Horst Tempelmeier 
email: tempelmeier@wiso.uni-koeln.de
  
Lars Fischer 
  
  
  
Approximation of the probability distribution of the customer waiting time under an (r, s, q) inventory policy in discrete time

Keywords: INVENTORY MANAGEMENT, PERFORMANCE MEASURES inventory management; customer waiting time 2nd Revision, September 2009

We study a single-item periodic review (r, s, q) inventory policy. Customer demands arrive on a discrete (e. g. daily) time axis. The replenishment lead times are discrete random variables. This is the time model underlying the majority of the Advanced Planning Software systems used for supply chain management in industrial practice. We present an approximation of the probability distribution of the customer waiting time which is a customer-oriented performance criterion that captures supplier-customer-relationships of adjacent nodes in supply chains. The quality of the approximation is demonstrated with the help of a simulation experiment.

In this paper, we consider the (r, s, q) inventory policy which is a version of the continuous review reorder point-order quantity (s, q) inventory policy. Under the (r, s, q) policy, the inventory position is reviewed every r periods. If it has reached or has fallen below the reorder point s, a multiple n of the minimum order size q is ordered such that the inventory position rises to a level between s and s + q. We consider the (r, s, q) inventory policy in discrete time, which means that not only the review is periodic, but also the demand model assumes that there is a discrete time axis with a period length of, say, one day and all demands arriving during the day are aggregated to a single period demand quantity. This inventory policy has the virtue that replenishments are only made at predefined points in time which allows the inventory replenishment processes to be coordinated for different products that are purchased from the same supplier. In addition, the inventory process for a product can be easily coordinated with the other inbound logistical processes, such as material handling or transportation.

The (r, s, q) policy combines the advantages of the (s, q) policy with those of the (r, S) policy. Although the effective order quantity n • q is a random variable, from the (s, q) policy the (r, s, q) policy inherits, at least for sufficiently large lot sizes, the stability of the order sizes. In addition, with the (s, q) it has the characteristic in common that a replenishment order is released only if the inventory position has reached the reorder point.

From the (r, S) policy it inherits the positive characteristic that the replenishments are restricted to discrete points in time and thus can be coordinated with the replenishments of other products as well as with the execution of subsequent logistical processes.

The performance of an inventory node within a supply chain is usually measured in terms of costs and customer service. While there is a common understanding how to define the main components of the relevant costs, the term customer service is subject to many interpretations. With respect to the output performance of an inventory node, in the literature several types of inventory-related measures are discussed (for example [START_REF] Schneider | Effect of service-levels on order-points or order-levels in iventory models[END_REF], [START_REF] Silver | Inventory Management and Production Planning and Scheduling[END_REF]). The majority of publications use some type of service level such as the stockout probability or the fill rate to quantify the performance of an inventory node. By contrast, in management-oriented textbooks on logistics and supply chain management, such as [START_REF] Bloomberg | Logistics[END_REF] or [START_REF] Christopher | Logistics and Supply Chain Management[END_REF], the time dimension of the service is emphasized. In this interpretation, a logistic system (and an inventory node being a part thereof) performs well if it has the ability to respond to customers' requirements in a short time frame, i. e. with short or zero waiting times.

From a managerial perspective, the customer waiting time of an inventory node may be a valuable criterion in the optimization of the safety stock. If the decision maker is able to predict the probability distribution of the customer waiting time associated with given values of the decision variables of the inventory policy used, then several optimization problems may be formulated and solved:

• Specification of a chance constraint with respect to the waiting time.

Contrary to the standard inventory service levels discussed in the literature such as the fill rate, which are supplier-focused, the waiting time is a customer-oriented measure.

Indeed, from the perspective of a customer knowledge of the waiting time probability distribution may have a significant value. As noted by [START_REF] Lee | Managing Supply Chain Inventory: Pitfalls and Opportunities[END_REF] and demonstrated numerically with respect to an (r, S) policy by [START_REF] Tempelmeier | Inventory service levels in the customer supply chain[END_REF], the waiting time distribution provides valuable information for supplier selection which cannot be deduced from the fill rate. If customers use the waiting time as a criterion for supplier differentiation, then a supplier can make his inventory decisions with respect to the constraint that the probability of delivery within a maximum time window w max must be greater than or equal to a given target value p min [START_REF] Wang | On the time-window fulfillment rate in a single-item min-max inventory control system[END_REF]. This is a type of constraint that is often used in industrial practice.

• Guarantee of a fixed delivery time to the customer.

Here, a possibly poor performance of the inventory system which is associated with an unfavorable probability distribution of the customer waiting time can be offset through the use of transportation modes with different speeds or through different order processing and material handling procedures with different flow times (such as faster order processing). In this case, the decision maker may seek the optimal combination of response times of the different logistical processes, including the inventory response time, thereby ensuring a prespecified delivery lead time to the customer.

• Multi-level safety stock optimization.

In a locally controlled multi-level (e. g. One-Warehouse-N-Retailer) inventory system, among others, the waiting time caused by stock-outs in the upstream node may be a significant part of the replenishment lead time seen by the downstream nodes. Thus, poor inventory performance of the upstream node can be compensated by increased safety stock to be held in the downstream nodes' inventory without affecting the end customer service level. In order to find the optimum allocation of the total safety stock to the nodes in the supply network, the replenishment lead time of a downstream node must be quantified as a function of the decision variables of the upstream node.

Most approaches available for the analysis of multilevel supply networks apply decomposition. Hereby, the nodes of the supply network are analyzed in isolation with the missing link between the nodes being the waiting time observed by a replenishment order at the upstream node [START_REF] Graves | Supply chain design: Safety stock placement and supply chain configuration[END_REF]. Although there are a number of models that use the expected value of the waiting time or its first two moments, for the discrete time model that is considered in this paper, we propose the use of the complete probability distribution of the waiting time.

In the following, we propose a procedure for the approximation of the probability distribution of the waiting times for an (r, s, q) policy in discrete time. By contrast, as will be noted in the sequent literature overview, most single-level inventory models using the waiting time as an inventory performance indicator consider different inventory policies or assume a different demand model where the orders arrive on a continuous time axis.

Literature review

In the literature, only relatively few papers deal with the (r, s, q) inventory policy. A detailed treatment of the (r, s, q) inventory policy with backorder costs is presented by [START_REF] Hadley | Analysis of Inventory Systems[END_REF] under Poisson and normally distributed demands in continuous time. [START_REF] Janssen | On the (R, s, Q) inventory model when demand is modelled as a compound Bernoulli process[END_REF] analyze the (r, s, q) policy in discrete time under compound Bernoulli demand. As a performance criterion they use the fill rate and assume that at each review at most the quantity q is reordered. They improve the work of [START_REF] Dunsmuir | Control of inventories with intermittent demand[END_REF] by taking the undershoot of the inventory position under the reorder point into account. [START_REF] Johansen | The (r, Q) control of a periodic-review inventory system with continuous demand and lost sales[END_REF] consider the (r, s, q) policy with lost sales under the assumption that at most one replenishment order may be outstanding. In addition, the lead time is an integral multiple of the review interval. Recently, [START_REF] Kiesmüller | The customer waiting time in an (r, s, q) inventory system[END_REF] considered an (r, s, q) policy with customers arriving in continuous time according to a compound renewal demand process with both interarrival times and customer order sizes assumed to be mixed Erlang distributed. Partial backordering is not allowed and the maximum waiting time allowed is the length of the replenishment lead time. The authors propose an approximation procedure in which the demands are approximated by mixed Erlang distributions. In a simulation experiment with r = 1 they found that their procedure provides good approximations when the assumption is met that demands arrive in continuous time. It is not clear if this approximation is also applicable for the case that the review period r is significantly longer than the average interarrival time of the demands, for example with daily demands and monthly reviews. In a second simulation experiment, again with continuous-time customer arrivals, they apply an approximation method by [START_REF] Tempelmeier | Inventory control using a service constraint on the expected customer order waiting time[END_REF] specifically designed for a discrete time demand process and, as could be expected, found that this leads to non-satisfactory results. From this the conclusion can be drawn that the approximation procedure for the waiting time distribution is sensitive to the assumptions with respect to the characteristics of the demand process. Our paper differs from [START_REF] Kiesmüller | The customer waiting time in an (r, s, q) inventory system[END_REF] in that we assume a discrete-time demand process, which is the correct model for many industrial situations. In addition, we do not use the mixed Erlang distribution to fit the demand probabilities but instead we use the demand probabilities associated with the real-life case under consideration which may be gamma, normal, or even empirical discrete. Other than [START_REF] Kiesmüller | The customer waiting time in an (r, s, q) inventory system[END_REF] we do not restrict the maximum waiting time to the replenishment lead time. This allows us to consider also (r, s, q) inventory policies with extreme long waiting times which are significantly longer than the replenishment lead time.

In the literature, there are a number of papers that propose exact or approximative procedures for the computation of the waiting time distribution. These publications either assume a continuous time axis for the demand arrivals (such as Kiesmüller and de Kok ( 2006)) or they consider inventory policies other than the (r, s, q) policy. [START_REF] Kruse | Waiting time in an (s-1, s) inventory system with arbitrary distributed lead times[END_REF][START_REF] Kruse | Waiting time in a continuous review (s, S) inventory system with constant lead times[END_REF] derived the waiting time distribution for an (S -1, S) policy and an (s, S) policy with poisson demand. [START_REF] Tempelmeier | Inventory control using a service constraint on the expected customer order waiting time[END_REF] proposed an approximation procedure for an (s, q) policy in discrete time with a review period r = 1 and the complete demand in a period treated as a single order. Our model differs from [START_REF] Tempelmeier | Inventory control using a service constraint on the expected customer order waiting time[END_REF] in that the waiting time probabilities are computed based on the demand units and not on the customer orders, which usually are larger than one. In addition, our approach allows for arbitrary values of the reorder point, which may also be negative, and for review periods which may be significantly greater than 1. Finally our model is much more robust with respect to small order quantities.

Van der Heijden and de Kok (1992) study the customer waiting time distribution for an (r, S) policy with a compound poisson demand process. [START_REF] Tempelmeier | Inventory service levels in the customer supply chain[END_REF] approximates the waiting time distribution for an (r, S) policy with discrete-time demand arrivals. [START_REF] Chen | Waiting time distribution in (T, S) inventory systems[END_REF] consider an (r, S) policy with a compound renewal demand process. [START_REF] Hausman | Joint demand fulfillment probability in a multi-item inventory system with independent order-up-to policies[END_REF] derives the waiting time distribution for a base-stock policy with discrete-time demand arrivals. [START_REF] Wang | On the time-window fulfillment rate in a single-item min-max inventory control system[END_REF] consider an (s, S) policy with discrete-time demand arrivals and a constant replenishment lead time.

In the current paper, we analyze the (r, s, q) policy where the review period is r ≥ 1. We consider customer arrivals on a discrete time axis. This is the way, the demand process is monitored in standard materials management software systems. Modeling such a demand process as a continuous-time arrival process can be expected to result in approximation errors with the same order of magnitude that has been observed by [START_REF] Kiesmüller | The customer waiting time in an (r, s, q) inventory system[END_REF] when using the model by [START_REF] Tempelmeier | Inventory control using a service constraint on the expected customer order waiting time[END_REF] with continuous-time demand arrivals.

Based on our observations of the development of logistical processes in industrial practice

we also allow for discrete stochastic lead times. However, we assume that order crossing does not occur. We present an approximation of the probability distribution of the customer waiting time that is precise also for negative reorder points and for small order sizes, i. e. when several replenishment orders are simultaneously outstanding.

Model description and analysis

Consider an inventory node using an (r, s, q) policy where customers arrive periodically on a discrete time axis. The period demands D are i. i. d. random variables (usually nonunit sized) with mean E{D} and variance Var{D}. Unfilled demands are backordered with partial demand fulfillment allowed. Inventory data are gathered at the end of each period. Every r periods the inventory position is compared to the reorder point s. If at the review time t the inventory position has reached or dropped below the reorder point, a replenishment order of size n • q is triggered which arrives at the beginning of period t+L+1. Replenishment lead times are discrete random variables. However, it is assumed that replenishment orders do not cross in time. If the replenishments are made by a single supplier who processes orders in the sequence of their arrivals, then this assumption will usually be met.

The sequence of events in period t is as follows:

• Arrival of a replenishment order from the supplier.

• Delivery of backordered demands according to the FCFS discipline.

• If possible, delivery of the actual demand of period t, else the demand is backordered.

• Inventory review and placement of a replenishment order, if necessary.

• Calculation of average inventory and service level.

We focus on the computation of the probability distribution of the customer waiting time.

The waiting time is measured for each individual demand unit. It starts in the period of the demand arrival and ends in the period of delivery.

In the remainder of this paper we use the following notation: 

F o r P e e r
Y (0) = 0 ∆ reordering delay µ 3 = E{(D -E{D}) 3 }, third central moment of the demand distribution β fill rate
The development of the inventory in a system with a large order size q is illustrated in Figure 1. At some point in time the inventory position hits the reorder point s. In contrast to a standard (s, q) policy, where a replenishment order would be released immediately, under a (r, s, q) policy the order is launched only after the complete actual review cycle r has elapsed. Thus, a reordering delay ∆ occurs which randomly increases the length of the risk period that must be covered by the reorder point. The risk period is now a discrete random variable equal to L = ∆ + L, as opposed to the replenishment lead time L which is observed under the (s, q) policy. In order to find the probability distribution of the reordering delay, assume that the last review has taken place in period 0 and that the reorder point will be hit in the current review interval. Define the virtual inventory position as (inventory on hand -backorders + actual outstanding orders + delayed orders). This virtual inventory position observed under the (r, s, q)-policy is identical to the inventory position that would be seen if no reordering delays would occur and it exhibits the same stochastic behavior. It is wellknown that in the standard (s, q)-policy the inventory position at any time (and also at time 0) is uniformly distributed between s and s + q.

Caused by the demand arrivals, the virtual inventory position hits the reorder point in a random period τ > 0, which can be any period up to the next review period r. As the period demands are stationary, period τ is uniformly distributed between 1 and r.

The time (rτ ) that a demand unit that caused the virtual inventory position to fall below the reorder point has to wait until its associated order quantity is launched, is thus uniformly distributed over the interval [0, r -1]. This is true for large orders as well as for small order quantities, in case that a multiple n of the basic order size q is ordered. As an illustration, when q = 1, in each period τ the observed demand D τ is added to the virtual inventory position and has to wait (rτ ) periods which means that the reordering delays are uniformly distributed over the interval [r -1, r -2, . . . , 0].

If the replenishment lead time has the discrete probability distribution P {L = ℓ} (ℓ = L min , L min + 1, . . . , L max ), then the risk period L can take on discrete values between

L min = L min and L max = L max + r -1.
The probability distribution of L can then be found through the convolution of the probability distributions of the reordering delay ∆ and the replenishment lead time L, which according to the above assumptions are both discrete random variables. As a consequence of the above transformation, the (r, s, q)policy with lead time L and possible reordering delays is equivalent to an (r = 1, s, q)policy with lead time L without reordering delays. Thus, we can derive the desired results by considering the (r = 1, s, q)-policy with leadtime L.

In the sequel, we focus on the waiting times of the individual demands units. Each demand unit is uniquely associated to an order from which it is served. Waiting starts with the arrival of the demand and ends with the arrival of the associated order. In order to determine the probability distribution of the waiting times, for each demand unit the expected waiting time is computed.

Summing up the expected demand experiencing the given waiting time w and dividing this by the order size q we get the waiting time probability P {W = w}.

Due to the periodic review and the non-unit demand sizes, an undershoot U occurs in the time period when the inventory position drops below the reorder point.

The considered demand process can be modelled as a renewal process [START_REF] Karlin | The application of renewal theory to the study of inventory policies[END_REF],

where the demand quantities are equivalent to the inter-event times, and the undershoot is equivalent to the forward-recurrence time. Using asymptotic results from renewal theory for q → ∞ (see, for example, [START_REF] Tijms | Stochastic models: an algorithmic approach[END_REF], [START_REF] Baganha | The undershoot of the reorder point: Tests of an approximation[END_REF], [START_REF] Silver | Inventory Management and Production Planning and Scheduling[END_REF]), the expectation and the variance of the undershoot can be approximated as follows:

E{U } ≃ E{D} 2 + Var{D} 2 • E{D} (1) Var{U } ≃ µ 3 3 • E{D} + Var{D} 2 • 1 - Var{D} 2 • E{D} 2 + E{D} 2 12 (2)
In addition to the undershoot, the demand during the risk period plays an important role in the evaluation of an inventory policy, e. g. in the determination of the expected backorders. The probability distribution of the demand during the risk period plus the undershoot is found by convolution. Hereby we assume that the undershoot has the same type of distribution as the demand, which is only true in case of exponential demands.

For example, with gamma distributed demands we compute the first two moments of the demand during the risk period plus the undershoot and then fit a gamma distribution to these moments. Although this approximation is based on asymptotic considerations for q → ∞, numerical tests have shown that for the most common demand distributions this approximation is good even for small order sizes (see [START_REF] Baganha | The undershoot of the reorder point: Tests of an approximation[END_REF]).

Probability distribution of the customer waiting time

The customer waiting time W is the time between the arrival of a customer order and its delivery. In order to determine the waiting time probabilities, several cases are examined.

Case 1. Consider first the case with s ≥ 0 and assume that the order quantity q is large enough to fill all outstanding backorders. Let period t = 0 be the period when the inventory position drops below the reorder point s. At the end of this period (immediately before the inventory review) the net inventory is

IN (0) = s -U . If IN (0) < 0, then a
backorder occurs already in the review period which has to wait for delivery until period ℓ + 1. The expected amount backordered is G(s, U ), where G(s, Z) = E{max(Zs, 0)} is the first-order loss function with respect to the random variable Z. In the following periods t (t = 1, 2, . . . , ℓ) additional backorders possibly accumulate. The additional amount backordered in period t is G(s, U + Y (t) ) -G(s, U + Y (t-1) ) .

The maximum waiting time ℓ + 1 is observed by (the portion of) the demand of period 0 that is backordered, if the undershoot is greater than s. This happens with probability 

P {W = ℓ + 1|L = ℓ} = G(s, U ) q (3)
The backorders occuring in period t (t = 1, 2, . . . , ℓ-1), G(s, U +Y (t) )-G(s, U +Y (t-1) )

will have to wait for w (w = ℓ, ℓ -1, . . . , 2) periods, and finally the backorders that occur in period ℓ, G(s, U + Y (ℓ) ) -G(s, U + Y (ℓ-1) ) have to wait for one period. Thus, the waiting probabilities are

P {W = w|L = ℓ} = G(s, U + Y (ℓ+1-w) ) q - G(s, U + Y (ℓ+1-w-1) ) q w = 1, 2, . . . , ℓ (4) 
All remaing demand units are delivered without waiting (w = 0). The probability is

P {W = 0|L = ℓ} = 1 - G(s, U + Y (ℓ) ) q (5)
Case 2. Consider now the case that s ≥ 0 and that the order quantity is very small and not sufficient to fill all outstanding backorders. Let again period t = 0 be the period when the inventory position drops below s. But now assume that in this period a backorder occurs that is greater than q, i. e. IN (0) = s -U < -q. In this case, in t = 0 one or more additional replenishment orders must be released. The number of backorders that occur in period t = 0 and which are associated to each replenishment order is G(s, U ) -G(s + q, U ). Thus, we have

P {W = ℓ + 1|L = ℓ} = G(s, U ) q - G(s + q, U ) q (6)
Similar to Case 1, the number of backorders that occur in period t (t = 1, 2, . . . , ℓ -1), which are delivered by the currently considered order, is

G(s, U + Y (t) ) -G(s + q, U + Y (t) ) -G(s, U + Y (t-1) ) -G(s + q, U + Y (t-1)
) . These backorders must wait w (w = ℓ, ℓ -1, . . . , 2) periods, and finally the backorders that occured in period ℓ,

G(s, U + Y (ℓ) ) -G(s + q, U + Y (ℓ) ) -G(s, U + Y (ℓ-1) ) -G(s + q, U + Y (ℓ-1) ) ,
observe a waiting time of one period. Thus, the waiting probabilities are

P {W = w|L = ℓ} = [G(s, U + Y (ℓ+1-w) ) -G(s + q, U + Y (ℓ+1-w) )] q - [G(s, U + Y (ℓ+1-w-1) ) -G(s + q, U + Y (ℓ+1-w-1) )] q w = 1, 2, . . . , ℓ (7) 
and Note that for large order sizes the terms involving the function G(s + q, . . .) in equations ( 6) -( 8) disappear and ( 6) -( 8) cover also Case 1.

P {W = 0|L = ℓ} = 1 - G(s, U + Y (ℓ) ) q - G(s + q, U + Y (ℓ) ) q (8)
Case 3. Finally, we consider the situation that the reorder point s < 0, which means that at least one demand unit observes a waiting time. Figure 2 shows the development of the net inventory in the last periods before the arrival of the replenishment order under focus. Let period 0 be the period when the inventory position drops below s. All demands that arrive when the net inventory is less than zero are backordered. Note that this happens also to demands that occur earlier than period 0. As noted above, the development of the net inventory which is the result of the demand arrivals is a renewal process, where the undershoot U = s -IN (0) is equivalent to the forward recurrence time (residual life) and the difference V = IN (-1)s is equivalent to the backward recurrence time (age). Note that a well-known result from renewal theory states that these variables have the same probability distribution (see [START_REF] Cox | Renewal Theory[END_REF]). Therefore, we assume that U and V have asymptotically the same probability distribution.

In order to find the waiting time probabilities, we again start with considering the demand that arrives in period t = 0, when the net inventory drops below the reorder point s.

All or a portion of the demand units that arrive in this period are backordered during ℓ + 1 periods. The amount backordered in this period is equal to the difference of the net The probability of the waiting time W = ℓ + 1 is then

P {W = ℓ + 1|L = ℓ} = G(s, U ) -G(s + q, U ) q - G(s, -V ) -G(s + q, -V ) q (9)
The remaining probabilities of W ≤ ℓ are

P {W = w|L = ℓ} = G(s, U + Y (ℓ+1-w) ) q - G(s + q, U + Y (ℓ+1-w) ) q - G(s, U + Y (ℓ+1-w-1) ) q - G(s + q, U + Y (ℓ+1-w-1) ) q w = 1, 2, . . . , ℓ (10) 
P {W = 0|L = ℓ} = 1 - G(s, U + Y (ℓ) ) q - G(s + q, U + Y (ℓ) ) q (11)
Note that ( 10) and ( 11) are the same as ( 7) and ( 8), respectively.

As depicted in Figure 2, it may happen that the waiting time of a demand is longer than the replenishment lead time. This situation is likely to occur when the reorder point is less than zero. To account for this case, we consider the development of the net inventory in the periods -1, -2, . . . . Based on the same arguments as above, the probabilities for the waiting times W ≥ ℓ + 2 are

P {W = w|L = ℓ} = G(s, -V -Y (w-ℓ-2) ) q - G(s + q, -V -Y (w-ℓ-2) ) q - G(s, -V -Y (w+1-ℓ-2) ) q - G(s + q, -V -Y (w+1-ℓ-2) ) q w = ℓ + 2, ℓ + 3, . . . (12) 
Formulas ( 9), ( 11), ( 10) and ( 12) include the above cases 1 and 2, as V is not associated to backorders for s ≥ 0.

There is no upper bound on the waiting time, as s may be arbitrarily small. However, with increasing w the numerators in (12) converge to zero. Once this has happened, the evaluation of ( 12) can be stopped and the maximum waiting time with positive probability has been found. Note that the fill rate is equal to P {W = 0}. However, as there are many possible shapes of waiting time distributions with the same value of P {W = 0}, the fill rate does not provide the required information to discriminate among these distributions.

The evaluation of the above formulas has been implemented as a prototype in Visual Basic. For the computation of the probabilities for the gamma distribution and the normal distribution we used standard routines. The computational requirements are very small, usually a few milliseconds on a standard PC. It is also easy to implement the equations with the help of spreadsheet software, such as MS-Excel, using the available standard functions for computing the first-order loss function.

Next, we state that ( 9), ( 10), ( 11) and ( 12) define a probability distribution.

Proposition.

∞ w=0 P {W = w|L = ℓ} = 1 (13)
Proof.

Rewriting (13) as

P {W = 0|L = ℓ} + ∞ w=1 P {W = w|L = ℓ} = 1 (14) 
and using ( 11) we obtain

1 - G(s, U + Y (ℓ) ) q - G(s + q, U + Y (ℓ) ) q = 1 - ∞ w=1 P {W = w|L = ℓ} (15) 
Referring to (10), (9), and ( 12) equation ( 15) can be rewritten as

G(s, U + Y (ℓ) ) q - G(s + q, U + Y (ℓ) ) q = ℓ w=1 P {W = w|L = ℓ} + P {W = ℓ + 1|L = ℓ} + ∞ w=ℓ+2 P {W = w|L = ℓ} (16) 
Now consider the elements of the right side of ( 16) separately. Note that ℓ w=1 P {W = w|L = ℓ} is a telescoping series that can be expressed as follows: 

P {W = w|L = ℓ} = G(s, U + Y (ℓ+1-1) ) q - G(s + q, U + Y (ℓ+1-1) ) q - G(s, U + Y (ℓ+1-ℓ-1) ) q + G(s + q, U + Y (ℓ+1-ℓ-1) ) q = G(s, U + Y (ℓ) ) q - G(s + q, U + Y (ℓ) ) q - G(s, U ) q + G(s + q, U ) q (17)
Analogously we can proceed with ∞ w=ℓ+2 P {W = w|L = ℓ}.

∞ w=ℓ+2 P {W = w|L = ℓ} = G(s, -V -Y (ℓ+2-ℓ-2) ) q - G(s + q, -V -Y (ℓ+2-ℓ-2) ) q -lim t→∞ G(s, -V -Y (t+1-ℓ-2) ) -G(s + q, -V -Y (t+1-ℓ-2) ) q = G(s, -V ) q - G(s + q, -V ) q (18) 
Inserting equations ( 17), ( 9), and ( 18) into ( 16), we obtain

G(s, U + Y (ℓ) ) q - G(s + q, U + Y (ℓ) ) q = G(s, U + Y (ℓ) ) q - G(s + q, U + Y (ℓ) ) q - G(s, U ) q + G(s + q, U ) q + G(s, U ) q - G(s + q, U ) q - G(s, -V ) q + G(s + q, -V ) q + G(s, -V ) q - G(s + q, -V ) q (19)
We complete the proof noting that P {W = w|L = ℓ} ≥ 0 must hold for all w which is true regarding the according equations.

With random discrete lead times, the unconditional probability distribution of the customer waiting time is then 

P{W = w} = Lmax ℓ=Lmin P{W = w|L = ℓ} • P{L = ℓ}w = 0, 1, . . . (20) 

Numerical Experiment

In order to test the quality of the approximations, we developed an ARENA-simulation model of the considered inventory system and performed two groups of simulation experiments. In the first group we considered deterministic replenishment lead times and tested all combinations of the parameters shown in Table 1. With a coefficient of variation CV D =0.3 the period demands were assumed to be normally distributed and with CV D = {0.9, 1.5} gamma-distributed demands were considered.

These demand distributions represent a wide spectrum of demand patterns to be found in industrial practice, including demand for C-items with high variability. The other parameters were chosen such that many situations observed in industry are covered. Some combinations that are not expected to occur in reality (e. g. q = E{D}) are simply used to test the robustness of the approximations for extreme cases.

From these 1674 parameter combinations we eliminated 20 cases that would result in a fill rate β = 100%. In this case waiting does not occur at all. The remaining 1654 parameter combinations were simulated with 10 replications and 500000 periods each.

For each parameter combination we computed the probability distribution of the customer waiting time and compared it to its simulated counterpart mass point by mass point. Thereby two subgroups of cases were considered.

• Cases with β > 0.

The first subgroup of cases comprises 1158 parameter combinations that resulted in a fill rate greater than zero, which means that at least one single demand unit observed no waiting time. Table 2 shows the frequency distribution of the absolute differences between simulated and computed waiting time probabilities. Among all these probability distributions the maximum absolute deviation of any computed probability mass point from its simulated counterpart was only 0.00369. Table 2. Frequency distribution of deviations between simulated and computed probabilities (cases with β > 0) Deviation % 0.0000 -0.0010 99.68% 0.0010 -0.0020 0.27% 0.0020 -0.0030 0.04% 0.0030 -0.0040 0.01% It is interesting to see what happens with the shape of the probability distribution of the waiting time when the reorder point s in increased. This is demonstrated with the help of Figure 3 where for r = 10, q = 100, and s = {700, 900, 1100, 1300, 1500, 1700} the simulated as well as the computed probabilities are depicted. Note that due to the high quality of the approximations the computed values are not distinguishable from the simulated values. for the demand during the replenishment lead time may be questionable.

• Cases with β = 0.

The second subgroup of cases includes 496 parameter combinations which resulted in a fill rate β = 0. This means that the complete demand is backordered and delivered only after a waiting time. These cases show that there may be significant differences with respect to the waiting time observed by a customer which are not reflected by the fill rate. In other words, from the point of view of the inventory decision maker all parameter combinations perform equally well, whereas from the point of view of the customer there are significant differences in performance.

Table 3 shows the frequency distribution of the absolute differences between simulated and computed waiting time probabilities. Among all these probability distributions the maximum absolute deviation of any computed probability mass point from its simulated counterpart was 0.02067.

Table 3. Frequency distribution of deviations between simulated and computed probabilities (cases with β = 0) Deviation % 0.0000 -0.0010 98.92% 0.0010 -0.0020 0.42% 0.0020 -0.0030 0.16% 0.0030 -0.0040 0.14% 0.0040 -0.0060 0.13% 0.0060 -0.0080 0.06% 0.0080 -0.0100 0.08% 0.0100 -0.0200 0.08% 0.0200 -0.0300 0.02% It is again interesting to consider the development of the shape of the waiting time distribution as a function of the reorder point. Figure 4 shows this for several parameter combinations under normally distributed demand with r = 1, q = 100, and In the second group of experiments we considered random replenishment lead times. In particular the parameter combinations shown in Table 4 were used. Both replenishment lead time distributions have the same expected value (E{L} = 19). For the review period r = 10 order crossing is impossible, while for r = 5 there is a small probability for order crossing. time and compared it to its simulated counterpart mass point by mass point. In all these probability distributions the maximum absolute deviation of any computed probability mass point from its simulated counterpart was only 0.0021.

Table 5 shows the frequency distribution of the absolute differences between simulated and computed waiting time probabilities.

Table 5. Frequency distribution of deviations between simulated and computed probabilities Deviation % 0.0000 -0.0010 99.18% 0.0010 -0.0020 0.81% 0.0020 -0.0030 0.02%

Concluding remarks

We have presented a very precise procedure to compute the probability distribution of the waiting time observed by customers in an (r, s, q) inventory system in discrete time.

Our approach is an approximation for several reasons. First, if a single period demand is greater than q (which will happen if q is very small), then it is not possible to associate all demand units of that period to a unique order. Second, the undershoot is approximated.

Third, under random replenishment lead times, the assumption that orders will not cross is made which may be violated in practice.

The probability distribution of the waiting time can be used for setting the safety stock with respect to a performance criterion that is truly customer-oriented as well as for modelling supplier-customer-relationships in a supply chain.

While for a continuous time axis that is often considered in multi-level inventory models only in special cases the complete distribution of the lead time demand can be determined, in the current case of a discrete time axis the replenishment lead time is a discrete random variable that can be taken into account without significant computational effort.

The availability of the probability distribution of the waiting time enables us to directly characterize the performance measure that is relevant for the customer nodes of a supplying node in a logistic network. Therefore internal service levels that are often used as an intermediate criterion to control the performance of a supplying node in a supply chain are not required. 

Figure 1 .

 1 Figure 1. Development of the inventory

  Figure 2. Inventory development

  end of period 0, IN (0) = s -U , and the net inventory at the beginning of period 0, IN (-1) = s + V .

Figure 3 .

 3 Figure 3. Deviations for r = 10, s = {700, 900, 1100, 1300, 1500, 1700}, q = 100

s

  = {-1000, -800, -600, -400, -200, -100, 0, 200}. Here only the computed probabilities are depicted, as the simulated values are almost identical (The maximum absolute deviation from the simulated values for this set of parameter combinations was only 0.0015).

Figure 4 .

 4 Figure 4. Waiting time distributions for normally distributed demand, r = 1, q = 100, s = {-1000, -800, -600, -400, -200, -100, 0, 200}

Figure 2 :Figure 3 :Figure 4 :

 234 Figure 1: Development of the inventory Figure 2: Inventory development with s < 0 Figure 3: Deviations for r = 10, s = {700, 900, 1100, 1300, 1500, 1700}, q = 100 Figure 4: Waiting time distributions for normally distributed demand, r = 1, q = 100, s = {-1000,-800, -600, -400, -200, -100, 0, 200} 
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Table 1 .

 1 Parameters (deterministic lead times) 

	Average Demand E{D}	{100}
	Demand Variability CV D	{0.3, 0.9, 1.5}
	Review Period r	{1, 10, 20}
	Replenishment Lead time L {10, 20}
	Order Quantity q	{100, 1000, 2000}
	Reorder Point s	{-1000, -900, . . . , 1900, 2000}

Table 4 .

 4 Parameters (random lead times) {-1000, -900, . . . , 5900, 6000} Again, we constructed the individual simulation scenarios by combining these parameter values which resulted in 568 combinations. From these we eliminated 32 instances that resulted in a fill rate β = 100%. The simulations were run with 10 replications over 5000000 periods. Again we computed the probability distribution of the customer waiting

	Average Demand E{D}	{100}	
	Demand Variability CV D	{1.5}	
	Review Period r	{5, 10}
			P {L = ℓ}
		ℓ	(a)	(b)
		16 0.25
		17	0.35
		18 0.25 0.24
		19	0.13
	Replenishment Lead time L	20 0.25 0.05
		21	0.05
		22 0.25 0.05
		23	0.05
		24	0.05
		25	0.02
		26	0.01
	Order Quantity q	{1000, 2000}
	Reorder Point s		
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