test is used from the 

EDF-tests because the Anderson-Darling Test has the best behaviour of the tests for normality 

according Landry and Leparge (1992). But the approach probably works for the Kolmogorov-Smirnov 

test and the Cramér-von-Mises test for the goodness-of-fit likewise. 

The procedure for the test of goodness-of-fit for the gamma distributed XA by using the BT is the 

following: 

- ML estimation of θ̂   A. 

- Using this estimation of θ̂   A for θB. 

- Definition of θC with FC as the CDF of a normal distribution with µ=0 and σ=1. 

- Computing the sample of XD by the BT according equation 2. 

- ML estimation of θ̂   D of the sample of XD, assumed as normal distribution – H0. 

- Computing of the A
2
 for the sample of XD and test. 

- Rejection of H0 at the defined level of significance if A
*2

>A
2
critical, otherwise acceptance of H0. 

The assumed gamma distribution of XA is rejected with the rejection of the assumed normal 

distribution of XD.  

The results of the test of the samples of XD from simulated samples of XA can be compared with 

results of the Anderson-Darling test for estimation of the gamma distribution of XA according to 

Stephens (1986, critical values form Tab. 4.21). Stephens’ test procedure is applied for the case that all 

parameters are estimated except the location parameter. There is no location parameter in the gamma 
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distribution as formulated above, the location parameter is known and has the value 0 in this paper. 

Interpolation functions (from regression analysis of values given by Stephens, 1986, Tab. 4.21) are 

used here for the given critical value for the significance levels of 1%, 5% and 10% with  

093.12
%1

ˆ057.0035.1 −+= αcriticalA , 

114.12
%5

ˆ034.0752.0 −+= αcriticalA , 

110.12
%10

ˆ0264.0631.0 −+= αcriticalA . 

The parameter vector θA for XA – assumed to be gamma distributed has to be estimated by the ML-

method. This is defined in the procedure of Stephens, and likewise the ML estimation is defined in the 

procedure with the BT. 

Different constellations of distributions and parameters for XA are simulated and the estimations are 

tested. 10000 simulations were carried out for each constellation. XA was assumed as gamma 

distribution in each constellation. XA was simulated in each constellation by a simulation of a sample 

of the uniformly distributed random variable U and the using of the inverse function. Furthermore, a 

normal distributed sample was also calculated from the sample of U with µ=0 and σ=1. The 

parameters were estimated for this by using the ML method and the Anderson-Darling test is applied 

as well. The share of rejection for this procedure is the control value for the simulations. 

The constellation with gamma distributed XA was not the only simulation. The logarithmic normal 

distribution for XA was simulated as well (the parameters are for ln(XA)). Furthermore the Burr 

distribution Type XII and the Pareto distribution were applied with 

[ ] 0,0,0,0,)/(1)( >>>≥−−= λτηηη
λτ xxxF , 

0,0,)1()( >≥+= − αα xxxF . 

These “false” distributions are used to validate the power of the test. The resulting shares of rejections 

for the different levels of significance are shown in Tables 2 to 4 for the sample sizes of XA of n=25, 

50 and 100. The results of the Anderson-Darling test for a gamma distributed random variables are in 

the column “Classical Test”. The real distribution of XA and their parameters are listed in the columns 

labelled as such. It is clear that the Anderson-Darling test with the BT works as well as the Anderson-
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Darling test with the procedure and the critical values of Stephens (1986) if the hypothesis H0 is right. 

The shares of rejections are very similar and nearly all are in the 90% range of the estimated share of a 

Bernoulli distribution. The ranges are 0.8%-1.1% for the level of 1%, 4.6%-5.3% for the level of 5% 

and 9.5%-10.4% for the level of 10%. The shares of rejections are out of range in the case that n=100 

and the level of significance are defined with 5%. But in this constellation, the control value is also out 

of range. 

The results of the classical test and the test with BT are very similar for the cases that XA is not gamma 

distributed. The differences between the classical test and the test with BT in the cases that XA are 

gamma distributed are small but partly significant. The new procedure with the BT reject more false 

assumptions if the sample size is not large (n=25). The procedure according Stephens has a bit more 

power in the case of larger sample sizes (n≥50). Independent of this fact - the new procedure works 

well and the power of the test is high. Both test procedures are not very powerful in the case that the 

real distribution is GPD and γ is near 0. The reason for this phenomena is that the GPD for γ=0 

(Gumbel case) is an exponential distribution which is a special case of gamma distribution with α=1. 

The GPDs with γ near 0 and the gamma distributions with α near 1 are similar, no test can be very 

power full in this constellation. 

5 The Application of the BT for the Anderson-Darling Test 
for the Beta Distribution 

The only test specified for the beta distribution which was found in publications is an approach of Li 

and Papadopoulos (2002). The moments are used in this approach for goodness-of-fit tests for 

different distributions. But there is a mistake in the chapter for the beta distribution (a moment is 

divided by itself), and the power of the test is not so high for an exponential distribution. For example, 

7-8% were rejected at a significance level of 5% in the case that H0 was correct (Li and Papadopoulos, 

2002, Tab. 1). This approach is not considered in this paper. Further tests or critical values for test 

specified for the beta distribution were not found in publications. In this place, the BT can be used for 

a first EDF test of goodness-of-fit for the beta distribution specified for it. The procedure includes the 

following steps: 

- ML estimation of θ̂   A under the assumption of beta distribution for XA. 
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- Using this estimation of θ̂   A for θB. 

- Definition of θC with FC as the CDF of a normal distribution with µ=0 and σ=1. 

- Computing the sample of XD by the BT according equation 2. 

- ML estimation of θ̂   D of the sample of XD, assumed as normal distribution – H0. 

- Computing of the A
2
 for the sample of XD and test. 

- Rejection of H0 at the defined level of significance if A
*2

>A
2
critical, otherwise acceptance of H0. 

The assumption that XA is beta distributed is rejected with the rejection of H0 that XD is normally 

distributed. The power function of this test has a poor quality even if the test works well. The test 

procedure is evaluated by simulations. Samples of beta distribution with variants of parameters were 

simulated (Tables 5-7). And distributions were simulated for XA which were not beta distributions. 

These were the log-normal distributions, the gamma distribution and the normal distribution. The log-

normal and the gamma distributions were truncated at x=F
-1

(0.99) and scaled, so that xmax=1. The 

normal distribution was truncated with a lower bound x=F
-1

(0.01) and an upper bound x=F
-1

(0.99) and 

was located and scaled than so that 0≤x≤1. 

The samples were simulated for the size of n=10, 25, 50 and 100. The considered levels of 

significance are 1%, 5% and 10%. Furthermore, the χ2
 test and the Kolomogorov-Smirnov test were 

applied for the sample sizes of n=50 and n=100 to compare the power of this test with the Anderson-

Darling test with the BT. The samples were divided in groups with 10 observations for the χ2
 test. The 

bound between the groups was selected with the mean of the largest value of the smaller group and the 

minimum observation of the larger group. The variant of the Kolomogorov-Smirnov for a full 

specified distribution hypothesis was applied for the sample sizes of n=50 and n=100 likewise. The 

critical values of the χ2
 test and the Kolomogorov-Smirnov test are taken from Rinne (2003, Chapter 

3.4.5). 

The shares of rejection from the 10000 simulations of each variant of real distribution are shown in 

Tables 5 through 7. The test procedure works well. The share of rejections for the case that H0 is true 

is almost equal to the defined level of significance. But some values in these cases are outside the 90% 

range for the estimation of the share of a Bernoulli distribution. The randomness of the simulation is 

reasonable for this because the control value is also often out of this range. The control value is again 
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the share of rejections for the real normal distribution with estimated parameters for a normal 

distribution and the same underlying sample of U used for the other real distributions as well. The 

Anderson-Darling test for the beta distribution by using the BT has more power than the χ2
 test or the 

Kolomogorov-Smirnov test as shown in Tables 6 and 7. The χ2
 test rejects less than the defined level 

of significance of beta distribution than the new procedure for the Anderson-Darling test in the cases 

that H0 is false; and the χ2
 test rejects more than the defined level of significance of beta distribution. 

The error of the first kind is higher for the χ2
 test than for the new procedure. The Kolomogorov-

Smirnov test does not work; the power is very small. 

6 Practical application of tests for beta distribution 

The beta distribution is used for modeling of meteorological random variables. Yao (1974) modeled 

surface relative humidity of U.S. weather stations by using the beta distribution. Different data sets 

were analysed for example daily observations for one month. Parameters were estimated by the 

moment method. The goodness-of-fit was evaluated by using χ2
-test. The number of observations per 

classes was not limited with ni≥10 contrary to recommendations (Rinne, 2008, chapter 3.4.5.1). The fit 

is good according to this test results (Yao, 1974, Tab. 1). 

The daily cloud duration was modeled by Chia and Hutchinson (1991) with beta distributions for 

different places in Australia. The goodness-of-fit was evaluated by a Kolmogorov-Smirnov test for a 

full specified distribution. The beta distribution can be used for most data according test results (Cia 

and Hutchinson, 1990, Tab. 3). 

The beta distribution was applied furthermore for data of relative sunshine duration of Malaysia by 

Sulaiman et al. (1999). The goodness-of-fit was evaluated by the Kolmogorov-Smirnov test again. The 

fit is good for most of the data (Sulaiman et al., 1999, Tab. 2). 

Neither the χ2
-test nor the Kolmogorov-Smirnov test has a good performance for beta distribution as 

seen in Tables 6 and 7. Especially the Kolmogorov-Smirnov test has very low power. But till now 

there existed no better test. A practical example of meteorological data demonstrates the improvement 

of new test procedure for application of beta distribution. The data of Haarweg Wageningen weather 

station of Wageningen University (Netherlands) of July 2005 are analysed. The data set includes 
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relative humidity. The relative sunshine duration is calculated by using sunshine minutes of data set 

and time between sunrise and sunset. The time between sunrise and sunset is assumed with linear 

function with 998.4min for 1
st
 of July and 931.1min for 31

st
 of July. Parameters of beta distribution are 

estimated with the ML method. The estimation is α̂=7.47 and β̂=4.6255 for relative humidity. The 

critical value for the Kolmogorov-Smirnov test is 0.23788 for n=31 and 5% significance and is not 

overstepped with 0.1253. H0 - beta distributed sample - is accepted. The χ2
-test is applied with four 

classes with ni=7 and 8 (although ni should be ≥10). The critical value is 3.841 (5%, one grade of 

freedom) and is not overstepped by the test value of 2.686. Contrary to this the Anderson-Darling test 

value A
*2

=1.433 and is much larger the Acrit
2
=0.753 (5% significance). The sample is not beta 

distributed according to the Anderson-Darling test. The parameters of normal distribution of XD are 

µ̂=-0.0005 and σ̂=1.0164. The results for data of relative sunshine duration per day are similar. Sample 

size is n=31 again. Parameters are α̂=1.5536 and β̂=0.7480. The value of the Kolmogorov-Smirnov 

test is 0.1706 and doesn’t overstep critical value. The value of χ2
-test is 3.9937. This oversteps the 

critical value a bit. H0 would be rejected according to the χ2
-test but not according to the Kolmogorov-

Smirnov test. The Anderson-Darling test rejects the hypothesis of beta distributed data very clearly 

with A
*2

=2.059. The parameters of the normal distribution of XD are µ̂=-0.0116 and σ̂=1.0057. The 

estimated CDF and observed data are shown in Fig. 3. The fit is not good. 

The example shows that the introduced procedure of the Anderson-Darling test for beta distribution by 

using BT is an improvement of applied statistic. It seems that many data are assumed likely as beta 

distributed in pasted analysis although they are not beta distributed. 

7 Summary and Discussion 

The BT is introduced and can be used exactly for each of the GEV, the GPD and the normal 

distribution. The BT works as an approximation for the gamma, beta and normal distribution as a 

family of distributions. Because of this the Anderson-Darling Test for normal distributions can be used 

as a goodness-of-fit test for the gamma and the beta distribution. The new test procedure works with 

similar power as the classical procedure of Stephens. The power of the new procedure is a bit higher 
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for smaller sample sizes. The classical procedure has a bit more power for larger sample sizes. The 

same test procedure in principle is used for a first goodness-of-fit test specified for beta distribution. 

This is the first test specified for the beta distribution. The power function of the new test is poor 

because of the basics of the BT. And it is defined in the test procedure that the ML estimated 

parameters of assumed the gamma or beta distribution has to be used. The method of parameter 

estimation is defined in the procedures of Stephens. The general question is: Is it necessary to have a 

good power function for the whole range of parameters for a powerful test if the estimation method is 

defined in the test procedure? A good power function is not necessary according to the results of this 

paper. The Anderson-Darling test for the gamma distribution with the new procedure has a similar 

power as the classical Anderson-Darling test for the gamma distribution. And the power function of 

the new procedure is very poor compared with the function of the classical test. The poor power 

function can result only in wrong test results, if the test procedure is not used right and the parameter 

vector θA is not estimated correct with the ML method. 

If the new test does not reject the hypothesis, the user can assume that the ML estimation of the 

parameters leads to an estimated distribution with similar goodness-of-fit as for a sample of normal 

distribution with the equal underlying sample of U as for the gamma or beta distribution. It was shown 

in the validation of the BT that the goodness-of-fit of a beta, gamma or normal distributed sample 

from the same underlying sample of U is almost equal (Figures 2 c and d). 

The CDF of the normal, gamma and beta distributions are computed by using approximations from 

different software libraries (Excel was used and the library of www.extremeoptimization.com). These 

approximations work well in the common ranges of parameters and percentiles. But if, for example, α 

of the gamma distribution is small and the percentile is as well, the approximation is wrong. The BT of 

the normal, gamma and beta distribution cannot work better than the approximation of the CDF of 

these distributions. This is a reason why larger simulations were not carried out for the validation of 

the BT for normal, gamma and beta distribution. The probability that the approximation of the CDF 

does not work in a variant of parameters and sample of U increases with the number of simulations. 

The failure of the approximation is avoided by a limitation of the simulations. And more simulations 
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are not necessary, because the distributions of the values of goodness-of-fit in the validation of the BT 

were tested with knowledge of the simulation size. 

The other EDF-tests specified for the normal distribution could be used in the test procedure with the 

BT too. The power of such tests could be evaluated in further works. The Anderson-Darling test has 

the better quality in the test of normality (Landry and Lepage, 1992). That is why only this EDF-test is 

applied in this paper. 

The practical relevance of the new test for beta distributions was demonstrated successfully in 

metrological data. 

The BT is interesting irrespective of the introduced application for the test of the gamma and beta 

distribution. Perhaps the BT will become a criterion for the classification of distributions or the BT 

can perhaps be used for estimations of the GPD or GEV or for their tests.  

The possibility of BT to estimate the PDF or CDF of a beta distribution by using the normal 

distribution should be researched in the future. 
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10 Appendix 

The BT for the GEV 

The GEV is formulated for the Gumbel case  

 [ ]{ }σµ /)(expexp)( −−−= xxF  (6) 

and is formulated for the Fréchet and Weibull case with 

 [ ]{ }γσµγ /1
/)(1exp)(

−−+−= xxF  (7) 

where the parameter is σ>0. The lower bound is for the Fréchet case γ>0 

γσµ /−≥x . 

The upper bound is for the Weibull case with γ <0 

γσµ /−≤x . 

Theorem A1: If XA is GEV-Gumbel distributed and FB is the CDF of a GED-Gumbel and FC is the 

CDF of a GEV-Fréchet/Weibull with any parameters, then XA can be transformed to XD with XD=FC
-

1
(FB(XA)) and XD is GEV-Fréchet/Weibul distributed with the parameters 

 BACD σσγγ /= , (8) 

 [ ] BBBACCAD σσµµγσσσ //)(exp −= , (9) 

 [ ] CCCCBBACCD µγσγσµµγσµ +−−= ///)(exp  (10) 

and the transformation function xD(xA) is 

 [ ]{ } CCCCBBACCD xx γµγσσµγσ //)(exp +−−= . (11) 

 

Proof. If equations 8-11 are used in FD(xD) according to equation 7, then according to equation 6 the 

CDF FA(xA) can be formulated after simplifications so that equation 3 is valid.   

 

This transformation works likewise the other way round if the bounds of XD and XC are the same with 

DDDCCC γσµγσµ // −=− . 

and γC and γD have the same sign. 

 

Theorem A2: If XA is GEV-Gumbel distributed and FB is the CDF of a GEV-Gumbel and FC  is the 

CDF of a GEV-Gumbel with any parameters, then XA can be transformed to XD with XD=FC
-1

(FB(XA)) 

and XD is GEV-Gumbel distributed with the parameters 

 BCAD σσσσ /= . (12) 

 BCABCCBD σσµσµσµµ /)( ++−=  (13) 

 

and the transformation function xD(xA) is 

 BCBACCBD xx σσµσµσ /)( −+= . (14) 
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Proof: If equations 12-14 are used in FD(xD) according to equation 6, then according to equation 6 the 

function FA(xA) can be formulated after simplifications so that equation 3 is valid.   

 

Theorem A3: If XA is GEV-Fréchet/Weibull distributed and FB is the CDF of a GEV-Fréchet/Weibull 

and FC  is the CDF of a GEV-Fréchet/Weibull with any parameters but with 

 BBBAAA µγσµγσ −=− //  (15) 

and γA and γB have the same sign then XA can be transformed to XD with XD=FC
-1

(FB(XA)) and XD is 

GEV-Fréchet/Weibull distributed with the parameters 

 BCAD γγγγ /= , (16) 

 ( )[ ] BACBABAD
BC γγσσγγσσ γγ

//
/= , (17) 

 ( )[ ] CCBABACCCD

BC
γσσγγσγσµµ

γγ

///
/

+−=  (18) 

and the transformation function xD(xA) is 

 [ ]{ } CCCCBBABCD
BCxx γµγσσµγσ γγ

//)(1
/ +−−+= . (19) 

Proof: If equations 16-19 are used in FD(xD) according to equation 7, and equation 15 is considered, 

then according equation 7 the function FA(xA) can be formulated after some simplifications so that 

equation 3 is valid.            

The BT for the GPD 

The GPD is formulated for the Gumbel case 

 ( )σ/exp1)( xxF −−=  (20) 

and for the Fréchet and Weibull case formulated with 

 ( ) γσγ /1
/11)(

−+−= xxF . (21) 

Generally x≥0 und σ>0. There is an upper bound for the Weibull case γ<0 with 

γσ /−≤x . 

Theorem A4. If XA is GPD-Gumbel distributed and FB is the CDF of a GPD-Gumbel and FC is the 

CDF of a GPD-Gumbel with any parameters, then XA can be transformed to XD with XD=FC
-1

(FB(XA)) 

and XD is GPD-Gumbel distributed with the parameters 

 BCAD σσσσ /=  (22) 

and the transformation function xD(xA) is 

 BCAD xx σσ /= . (23) 

 

Proof: If equations 22-23 are used in FD(xD) according equation 20, then according to equation 20 the 

function FA(xA) can be formulated after some simplifications so that equation 3 is valid.   

 

Theorem A5: If XA is GPD-Fréchet/Weibull distributed and FB is the CDF of a GPD-Fréchet/Weibull 

and FC  is the CDF of a GPD-Fréchet/Weibull with any parameters but with 

 BBAA γσγσ // =  (24) 

then XA can be transformed to XD with XD=FC
-1

(FB(XA)) and XD is GPD-Fréchet/Weibull distributed 

with the parameters 

 BCAD γγγγ /= , (25) 

 BCAD γσγσ /=  (26) 

and the transformation function xD(xA) is 

 ( ){ } CBABCD
BCxx γσγσ γγ /1/1 / −+= . (27) 

 

Page 18 of 25

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Biased transformation and Goodness-of-Fit Test 

19 

Proof: If equations 25-27 are used in FD(xD) according to equation 21 under consideration of equation 

24, then according to equation 21, the function FA(xA) can be formulated after some simplifications so 

that equation 3 is valid.           

The condition of equation 24 has to be also considered for the Fréchet case even this is not a real 

bound of X. 

 

Theorem A6: If XA is GPD-Gumbel distributed and FB  is the CDF of a GPD-Gumbel and FC  is the 

CDF of a GPD- Fréchet/Weibull with any parameters, then XA can be transformed to XD with XD=FC
-

1
(FB(XA)) and XD is GPD- Fréchet/Weibull distributed with the parameters 

 BACD σσγγ /= , (28) 

 BCAD σσσσ /=  (29) 

 

and the transformation function xD(xA) is 

 ( ){ } CBCACA xx γσγσ /1/exp −= . (30) 

Proof: If equations 28-30 are used in FD(xD) according to equation 20, then according to equation 21, 

the function FA(xA) can be formulated after some simplifications so that equation 3 is valid.  

 

It is possible to transform XD to XA with any FC(x) and FB(x). It has only to be ensured that 

DDCC γσγσ // = . 

The Normal Distribution 

Theorem A7: If XA is normally distributed and FB and FC  are CDF of normal distributions with any 

parameters, then XA can be transformed to XD with XD=FC
-1

(FB(XA)) and XD is normally distributed 

with the parameters 

 BBACCD σµµσµµ /)( −+= , (31) 

 CDAD σσσσ /=  (32) 

and the transformation function xD(xA) is 

 BBACCD xx σµσµ /)( −+=  (33) 

 

Proof: If equation 4 is taken and the PDF are replaced by adaptations of equation 5 it can be simplified  

[ ] ( ){ } ( )[ ]
[ ] ( ){ }22

2222

2/)(exp2

2/)(exp2/)(exp

)(

BBDA

CCDAADA

CA

B
DD

xx

xxx

xf
σµπ

σµσµ

σσ
σ

−−

−−−−
= .  

With equation 32, for the replacing of σA it can be modified and written 

( ) [ ] ( ){ } [ ]{ } 5.022222222 /)(/)(exp2/)(exp2/1)(
BBDACCDBDCADADDD xxxxxxf σµσµσσσµπσ −+−−−−= . 

Further xA(xD) can be replaced by using equation 33, and it can be simplified and modified to 

( ) [ ] ( ){ }2222
2/)(/exp2/1)(

BDCABCDCBDDD xxf σσσµµµσσπσ −+−−= . 

The parameter µD can be replaced by the using of equation 31. It can be written 

( ) { }[ ]2222
//2///)(/exp2/1)(

BDCBCBCCBDBCDCBDDD xxf σσσµσσµσσµµµσσπσ −+−+−−=  

and simplified to 

( ) { }22 /2)(exp2/1)( DDDDDD xxf σµπσ −−=  

which is the PDF for X4 according to equation 5. X4 is normally distributed.     

 

Figures and Tables 
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Figure 1: Bias of the BT for the simulation of n=1000 for the different types of FA and FB: a) mean of the 

absolute difference |FB(xA)-FA(xA)|, b) extremes of FB(xA) in relation to FA(xA)  
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Figure 2: Results of the simulations for n=1000 with XA as normally distributed and the different distribution 

types of XD: a) distributions of ∆max, b) distributions of ∆2
, c) ∆max of XA to ∆max of XD, d) ∆2

 of XA to ∆2
 of XD 
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Figure 3: Applied beta distribution: a) relative sunshine duration, b) relative humidity 
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Table 1: Test values of the Kolomogorov-Smirnov test for homogeneity for the distributions of ∆max and ∆2
 for 

the different variants of sample size, distribution of XA and distribution of XD 

Distribution of XD Sample size Distribution of XA Distribution of Value 

 Gamma Beta Normal 

∆max 0.028 0.030 0.008 Gamma 

 ∆2 0.021 0.019 0.005 

∆max 0.009 0.008 0.030 Beta 

 ∆2 0.027 0.026 0.005 

∆max 0.030 0.031 0.001 

 

 

n=10 

 

Normal 

 ∆2 0.033 0.036 0.001 

∆max 0.013 0.016 0.010 Gamma 

 ∆2 0.018 0.017 0.010 

∆max 0.015 0.018 0.010 Beta 

 ∆2 0.014 0.019 0.009 

∆max 0.016 0.021 0.001 

 

 

n=100 

 

Normal 

 ∆2 0.018 0.016 0.001 

∆max 0.016 0.019 0.017 Gamma 

 ∆2 0.016 0.017 0.015 

∆max 0.022 0.020 0.016 Beta 

 ∆2 0.021 0.019 0.023 

∆max 0.019 0.020 0.001 

 

 

n=1000 

 

Normal 

 ∆2 0.016 0.026 0.001 

 

Table 2: Percentage or rejection of H0 of the classical Anderson-Darling test, the test with the BT for gamma 

distribution for different significance levels and n=25. The level of significance is written in percentage. 

Classical Test Test with the BT Real 

Distribution 

Parameters 

1% 5% 10% 1% 5% 10% 

LogNorm µ=1, σ2=0.25 3.42 10.92 18.19 3.69 11.41 18.89 

LogNorm µ=1, σ2=1 13.26 27.97 38.08 13.43 27.98 38.42 

BurrXII η=4, τ=8, λ=1 4.74 12.1 19.41 5.28 13.32 21.08 

BurrXII η=1, τ=1, λ=2 14.62 27.49 36.67 13.95 27.2 36.46 

Pareto α=8 1.52 6.63 12.02 1.68 6.93 12.68 

Pareto α=2 14.62 27.49 36.67 13.95 27.2 36.46 

GPD σ=1, γ=-1/16 0.91 4.67 9.56 0.92 4.9 10.01 

GPD σ=1, γ=-1/4 1.71 7.68 14.06 1.73 7.57 13.73 

Gamma λ=1. α=0.5 0.86 4.62 9.46 0.86 4.87 9.72 

Gamma λ=1. α=1 0.87 4.84 9.58 0.97 5.09 10.05 

Gamma λ=1. α=2.5 0.89 4.92 9.72 0.98 5.18 10.07 

Gamma λ=1. α=5 0.89 4.89 9.69 0.97 5.18 10.14 

Gamma λ=1. α=10 0.89 4.88 9.72 0.98 5.17 10.13 

Control µ=0, σ=0 - - - 0.97 5.18 10.09 
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Table 3: Percentage or rejection of H0 of the classical Anderson-Darling test, the test with the BT for gamma 

distribution for different significance levels and n=50. The level of significance is written in percentage. 

Classical Test Test with the BT Real 

Distribution 

Parameters 

1% 5% 10% 1% 5% 10% 

LogNormal µ=1, σ2=0.25 6.68 18.23 27.29 6.82 18.26 27.51 

LogNormal µ=1, σ2=1 33.24 53.23 63.57 31.46 51.51 62.1 

BurrXII η=4, τ=8, λ=1 7.74 18.36 26.82 8.5 19.77 28.22 

BurrXII η=1, τ=1, λ=2 34.32 50.4 59.21 31.19 47.81 56.89 

Pareto α=8 2.66 8.43 14.56 2.46 8.26 14.44 

Pareto α=2 34.32 50.4 59.21 31.19 47.81 56.89 

GPD σ=1, γ=-1/16 0.98 4.95 9.75 1 4.84 9.71 

GPD σ=1, γ=-1/4 3.2 11.59 20.09 3.04 10.94 18.81 

Gamma λ=1. α=0.5 0.96 4.67 9.51 0.95 4.64 9.61 

Gamma λ=1. α=1 0.97 4.68 9.4 1.04 4.72 9.61 

Gamma λ=1. α=2.5 0.97 4.7 9.51 1.06 4.83 9.65 

Gamma λ=1. α=5 0.97 4.69 9.49 1.05 4.81 9.59 

Gamma λ=1. α=10 1 4.67 9.46 1.05 4.84 9.57 

Control µ=0, σ=0 - - - 1.03 4.83 9.54 

 

Table 4: Percentage or rejection of H0 of the classical Anderson-Darling test, the test with the BT for gamma 

distribution for different significance levels and n=100. The level of significance is written in percentage. 

Classical Test Test with the BT Real 

Distribution 

Parameters 

1% 5% 10% 1% 5% 10% 

LogNormal µ=1, σ2=0.25 14.22 31.41 43.44 14.09 31.28 43.15 

LogNormal µ=1, σ2=1 66.84 83.64 89.61 63.46 81.46 88.09 

BurrXII η=4, τ=8, λ=1 14.59 28.65 38.66 15.57 29.83 40.13 

BurrXII η=1, τ=1, λ=2 63.73 78.29 84.17 58.14 74.91 81.56 

Pareto α=8 3.91 11.31 18.46 3.45 10.68 17.82 

Pareto α=2 63.73 78.29 84.17 58.14 74.91 81.56 

GPD σ=1, γ=-1/16 1.14 5.27 10.56 1.12 5.3 10.33 

GPD σ=1, γ=-1/4 7.7 22.29 33.52 6.68 20.13 31.11 

Gamma λ=1. α=0.5 1.04 4.54 9.33 0.92 4.34 9.71 

Gamma λ=1. α=1 0.98 4.4 9.64 0.96 4.47 9.73 

Gamma λ=1. α=2.5 0.93 4.44 9.8 0.99 4.58 9.85 

Gamma λ=1. α=5 0.94 4.48 9.8 1.01 4.63 9.84 

Gamma λ=1. α=10 0.95 4.52 9.79 1 4.61 9.81 

Control µ=0, σ=0 - - - 1.01 4.6 9.84 
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Table 5: Percentage of rejections of H0 of the goodness-of-fit test for the assumed beta distributions for different 

levels of significance [%] for the sample size n=10 and 25 (*distribution is truncated, scaled and/or moved) 

BT and Anderson-Darling 

Test for Normality for n=10 

BT and Anderson-Darling 

Test for Normality for n=25 

Real Distribution Parameter 

1% 5% 10% 1% 5% 10% 

Beta α=0.5, β=0.5 1.00 5.33 10.76 0.82 4.43 9.31 

Beta α=1, β=1 1.04 5.51 10.73 0.86 4.50 9.38 

Beta α=2, β=2 1.04 5.57 10.64 0.83 4.53 9.52 

Beta α=4, β=4 1.09 5.54 10.64 0.85 4.58 9.49 

Beta α=1, β=4 1.05 5.46 10.77 0.88 4.53 9.42 

Beta α=2, β=4 1.06 5.53 10.65 0.85 4.56 9.53 

Beta α=0.5, β=1 0.99 5.35 10.65 0.85 4.48 9.40 

Beta α=0.5, β=2 1.01 5.31 10.62 0.83 4.54 9.32 

Beta α=0.5, β=3 1.02 5.28 10.64 0.86 4.55 9.37 

LogNormal* µ=1, σ2=0.25 5.70 14.70 22.33 16.88 31.52 41.57 

LogNormal* µ=1, σ2=1.0 6.72 16.80 25.30 22.34 39.47 49.90 

Gamma* γ=3, λ=1 3.29 9.75 16.62 7.35 17.19 25.13 

Gamma* γ=1, λ=1 2.31 8.10 14.45 4.26 12.35 19.24 

Normal* µ=0, σ2=1 2.49 9.36 15.18 3.99 12.24 19.62 

Control µ=0, σ2=1 1.12 5.56 10.70 0.84 4.58 9.42 

Table 6: Percentage of rejections of H0 of the goodness-of-fit tests for the assumed beta distributions for different 

levels of significance [%] for the sample size n=50. (*distribution is truncated, scaled and/or moved) 

χ2 Test Kolmogorov-Smirnov Test BT and Anderson-Darling 

Test  

Real 

Distribution 

Parameters 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

Beta α=0.5, β=0.5 2.05 7.71 14.76 0 0.06 0.31 0.86 4.34 9.3 

Beta α=1, β=1 2.13 7.99 15.08 0 0.05 0.2 0.88 4.49 9.5 

Beta α=2, β=2 2.12 8.19 15.52 0 0.03 0.15 0.82 4.56 9.52 

Beta α=4, β=4 2.15 8.19 15.12 0 0.01 0.07 0.84 4.56 9.53 

Beta α=1, β=4 2.21 8.36 15.81 0 0.03 0.18 0.88 4.54 9.59 

Beta α=2, β=4 2.25 8.5 16.21 0 0.02 0.1 0.84 4.54 9.57 

Beta α=0.5, β=1 2.14 8.06 15.06 0 0.09 0.27 0.85 4.36 9.28 

Beta α=0.5, β=2 2.2 8.16 15.33 0 0.1 0.37 0.84 4.29 9.38 

Beta α=0.5, β=3 2.13 8.21 15.22 0 0.08 0.27 0.84 4.28 9.35 

LogNormal* µ=1, σ2=0.25 12.54 28.68 40.75 0.63 4.93 11.28 37.06 55.86 65.86 

LogNormal* µ=1, σ2=1.0 19.08 37.61 49.53 2.1 11.46 21.74 49.25 68.12 76.32 

Gamma* γ=3, λ=1 6.18 17.15 27.35 0.06 1.28 3.81 14.16 29.11 39.11 

Gamma* γ=1, λ=1 4.83 14.22 23.38 0.04 0.8 2.32 7.55 18.92 27.99 

Normal* µ=0, σ2=1 5.02 14.96 24.18 0 0.24 1.03 7.04 18.07 26.67 

Control µ=0, σ2=1 - - - - - - 0.84 4.61 9.54 
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Table 7: Percentage of rejections of H0 of the goodness-of-fit tests for the assumed beta distributions for different 

levels of significance [%] for the sample size n=100. (*distribution is truncated, scaled and/or moved.) 

χ2 Test Kolmogorov-Smirnov Test BT and Anderson-Darling 

Test  

Real Distribution Parameters 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

Beta α=0.5, β=0.5 2.24 7.46 13.32 0 0.08 0.49 1.27 5.1 10.11 

Beta α=1, β=1 2.29 7.48 13.23 0 0.04 0.35 1.27 5.12 10.3 

Beta α=2, β=2 2.37 7.72 13.7 0 0.03 0.16 1.29 5.22 10.3 

Beta α=4, β=4 2.55 7.73 13.6 0 0.01 0.1 1.29 5.12 10.29 

Beta α=1, β=4 2.31 7.77 13.76 0 0.05 0.25 1.28 5.1 10.21 

Beta α=2, β=4 2.57 8.18 14.31 0 0.01 0.13 1.31 5.16 10.25 

Beta α=0.5, β=1 2.24 7.47 13.31 0 0.1 0.56 1.23 5.06 9.99 

Beta α=0.5, β=2 2.32 7.46 13.43 0 0.08 0.46 1.25 5.03 9.98 

Beta α=0.5, β=3 2.32 7.6 13.29 0 0.07 0.41 1.22 5.06 9.93 

LogNormal* µ=1, σ2=0.25 25.19 45.77 58.76 4.26 16.05 27.64 69.88 84.72 89.94 

LogNormal* µ=1, σ2=1.0 39.17 61.08 71.75 11.27 35.3 52.58 84.01 93.39 96.09 

Gamma* γ=3, λ=1 8.8 21.39 31.32 0.74 4.51 9.11 29.8 49.67 60.75 

Gamma* γ=1, λ=1 5.92 15.51 23.76 0.25 2.49 5.88 15.89 31.18 42.14 

Normal* µ=0, σ2=1 4.93 14.31 22.88 0.04 0.43 1.51 12.79 27.82 38.96 

Control µ=0, σ2=1 - - - - - - 1.25 5.08 10.28 
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