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Abstract: The biased transformation is introduced for continuous random variables. It is proved in the paper that
the biased transformation works for the generalized Pareto, the generalized extreme value and the normal
distribution. The biased transformation works for important continuous distributions of the exponential family as
an approximation; this is demonstrated with the aid of simulations. The new transformation can be used for the
Anderson-Darling test for the gamma and beta distribution. The power of the new test procedure is validated by
simulations. Finally, a first powerful test is available for the beta distribution although the power function is
poor. The y*-test has lower power. The Kolomogorov-Smirnov test for a fully specified distribution has almost
no power in the application for the beta distribution with estimated parameters. The practical relevance of the

new test for he beta distribution is demonstrated in an analysis of meteorological data.

Keywords: beta distribution, gamma distribution, goodness-of-fit test, transformation

1 Introduction

The following transformation and test procedures have been researched by chance as the author
was trying out different transformation methods in flood statistics and was looking into
publications for a goodness-of-fit test for the gamma distribution. It is possible to use the found
biased transformation to test the goodness-of-fit for the gamma distribution. But there exist
already efficient tests for the gamma distribution (Stephens 1986). Except this, there is no
practicable and specific goodness-of-fit test for the beta distribution so far. This was the
motivation to research the biased transformation for some random distribution and to research
the power of the test using biased transformation for the gamma and the beta distribution.

The beta and the gamma distributions are very famous and are explained in different

publications e.g. by Johnson et al. (1994, 1995).
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The goodness-of-fit of an estimated distribution can be tested by the Chi-Squared test for a
sample. This and related tests are explained by Moore (1986). There is no special consideration
of the type of distribution in this test. The EDF-tests (empirical distribution function tests)
consider the type of distribution. Different types of EDF-tests are published like the Anderson
Darling test (Anderson and Darling 1952, 1954), Cramer von Mieses Test and Watson Test —
both introduced by Watson (1961), the Kuiper test (Kuiper 1960) and the famous Kolmogorov-
Smirnov test (Kolmogorov 1933). The critical values of EDF-test are published by Stephens in
different publications (1974, 1976) for different types of distributions. A summary for the EDF-
test for different types of distributions is given by Stephens (1986). The EDF-test for normality
with the best power is the Anderson Darling test (Landry and Lepage 1992). The moment tests
are not often used. The basics of this test type are explained by Bowman and Shento (1986). The
theory of a moment test is discussed for beta distributions by Li and Papadopoulos (2002) but
contains a mistake (a moment is divided by itself) and the power of this test approach is small
(Li and Papadopoulos 2002, Tab. 1-3).

Generally each continuously variable can be transformed into another random variable by any
continuously function which is defined in the ranges of these random variables. The power
transformation of Box and Cox (1964) is an important family of transformation. The goal of
these transformations is the normalisation of the random variable. A further transformation
implies the application of Copulas (Sklar 1959, Carley and Taylor 2000). The continuously
random variables are transformed to uniform distributed variables by using the marginal
distribution or by using the EDF. The approach to use a transformation for goodness-of-fit test
is introduced already by Quesenberry (1986).

The biased transformation (BT) is introduced here and is explained in the second section. In the
third section is shown that BT works as an approximation for the normal, gamma and beta
distribution. Furthermore the BT is applied in an EDF- test procedure for the gamma and the
beta distribution in sections 4 and 5. The benefit of the new test procedure for the beta
distribution is demonstrated in the section 6 with weather data. The results are summarised and

discussed in the last section. The theoretical research for the BT for the generalised Pareto
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distribution (GPD), the generalised extreme value distribution (GEV) and the normal

distribution is given in the appendix.

2 The Biased Transformation

A continuous random variable X, with cumulated distribution function (CDF) F4 can generally be

transformed to another Xy with CDF Fy with the transformation function xg(X4), which is
xp = Fp'[Fa(x)]. (1)

F' is the symbol for the inverse function with x=F’1(F(X)). A further biased transformation (BT) is

introduced here with

xp = Fo[Fg(xy)]. (2)
The type of CDF F4 and Fj is identical and likewise the type of CDF F¢ and Fy, is identical, but the
parameter vectors 0 don’t need to be equal - 0,705 and 0c#0p. Furthermore the type of F and Fg need
not to be identical to distribution F¢ and Fp. The functions and distributions are distinguished by the
capitals A to D. All CDF are continuous in the relevant ranges. The probability density function (PDF)
is the derivative f(x) of the CDF F(x) with respect to the random variable. This includes the
assumption that the CDF is differentiable in the relevant range. The CDF Fy and Fc are of interest and

be used in this paper. The corresponding random variables Xp and Xc are not used here.

The transformation implies that

Fplxp(x4)]=Fa(x,) and (3)

FoleoGol= faa) felap ol fa(xa) . 4)

The transformation is called “biased” because F5(x,)#Fg(x4) in equation 2. The biases are described
by the bias function Fg(F,) where Fg(Fa)=Fp(xa) with Fa(x,). Equation 2 is the transformation
Xp(Xa,08,0c), and from this the functions 0p(04,05,0c) can be deduced. The transformation is an
assumption until it is proved for the concrete distribution types. It has to be shown in a proof that
either equation 3 or 4 is right for the functions x4(x1,0,,03) and 04(6,,0,,03).

The BT works for some distributions. This is demonstrated by the research of the generalised Pareto

distribution (GPD) and the generalised extreme value distribution (GEV). The distributions,
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theorems and simple proofs are formulated in the appendix. Furthermore, the BT works exactly

for the normal distribution with the PDF
f(x)= 1/(0' 27 )exp[— x-w?12eH|, >0 5)

The theorem and the proof for BT of the normal distributed X4 and Xp is described in the appendix.

3 The BT as an Approximation for Some Continuous
Distributions of the Exponential Family

The exponential family includes the normal, the gamma and the beta distribution. The PDF for the

gamma distribution is denoted I'(ot) as a gamma function of a with

F) =(x/ 2 exp(-x/ A)[AT(@)] , x20,2>0,a>0.

The PDF for the beta distribution is denoted B(a.,[3) as beta function of o and B with
Fx) =x*11-0f" B, p), 0<x<lLa>0,8>0.

There are no elementary solutions for the integral of the CDF of the beta distribution, the gamma
distribution and the normal distribution. But the CDF can be computed numerically.

The BT can be used for the gamma, beta and normal distribution as an approximation.

Assumption: If X, with F, is normal, beta or gamma distributed, and Fg is the same type of CDF as F,
with 0,#0 but not with |6,-05[>>0, then X, can be transformed with F¢ according equation 2 to Xp.
F¢ has any 6, and Fp, of Xp can be approximated by the same type of Fc.

The basic idea for the validation is the following. Samples of a uniform distributed random variable U
(0<u<1) can be simulated. From this sample, the sample of X, can be computed by using the inverse
function with defined and simulated values of 05. The sample of Xp can be computed with the sample
of X, and any defined and simulated values of 6g and O¢. The parameter vector of the samples of X,
and Xp, can be estimated by the maximum likelihood method (ML). The goodness-of-fit of Fo(xa, 0 o)

and Fp(xp, Op) can be evaluated with the real probability which is the simulated and known sample of

U. The validation values of goodness-of-fit are defined here with A, and A?

A = max

i=l.n

max

i~ Fx.0)
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é[ j‘F(xi’é)]z

n

A2 =

The definition of A, is comparable with the test value of the Kolmogorov-Smirnov test of fit. The
definition of A? is similar to the mean squared error of parameter estimation. The values A,,,x and A?
are random variables as well. If the assumption is right for the defined range of parameters of
transformation 0y and O, then the distribution of A, and A? of X, is equal or very similar to the
distribution of A, and A? of Xp: and A, and A* should be strongly correlated for X and Xp.
Simulations have been carried out in a broad range of parameters and sample sizes to validate the
assumption. 6, and Oc are simulated in a defined range. 6 have to be defined with Og= 04+Ag with the
simulated 6, and a simulated Aq in a defined range of Ag which is rather narrow. If the difference Ay is
to large the approximations of F(x) for the normal, beta or gamma distribution could result in Fg(x4)=1
or Fp(x,)=0. If FC’I(I) or FC'I(O) results in infinity or negative infinity, the transformation has to be
cancelled.

The empirical distributions of A, and A” are plotted here for graphical comparisons with the position

P =il(n+1)-
The Kolomogorov-Smirnov test for homogeneity (Birnbaum and Hall 1960) is used to validate that the
distributions of A, of X and A« of Xp are the same population and the distributions of A? of X,
and A? of Xp, are the same population. The test value D, ,,; of the test of homogeneity of the two the

samples of A is written
_ VI
Dnl,nZ _m%xﬂFl(A )_FZ(A )‘ }
A

and for A, in the same manner. The test values should be smaller than the critical value for a
significance of a=10% or higher. H, (the same population) is not rejected.

Three variants for the sample size n for X, and Xp were simulated with n=10, 100 and 1000. For each
variant of sample size and distribution type of F, and Fp 1000 simulations were carried out. The ML
estimation of the parameters was carried out for beta and gamma distributions with an exactness of

10™%. For the different variants, the following ranges of parameters were defined:
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- If X, is gamma distributed, then the parameters were simulated with o,=1.0...3.5 and
Aa=0.5...4.0 uniformly distributed. The parameters of Fg were simulated with og=0a+Ay, Ag=-
0.2...0.2 uniformly distributed and Ag=Ap+A,, Ay=-0.2...0.2 uniformly distributed.

- If X, is beta distributed the parameters were simulated with a,=0.75...4.0 and f,=0.75...4.0
uniformly distributed. The parameters of Fg were simulated with oc,=0a+A,, A,=-0.25...0.25
uniformly distributed and Bg=Ba+Ap, Ag=-0.25...0.25 uniformly distributed.

- If X, is normally distributed, the parameters were simulated with p,=-0. 5...0.5 and
64=0.75...1.25 uniformly distributed. The parameters of Fg were simulated with pg=pa+A,,
A,=-0.25...0.25 uniformly distributed and 6g=62+A;, A;=-0.25...0.25 uniformly distributed.

The parameters of Fc were simulated independent of 6, in the following ranges:

- If Fe(x) is the CDF of a gamma distribution, the parameter o was simulated in the range
0c=0.7...4.0 uniformly distributed and the parameter Ac was simulated in the range
Ac=0.7...4.0 uniformly distributed.

- If Fe(x) is the CDF of a beta distribution, the parameter o was simulated in the range
0oc=0.7...4.0 uniformly distributed and the parameter B¢ was simulated in the range 3c=0.7...4.0
uniformly distributed.

- If Fc(x) is the CDF of a normal distribution, the parameter ic was simulated in the range o= -
1...1 uniformly distributed and the parameter oc was simulated in the range oc=0.5...1
uniformly distributed.

The important point of the BT is the bias function Fg(F,). The dimension of the bias functions of the
simulations are shown by the extreme of Fp(x,) for the simulated parameters 8, and 05 and the mean
values of the absolute difference [Fg(xs)-Fa(x,4)| for the simulated parameters 04 and 0p as function of
F4 in Fig. 1. The bias of BT of simulated samples is large. The good results of the simulation can not
be explained with a small bias in BT. The result of the simulation is a validation of the assumption. It
can be seen in Figures 2a and b with the distributions of A,,,x and A? for the case that X4 18 normally
distributed. The plotted values of A, and A? of the different variants of Fc and Xp result in very

similar curves. It is the same for the case that X, is gamma or beta distributed. The test values of the
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Kolmogorov-Smirnov test of homogeneity for two samples are in Tab. 1. All values D, ,, are much
smaller than the critical value of 0.048 for the level of significance of 10% for the 1000 simulations
(number of simulations = sample size here). Hy — the same population — is never rejected. The BT
works for the normal, beta and gamma distribution as a good approximation in the range of the
simulations. The sample size n does not influence the result. The correlation of the validation values of
goodness-of-fit is very high and in a small range around r=0.98. It is clear in Figures 2a and b that the
transformation for X, to Xp as normal distribution is exactly as shown in proof in the appendix.

If a beta or gamma distribution is transformed into a normal distribution with transformation
parameters of Fz which differ not much from the parameters F, of X,, than the fit of an
estimated normal distribution Fy, for Xp should not be influenced by the parameters of Fy and F.
according to the simulation results. The parameters of F. should not influence the fit of X,

according to the simulation results.

4 The Application of the BT for the Anderson-Darling Test
for the Gamma Distribution

There are EDF tests of goodness-of-fit with the hypothesis Hy that the sample is from the assumed
distribution with the estimated parameters and with the defined level of significance. The level of
significance is the share of rejections although the assumption Hj is correct. The transformed variable
Xp has almost the equal quality of goodness-of-fit as the variable X, as shown earlier. The results of
the goodness-of-fit test should almost be the same for Xp and likewise for X,. The different shares of
rejection of the test hypothesis Hy, even if Hy is right — an error of the first kind - should be almost
equal. The power should be almost equal likewise. The power is the share of rejection if Hj is false.
The error of second kind is the share of acceptance of a false hypothesis Hy.

The power function is the probability of rejection dependent on estimated parameter. The parameters
of CDF are the independent variables in the power function. The probability of rejection should
increase strong if the absolute difference between the parameters in the power function and the
estimated parameters increase. This power function is not good in the test with the BT because the
basics of the BT. But the test with the BT may be used only for the ML-estimated parameters.

Furthermore, the power of the test can be very high independent of the poor power function. It is
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tested with BT if the sample is from a family of distributions. This approach is not new. It has been
already introduced by Quesenberry (1986, equation 6.2).
The approach is used concretely for the Anderson-Darling test (Anderson and Darling 1952, Stephens

1974). The test value is A* with

At =—n- 1/n§; {(2i - 1)[1n(F(xi ,0) +1In(1— F(x,,1;, é)]}-
=l

The test value has to be adopted for normal distributions with

A= A2(1+0.75/n+2.25/n2)-

The critical values are 1.035 for the level of significance of 1%, 0.752 for the level of significance of
5% and 0.631 for the level of significance of 10%. Only the Anderson-Darling test is used from the
EDF-tests because the Anderson-Darling Test has the best behaviour of the tests for normality
according Landry and Leparge (1992). But the approach probably works for the Kolmogorov-Smirnov
test and the Cramér-von-Mises test for the goodness-of-fit likewise.

The procedure for the test of goodness-of-fit for the gamma distributed X, by using the BT is the
following:

- ML estimation of d4.

- Using this estimation of § for 0.

- Definition of 08¢ with F¢ as the CDF of a normal distribution with p=0 and o=1.

- Computing the sample of Xp by the BT according equation 2.

- ML estimation of p of the sample of Xp, assumed as normal distribution — Hy,.

- Computing of the A” for the sample of Xp and test.

- Rejection of Hy at the defined level of significance if A>A% ica, Otherwise acceptance of Hy.
The assumed gamma distribution of X, is rejected with the rejection of the assumed normal
distribution of Xp,.

The results of the test of the samples of Xp from simulated samples of X, can be compared with
results of the Anderson-Darling test for estimation of the gamma distribution of X, according to
Stephens (1986, critical values form Tab. 4.21). Stephens’ test procedure is applied for the case that all

parameters are estimated except the location parameter. There is no location parameter in the gamma
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distribution as formulated above, the location parameter is known and has the value 0 in this paper.
Interpolation functions (from regression analysis of values given by Stephens, 1986, Tab. 4.21) are

used here for the given critical value for the significance levels of 1%, 5% and 10% with

A2 =1.035+0.057¢ 0%

critical 1%

2 ~-1.114
AcriticalS% =0.752+0.034c 5

AczriticaIIO% =0.631+ 0.0264&_1'“0 .

The parameter vector 0, for X, — assumed to be gamma distributed has to be estimated by the ML-
method. This is defined in the procedure of Stephens, and likewise the ML estimation is defined in the
procedure with the BT.

Different constellations of distributions and parameters for X, are simulated and the estimations are
tested. 10000 simulations were carried out for each constellation. X, was assumed as gamma
distribution in each constellation. X, was simulated in each constellation by a simulation of a sample
of the uniformly distributed random variable U and the using of the inverse function. Furthermore, a
normal distributed sample was also calculated from the sample of U with p=0 and o=1. The
parameters were estimated for this by using the ML method and the Anderson-Darling test is applied
as well. The share of rejection for this procedure is the control value for the simulations.

The constellation with gamma distributed X, was not the only simulation. The logarithmic normal
distribution for X, was simulated as well (the parameters are for In(X,)). Furthermore the Burr

distribution Type XII and the Pareto distribution were applied with
F(x) :l—[n/(n—xr)r, x>20,7>0,7>0,1>0,

Fx)=(x+D™%, x20,a>0-.

These “false” distributions are used to validate the power of the test. The resulting shares of rejections
for the different levels of significance are shown in Tables 2 to 4 for the sample sizes of X, of n=25,
50 and 100. The results of the Anderson-Darling test for a gamma distributed random variables are in
the column “Classical Test”. The real distribution of X, and their parameters are listed in the columns

labelled as such. It is clear that the Anderson-Darling test with the BT works as well as the Anderson-

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



©CoO~NOUTA,WNPE

Communications in Statistics - Simulation and Computation Page 10 of 25

Biased transformation and Goodness-of-Fit Test

Darling test with the procedure and the critical values of Stephens (1986) if the hypothesis Hj is right.
The shares of rejections are very similar and nearly all are in the 90% range of the estimated share of a
Bernoulli distribution. The ranges are 0.8%-1.1% for the level of 1%, 4.6%-5.3% for the level of 5%
and 9.5%-10.4% for the level of 10%. The shares of rejections are out of range in the case that n=100
and the level of significance are defined with 5%. But in this constellation, the control value is also out
of range.

The results of the classical test and the test with BT are very similar for the cases that X, is not gamma
distributed. The differences between the classical test and the test with BT in the cases that X, are
gamma distributed are small but partly significant. The new procedure with the BT reject more false
assumptions if the sample size is not large (n=25). The procedure according Stephens has a bit more
power in the case of larger sample sizes (n>50). Independent of this fact - the new procedure works
well and the power of the test is high. Both test procedures are not very powerful in the case that the
real distribution is GPD and 7y is near 0. The reason for this phenomena is that the GPD for y=0
(Gumbel case) is an exponential distribution which is a special case of gamma distribution with a=1.
The GPDs with y near 0 and the gamma distributions with o near 1 are similar, no test can be very

power full in this constellation.

5 The Application of the BT for the Anderson-Darling Test
for the Beta Distribution

The only test specified for the beta distribution which was found in publications is an approach of Li
and Papadopoulos (2002). The moments are used in this approach for goodness-of-fit tests for
different distributions. But there is a mistake in the chapter for the beta distribution (a moment is
divided by itself), and the power of the test is not so high for an exponential distribution. For example,
7-8% were rejected at a significance level of 5% in the case that Hy was correct (Li and Papadopoulos,
2002, Tab. 1). This approach is not considered in this paper. Further tests or critical values for test
specified for the beta distribution were not found in publications. In this place, the BT can be used for
a first EDF test of goodness-of-fit for the beta distribution specified for it. The procedure includes the
following steps:

- ML estimation of 4 under the assumption of beta distribution for X,.
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- Using this estimation of § 4 for 0.

- Definition of 08¢ with F¢ as the CDF of a normal distribution with p=0 and o=1.

- Computing the sample of Xp by the BT according equation 2.

- ML estimation of p of the sample of Xp, assumed as normal distribution — Hy,.

- Computing of the A” for the sample of Xp and test.

- Rejection of Hy at the defined level of significance if A?>A% iica, Otherwise acceptance of Hy.
The assumption that X, is beta distributed is rejected with the rejection of Hy that Xp is normally
distributed. The power function of this test has a poor quality even if the test works well. The test
procedure is evaluated by simulations. Samples of beta distribution with variants of parameters were
simulated (Tables 5-7). And distributions were simulated for X, which were not beta distributions.
These were the log-normal distributions, the gamma distribution and the normal distribution. The log-
normal and the gamma distributions were truncated at x=F’1(0.99) and scaled, so that x,,,=1. The
normal distribution was truncated with a lower bound x=F'(0.01) and an upper bound x=F(0.99) and
was located and scaled than so that 0<x<1.

The samples were simulated for the size of n=10, 25, 50 and 100. The considered levels of
significance are 1%, 5% and 10%. Furthermore, the ” test and the Kolomogorov-Smirnov test were
applied for the sample sizes of n=50 and n=100 to compare the power of this test with the Anderson-
Darling test with the BT. The samples were divided in groups with 10 observations for the ” test. The
bound between the groups was selected with the mean of the largest value of the smaller group and the
minimum observation of the larger group. The variant of the Kolomogorov-Smirnov for a full
specified distribution hypothesis was applied for the sample sizes of n=50 and n=100 likewise. The
critical values of the y” test and the Kolomogorov-Smirnov test are taken from Rinne (2003, Chapter
3.4.5).

The shares of rejection from the 10000 simulations of each variant of real distribution are shown in
Tables 5 through 7. The test procedure works well. The share of rejections for the case that Hy is true
is almost equal to the defined level of significance. But some values in these cases are outside the 90%
range for the estimation of the share of a Bernoulli distribution. The randomness of the simulation is

reasonable for this because the control value is also often out of this range. The control value is again
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the share of rejections for the real normal distribution with estimated parameters for a normal
distribution and the same underlying sample of U used for the other real distributions as well. The
Anderson-Darling test for the beta distribution by using the BT has more power than the % test or the
Kolomogorov-Smirnov test as shown in Tables 6 and 7. The ¥~ test rejects less than the defined level
of significance of beta distribution than the new procedure for the Anderson-Darling test in the cases
that H, is false; and the ” test rejects more than the defined level of significance of beta distribution.
The error of the first kind is higher for the % test than for the new procedure. The Kolomogorov-

Smirnov test does not work; the power is very small.

6 Practical application of tests for beta distribution

The beta distribution is used for modeling of meteorological random variables. Yao (1974) modeled
surface relative humidity of U.S. weather stations by using the beta distribution. Different data sets
were analysed for example daily observations for one month. Parameters were estimated by the
moment method. The goodness-of-fit was evaluated by using y’-test. The number of observations per
classes was not limited with n;>10 contrary to recommendations (Rinne, 2008, chapter 3.4.5.1). The fit
is good according to this test results (Yao, 1974, Tab. 1).

The daily cloud duration was modeled by Chia and Hutchinson (1991) with beta distributions for
different places in Australia. The goodness-of-fit was evaluated by a Kolmogorov-Smirnov test for a
full specified distribution. The beta distribution can be used for most data according test results (Cia
and Hutchinson, 1990, Tab. 3).

The beta distribution was applied furthermore for data of relative sunshine duration of Malaysia by
Sulaiman et al. (1999). The goodness-of-fit was evaluated by the Kolmogorov-Smirnov test again. The
fit is good for most of the data (Sulaiman et al., 1999, Tab. 2).

Neither the y’-test nor the Kolmogorov-Smirnov test has a good performance for beta distribution as
seen in Tables 6 and 7. Especially the Kolmogorov-Smirnov test has very low power. But till now
there existed no better test. A practical example of meteorological data demonstrates the improvement
of new test procedure for application of beta distribution. The data of Haarweg Wageningen weather

station of Wageningen University (Netherlands) of July 2005 are analysed. The data set includes
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relative humidity. The relative sunshine duration is calculated by using sunshine minutes of data set
and time between sunrise and sunset. The time between sunrise and sunset is assumed with linear
function with 998.4min for 1* of July and 931.1min for 31* of July. Parameters of beta distribution are
estimated with the ML method. The estimation is &=7.47 and P=4.6255 for relative humidity. The
critical value for the Kolmogorov-Smirnov test is 0.23788 for n=31 and 5% significance and is not
overstepped with 0.1253. H, - beta distributed sample - is accepted. The y’-test is applied with four
classes with n;=7 and 8 (although n; should be >10). The critical value is 3.841 (5%, one grade of
freedom) and is not overstepped by the test value of 2.686. Contrary to this the Anderson-Darling test
value A”=1.433 and is much larger the Aui’=0.753 (5% significance). The sample is not beta
distributed according to the Anderson-Darling test. The parameters of normal distribution of Xp are
1=-0.0005 and 6=1.0164. The results for data of relative sunshine duration per day are similar. Sample
size is n=31 again. Parameters are 0=1.5536 and B$=0.7480. The value of the Kolmogorov-Smirnov
test is 0.1706 and doesn’t overstep critical value. The value of y’-test is 3.9937. This oversteps the
critical value a bit. Hy would be rejected according to the *-test but not according to the Kolmogorov-
Smirnov test. The Anderson-Darling test rejects the hypothesis of beta distributed data very clearly
with A”=2.059. The parameters of the normal distribution of Xp, are i=-0.0116 and 5=1.0057. The
estimated CDF and observed data are shown in Fig. 3. The fit is not good.

The example shows that the introduced procedure of the Anderson-Darling test for beta distribution by
using BT is an improvement of applied statistic. It seems that many data are assumed likely as beta

distributed in pasted analysis although they are not beta distributed.

7 Summary and Discussion

The BT is introduced and can be used exactly for each of the GEV, the GPD and the normal
distribution. The BT works as an approximation for the gamma, beta and normal distribution as a
family of distributions. Because of this the Anderson-Darling Test for normal distributions can be used
as a goodness-of-fit test for the gamma and the beta distribution. The new test procedure works with

similar power as the classical procedure of Stephens. The power of the new procedure is a bit higher
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for smaller sample sizes. The classical procedure has a bit more power for larger sample sizes. The
same test procedure in principle is used for a first goodness-of-fit test specified for beta distribution.
This is the first test specified for the beta distribution. The power function of the new test is poor
because of the basics of the BT. And it is defined in the test procedure that the ML estimated
parameters of assumed the gamma or beta distribution has to be used. The method of parameter
estimation is defined in the procedures of Stephens. The general question is: Is it necessary to have a
good power function for the whole range of parameters for a powerful test if the estimation method is
defined in the test procedure? A good power function is not necessary according to the results of this
paper. The Anderson-Darling test for the gamma distribution with the new procedure has a similar
power as the classical Anderson-Darling test for the gamma distribution. And the power function of
the new procedure is very poor compared with the function of the classical test. The poor power
function can result only in wrong test results, if the test procedure is not used right and the parameter
vector 0, is not estimated correct with the ML method.

If the new test does not reject the hypothesis, the user can assume that the ML estimation of the
parameters leads to an estimated distribution with similar goodness-of-fit as for a sample of normal
distribution with the equal underlying sample of U as for the gamma or beta distribution. It was shown
in the validation of the BT that the goodness-of-fit of a beta, gamma or normal distributed sample
from the same underlying sample of U is almost equal (Figures 2 ¢ and d).

The CDF of the normal, gamma and beta distributions are computed by using approximations from
different software libraries (Excel was used and the library of www.extremeoptimization.com). These
approximations work well in the common ranges of parameters and percentiles. But if, for example, a
of the gamma distribution is small and the percentile is as well, the approximation is wrong. The BT of
the normal, gamma and beta distribution cannot work better than the approximation of the CDF of
these distributions. This is a reason why larger simulations were not carried out for the validation of
the BT for normal, gamma and beta distribution. The probability that the approximation of the CDF
does not work in a variant of parameters and sample of U increases with the number of simulations.

The failure of the approximation is avoided by a limitation of the simulations. And more simulations
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are not necessary, because the distributions of the values of goodness-of-fit in the validation of the BT
were tested with knowledge of the simulation size.

The other EDF-tests specified for the normal distribution could be used in the test procedure with the
BT too. The power of such tests could be evaluated in further works. The Anderson-Darling test has
the better quality in the test of normality (Landry and Lepage, 1992). That is why only this EDF-test is
applied in this paper.

The practical relevance of the new test for beta distributions was demonstrated successfully in
metrological data.

The BT is interesting irrespective of the introduced application for the test of the gamma and beta
distribution. Perhaps the BT will become a criterion for the classification of distributions or the BT
can perhaps be used for estimations of the GPD or GEV or for their tests.

The possibility of BT to estimate the PDF or CDF of a beta distribution by using the normal

distribution should be researched in the future.
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10 Appendix

The BT for the GEV
The GEV is formulated for the Gumbel case

F(x) = exp{—exp[- (x - ,u)/o-]} (6)
and is formulated for the Fréchet and Weibull case with
F(x) :epoHy(x—y)/a]*W} 7

where the parameter is 6>0. The lower bound is for the Fréchet case y>0
x2u—oly.

The upper bound is for the Weibull case with y <0
x<u-oly.

Theorem Al: If X, is GEV-Gumbel distributed and Fp is the CDF of a GED-Gumbel and Fc is the
CDF of a GEV-Fréchet/Weibull with any parameters, then X, can be transformed to Xp with Xp=F¢
(Fg(X4)) and Xp is GEV-Fréchet/Weibul distributed with the parameters

Yp=Ycoal0B, (8)
op =0 aocexplyc(us—up)lopllog, )
pp =ocexplyc(uy —ug)lopllyc-oclye +uc (10)
and the transformation function xp(x,) is
xp =locexplyc ey - pp)logl-oc+renciive - (11)

Proof. If equations 8-11 are used in Fp(xp) according to equation 7, then according to equation 6 the
CDF Fa(xa) can be formulated after simplifications so that equation 3 is valid. 0

This transformation works likewise the other way round if the bounds of X and X are the same with
Uc—oclyc=pp—-oplyp.

and yc and yp have the same sign.

Theorem A2: If X, is GEV-Gumbel distributed and Fy is the CDF of a GEV-Gumbel and F¢ is the

CDF of a GEV-Gumbel with any parameters, then X, can be transformed to Xp with Xp=F c-j (F(Xy4))
and Xp is GEV-Gumbel distributed with the parameters

O'D:O'Aac/GB- (12)
Up =(—Hpoc + cop + Hsoc)/op (13)

and the transformation function xp(xs) is
xp =(Oplc +0cxp~Hpoc)/op. (14)
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Proof: 1f equations 12-14 are used in Fp(xp) according to equation 6, then according to equation 6 the
function Fa(X4) can be formulated after simplifications so that equation 3 is valid. O

Theorem A3: If X, is GEV-Fréchet/Weibull distributed and Fp is the CDF of a GEV-Fréchet/Weibull
and F¢ is the CDF of a GEV-Fréchet/Weibull with any parameters but with

oalya—ma=0plyp—up (15)

and yx and yg have the same sign then X, can be transformed to Xp with XDch‘](F 3(X4)) and Xp is
GEV-Fréchet/Weibull distributed with the parameters

YD =7arc!7B> (16)
op =loarp (racs)V "B ocyalyp, (17)
relr
pp =pc—oclyc+loarp(raos)] oclrc (18)
and the transformation function xp(x,) is
Xp :{JC[1+7/B(XA —/JB)/O'B]%WB —oc +7C:UC}/7C' (19)

Proof: If equations 16-19 are used in Fp(xp) according to equation 7, and equation 15 is considered,
then according equation 7 the function Fa(x) can be formulated after some simplifications so that
equation 3 is valid. 0

The BT for the GPD

The GPD is formulated for the Gumbel case
F(x)=1-exp(-x/0) (20)
and for the Fréchet and Weibull case formulated with
Fx)=1-(+yx/o)"7. (21
Generally x>0 und 6>0. There is an upper bound for the Weibull case y<0 with
x<-oly.

Theorem A4. If X, is GPD-Gumbel distributed and Fp is the CDF of a GPD-Gumbel and F¢ is the
CDF of a GPD-Gumbel with any parameters, then X, can be transformed to Xp with Xp=F c_l (F(X4))
and Xp is GPD-Gumbel distributed with the parameters

op =0,0c/op (22)
and the transformation function xp(x,) is

Xp=xp0c/op. (23)

Proof: 1f equations 22-23 are used in Fp(xp) according equation 20, then according to equation 20 the
function Fa(x4) can be formulated after some simplifications so that equation 3 is valid. 0

Theorem AS: If X, is GPD-Fréchet/Weibull distributed and Fp is the CDF of a GPD-Fréchet/Weibull
and F¢ is the CDF of a GPD-Fréchet/Weibull with any parameters but with
oalya=0plys (24)

then X, can be transformed to Xp with XD=FC'1(F 3(X4)) and Xp is GPD-Fréchet/Weibull distributed
with the parameters

Yp=7arc!7B> (25)
op=740c!7p (26)

and the transformation function xp(x,) is
XD:O'C‘k1+7/BXA/O'B)yC/yB *1}/7/(;. (27)
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Proof: If equations 25-27 are used in Fp(xp) according to equation 21 under consideration of equation
24, then according to equation 21, the function Fa(x4) can be formulated after some simplifications so
that equation 3 is valid. 0

The condition of equation 24 has to be also considered for the Fréchet case even this is not a real
bound of X.

Theorem A6: If X, is GPD-Gumbel distributed and Fy is the CDF of a GPD-Gumbel and F¢ is the
CDF of a GPD- Fréchet/Weibull with any parameters, then X, can be transformed to Xp with Xp=F¢
(Fg(X4)) and Xp is GPD- Fréchet/Weibull distributed with the parameters

Yp=Ycoalop, (28)
GDZO'Aﬁc/GB (29)

and the transformation function xp(x,) is
xp =oclexplxarc/op)-1 ye - (30)

Proof: If equations 28-30 are used in Fp(xp) according to equation 20, then according to equation 21,
the function Fx(x4) can be formulated after some simplifications so that equation 3 is valid. O

It is possible to transform Xp to X, with any Fc(x) and Fg(x). It has only to be ensured that

oclyc=oplyp.

The Normal Distribution

Theorem A7: If X, is normally distributed and Fg and Fc are CDF of normal distributions with any
parameters, then X, can be transformed to Xp with XD=FC'1(F 3(X4)) and Xp is normally distributed
with the parameters

up =pc+oc(ua—pp)lop, (D
op=0,0ploc (32)

and the transformation function xp(x,) is
Xp =pc +0c(xs—up)log (33)

Proof: If equation 4 is taken and the PDF are replaced by adaptations of equation 5 it can be simplified

o expllea ) - P o Jesol- ep — e oo |
ACC Mexp%[xA(xD)f,uB]z/(Zaé)}

With equation 32, for the replacing of 6, it can be modified and written

fp(xp)=
o

fpxp)= 1/(0Dx/g)exp{f[xA(xD) —,uA]zaé /(20'12)0'52;)}exp{7(xl) —/,zc)z /O'é + [xA(xD) —,uB]2 /G%}O'S

Further xA(xp) can be replaced by using equation 33, and it can be simplified and modified to
fpxp) = 1/(GDE)GXPHUB/UC(XD —HC)+ up *#Azaé]/(zaéaé)} :
The parameter Ly can be replaced by the using of equation 31. It can be written
fp(xp) =1/(C7D Zﬂ)expl—{UB/Cfc(XD —pe)+ g - upoploC + pcoploc - up ol 1210} o
and simplified to
foGip) =UlopN27 Jexpl (e - up)?2/ 5B |
which is the PDF for X, according to equation 5. X, is normally distributed. O

Figures and Tables
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Figure 1: Bias of the BT for the simulation of n=1000 for the different types of F, and Fy: a) mean of the
absolute difference |[Fg(xa)-Fa(xa)|, b) extremes of Fp(x4) in relation to Fa(xa)
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Table 1: Test values of the Kolomogorov-Smirnov test for homogeneity for the distributions of A, and A* for
the different variants of sample size, distribution of X, and distribution of Xp

Sample size Distribution of X, Distribution of Value Distribution of Xp

Gamma Beta Normal

Gamma Amax 0.028 0.030 0.008

A 0.021 0.019 0.005

n=10 Beta A 0.009 0.008 0.030

A? 0.027 0.026 0.005

Normal Aumax 0.030 0.031 0.001

A? 0.033 0.036 0.001

Gamma Aumax 0.013 0.016 0.010

A? 0.018 0.017 0.010

n=100 Beta A 0.015 0.018 0.010

A 0.014 0.019 0.009

Normal Amax 0.016 0.021 0.001

A 0.018 0.016 0.001

Gamma Aumax 0.016 0.019 0.017

A 0.016 0.017 0.015

n=1000 Beta Amax 0.022 0.020 0.016

A? 0.021 0.019 0.023

Normal Auax 0.019 0.020 0.001

A? 0.016 0.026 0.001

Table 2: Percentage or rejection of Hy of the classical Anderson-Darling test, the test with the BT for gamma
distribution for different significance levels and n=25. The level of significance is written in percentage.

Real Parameters Classical Test Test with the BT
Distribution 1% 5% 10% 1% 5% 10%
LogNorm p=1, 6°=0.25 3.42 10.92 18.19 3.69 11.41 18.89
LogNorm p=1, o’=1 13.26 27.97 38.08 13.43 27.98 38.42
BurrXII n=4, 1=8, A=1 4.74 12.1 19.41 5.28 13.32 21.08
BurrXII n=1, =1, A=2 14.62 27.49 36.67 13.95 27.2 36.46
Pareto a=8 1.52 6.63 12.02 1.68 6.93 12.68
Pareto o=2 14.62 27.49 36.67 13.95 27.2 36.46
GPD o=1, y=-1/16 0.91 4.67 9.56 0.92 49 10.01
GPD o=1,y=-1/4 1.71 7.68 14.06 1.73 7.57 13.73
Gamma A=1. a=0.5 0.86 4.62 9.46 0.86 4.87 9.72
Gamma A=1. a=1 0.87 4.84 9.58 0.97 5.09 10.05
Gamma A=1. a=2.5 0.89 492 9.72 0.98 5.18 10.07
Gamma A=1. a=5 0.89 4.89 9.69 0.97 5.18 10.14
Gamma A=1. a=10 0.89 4.88 9.72 0.98 5.17 10.13
Control p=0, o=0 - - - 0.97 5.18 10.09
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1

2

3

4

5 Table 3: Percentage or rejection of Hy of the classical Anderson-Darling test, the test with the BT for gamma

6 distribution for different significance levels and n=50. The level of significance is written in percentage.

7

8 Real Parameters Classical Test Test with the BT

Distribution

9 1% 5% 10% 1% 5% 10%

12 LogNormal p=1, 5%=0.25 6.68 18.23 27.29 6.82 18.26 27.51

12 LogNormal p=1, o’=1 33.24 53.23 63.57 31.46 51.51 62.1

13 BurrXII n=4, 1=8, A=1 7.74 18.36 26.82 8.5 19.77 28.22

1;1 BurrXII n=1, t=1, A=2 34.32 50.4 59.21 31.19 47.81 56.89

16 Pareto a=8 2.66 8.43 14.56 2.46 8.26 14.44

17 Pareto a=2 3432 50.4 5921 3119 4781  56.89

ig GPD o=1,y=-1/16 0.98 4.95 9.75 1 4.84 9.71

20 GPD o=1,y=-1/4 3.2 11.59 20.09 3.04 10.94 18.81

21 Gamma A=1. 0=0.5 0.96 4.67 9.51 0.95 4.64 9.61

5:23 Gamma A=1. a=1 0.97 4.68 94 1.04 4.72 9.61

24 Gamma A=1. a=2.5 0.97 4.7 9.51 1.06 4.83 9.65

25 Gamma A=1. a=5 0.97 4.69 9.49 1.05 4.81 9.59

26

27 Gamma A=1. a=10 1 4.67 9.46 1.05 4.84 9.57

28 Control p=0, =0 - - - 1.03 4.83 9.54

29

30 . . . .

31 Table 4: Percentage or rejection of Hy of the classical Anderson-Darling test, the test with the BT for gamma

32 distribution for different significance levels and n=100. The level of significance is written in percentage.

33 Real Parameters Classical Test Test with the BT

34 Distribution

3 1% 5% 10% 1% 5% 10%
5

36 LogNormal p=1, 6°=0.25 14.22 31.41 43.44 14.09 31.28 43.15

37 LogNormal p=1, o’=1 66.84 83.64 89.61 63.46 81.46 88.09

gg BurrXII n=4, 1=8, A=1 14.59 28.65 38.66 15.57 29.83 40.13

40 BurrXII n=1, t=1, A=2 63.73 78.29 84.17 58.14 74.91 81.56

41 Pareto a=8 391 1131 1846 3.45 1068  17.82

j?} Pareto a=2 63.73 78.29 84.17 58.14 74.91 81.56

44 GPD o=1,y=-1/16 1.14 527 10.56 112 53 10.33

45 GPD o=1,y=-1/4 77 2229 3352 668 2013 3LI1

46

47 Gamma A=1. 0=0.5 1.04 4.54 9.33 0.92 4.34 9.71

48 Gamma A=1.a=1 0.98 4.4 9.64 0.96 4.47 9.73

49 Gamma A=1. 0=2.5 093 444 9.8 099 458 985

50

51 Gamma A=1. a=5 0.94 448 9.8 1.01 4.63 9.84

52 Gamma r=1. a=10 0.95 4.52 9.79 1 4.61 9.81

2431 Control u=0, o=0 - - - 1.01 4.6 9.84

55

56

57

58

59

60
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Table 5: Percentage of rejections of Hy of the goodness-of-fit test for the assumed beta distributions for different
levels of significance [%] for the sample size n=10 and 25 (*distribution is truncated, scaled and/or moved)

Real Distribution Parameter BT and Anderson-Darling BT and Anderson-Darling
Test for Normality for n=10 Test for Normality for n=25

1% 5% 10% 1% 5% 10%

Beta a=0.5, p=0.5 1.00 5.33 10.76 0.82 443 9.31
Beta a=1, f=1 1.04 5.51 10.73 0.86 4.50 9.38
Beta a=2, =2 1.04 5.57 10.64 0.83 453 9.52
Beta o=4, B=4 1.09 5.54 10.64 0.85 4.58 9.49
Beta o=1, =4 1.05 5.46 10.77 0.88 4.53 9.42
Beta a=2, =4 1.06 5.53 10.65 0.85 4.56 9.53
Beta a=0.5, B=1 0.99 5.35 10.65 0.85 448 9.40
Beta a=0.5, B=2 1.01 5.31 10.62 0.83 4.54 9.32
Beta a=0.5, B=3 1.02 5.28 10.64 0.86 4.55 9.37
LogNormal” p=1, 6>=0.25 5.70 14.70 22.33 16.88 31.52 41.57
LogNormal” p=1, 6’>=1.0 6.72 16.80 25.30 22.34 39.47 49.90
Gamma” y=3,A=1 3.29 9.75 16.62 7.35 17.19 25.13
Gamma” y=1, =1 2.31 8.10 14.45 4.26 12.35 19.24
Normal* p=0, o’=1 2.49 9.36 15.18 3.99 12.24 19.62
Control p=0, o’=1 1.12 5.56 10.70 0.84 4.58 9.42

Table 6: Percentage of rejections of Hj of the goodness-of-fit tests for the assumed beta distributions for different
levels of significance [%] for the sample size n=50. (*distribution is truncated, scaled and/or moved)

Real Parameters x Test Kolmogorov-Smirnov Test BT and Anderson-Darling
Distribution Test

1% 5% 10% 1% 5% 10% 1% 5% 10%

Beta a=0.5, p=0.5 2.05 7.71 14.76 0 0.06 0.31 0.86 434 9.3
Beta a=1, B=1 2.13 7.99 15.08 0 0.05 0.2 0.88 4.49 9.5
Beta a=2, =2 2.12 8.19 15.52 0 0.03 0.15 0.82 4.56 9.52
Beta o=4, p=4 2.15 8.19 15.12 0 0.01 0.07 0.84 4.56 9.53
Beta a=1, p=4 221 8.36 15.81 0 0.03 0.18 0.88 4.54 9.59
Beta a=2, B=4 2.25 8.5 16.21 0 0.02 0.1 0.84 4.54 9.57
Beta a=0.5, =1 2.14 8.06 15.06 0 0.09 0.27 0.85 436 9.28
Beta a=0.5, p=2 22 8.16 15.33 0 0.1 0.37 0.84 4.29 9.38
Beta a=0.5, B=3 2.13 8.21 15.22 0 0.08 0.27 0.84 4.28 9.35
LogNormal” p=1, 6°=0.25 12.54 28.68 40.75 0.63 4.93 11.28 37.06 55.86 65.86
LogNormal” p=1, 6’=1.0 19.08 37.61 49.53 2.1 11.46 21.74 49.25 68.12 76.32
Gamma’ y=3, A=1 6.18 17.15 27.35 0.06 1.28 3.81 14.16 29.11 39.11
Gamma’ y=1,A=1 4.83 14.22 23.38 0.04 0.8 232 7.55 18.92 27.99
Normal* p=0, o’=1 5.02 14.96 24.18 0 0.24 1.03 7.04 18.07 26.67
Control u=0, o’=1 - - - - - - 0.84 4.61 9.54

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



Page 25 of 25 Communications in Statistics - Simulation and Computation

Biased transformation and Goodness-of-Fit Test

Table 7: Percentage of rejections of Hy of the goodness-of-fit tests for the assumed beta distributions for different
levels of significance [%] for the sample size n=100. (*distribution is truncated, scaled and/or moved.)

Real Distribution Parameters x* Test Kolmogorov-Smirnov Test BT and Anderson-Darling
Test

1% 5% 10% 1% 5% 10% 1% 5% 10%

Beta a=0.5, p=0.5 2.24 7.46 13.32 0.08 0.49 1.27 5.1 10.11

P OO~NOUILAWNPE

Beta o=1, f=1 2.29 7.48 13.23 0.04 0.35 1.27 5.12 10.3

12 Beta a=2, p=2 2.37 7.72 137 0.03 0.16 1.29 522 10.3
13 Beta a=4, p=4 2.55 7.73 13.6 0.01 0.1 1.29 5.12 10.29
Beta a=1, =4 2.31 7.7 13.76 0.05 0.25 1.28 5.1 10.21
16 Beta a=2, p=4 2.57 8.18 14.31 0.01 0.13 131 5.16 10.25

17 Beta a=0.5, B=1 2.24 7.47 13.31 0.1 0.56 1.23 5.06 9.99

=
I
S o o ©o ©o o o o

Beta 0=05.p=2 232 746 1343 008 046 125 503 998
20 Beta 0=05,p=3 232 76 1329 0 007 041 122 506 993
21 LogNormal©  p=1,0%=025  25.19 4577 5876 426 1605  27.64 6988 8472  89.94
3 LogNormal'  p=1,0%=1.0  39.17 6108 7175 1127 353 5258 8401 9339  96.09
24 Gamma' =3, A=1 88 2139 3132 074 451 911 298 4967  60.75
Gamma' y=1,2=1 592 1551 2376 025 249 588 1589 3118 42.14
57 Normal* p=0, o’=1 493 1431 2288 004 043 151 1279 2782 3896

28 Control u=0, o’=1 - - - - - - 1.25 5.08 10.28
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