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Abstract Global existence of weak and strong solutions to the quasi-hydrostatic primitive

equations is studied in this paper. This model, that derives from the full non-hydrostatic

model for geophysical fluid dynamics in the zero-limit of the aspect ratio, is more realistic

than the classical hydrostatic model, since the traditional approximation that consists

in neglecting a part of the Coriolis force is relaxed. After justifying the derivation of the

model, we provide a rigorous proof of global existence of weak solutions, and well-posedness

for strong solutions in dimension three.
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1 Introduction

Numerical models for the simulation of ocean global circulation seek to simulate fluid flows

with the best compromise between computational cost and physical representativity. On the

one hand, the complete Navier-Stokes equations (NSE), that contain all the required dynamical

processes for a sharp modeling of the physics, is unfortunately too costly to be implemented at a

high resolution on a wide computational domain. On the other hand, the hydrostatic primitive

equations (HPEs) provide a competitively economic model (and yet physically satisfying) that

is widely used for ocean global circulation (see for example ROMS and OPA models, [SM05]

and [MDIL99, Mad08]).

The HPEs (see [Ped87, CR94, Gil82]) are simpler in several respects than the complete equa-

tions of motion. They rely on the smallness of the aspect ratio ε = H/L (where H and L

represent the typical height and length of the computational domain), ε being typically of or-

der 10−3 for large scale ocean models (see Table 1 below). In addition to the neglect of vertical

accelerations in the momentum equations, the HPEs also include the so-called traditional ap-

proximation, which omits the Coriolis terms involving 2Ω cos θ that appear in the zonal and

vertical components of the momentum equation.
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E-mail: Carine.Lucasuniv-orleans.fr
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This traditional approximation has been a matter of controversy for many years (see [Eck60],

and the discussion initiated by Phillips [Phi66, Ver68, Phi68, Wan70]), and more recently it has

been rigorously considered in physical studies (see [WB95, WHRS05]). Some of the authors

have also evidenced in [LR08, LR10] the role played by the traditional approximation in simpler

models such as Saint-Venant or quasi-geostrophic equations, for which numerical simulations

confirm the existing differences between models based (or not) on the traditional approximation.

The conclusion is that the omitted terms may be non-negligible in planetary-scale motion, and

it is thus of interest to consider the HPEs from which the traditional approximation is removed.

These new equations, that take the 2Ω cos θ terms into account, are called the quasi-hydrostatic

primitive equations (QHPEs) and we want to dedicate this paper to their mathematical study.

From the mathematical viewpoint, there exists a large gap between the HPEs and the com-

plete NSE. In the 90’s, after pioneering works on the HPEs (see [LTW92a, LTW92b]), people

were convinced that the hydrostatic model, because of the loss of the ∂w/∂t term, was even

more challenging that the NSE. Roughly speaking, the vertical velocity w in the HPEs becomes

a diagnostic variable, computed a posteriori thanks to the divergence free equation (of course,

we consider incompressible fluids). It was thus widely admitted that the corresponding loss of

regularity for w was a critical issue.

Surprisingly, the HPEs are better suited than expected. In Cao and Titi [CT07] and Ko-

belkov [Kob07], the authors proved a striking result with a global existence theorem for the

strong solutions of the HPEs. The key point is to take advantage of the quasi-2D structure of

the pressure to get rid of it and bring back the equations to a sort of viscous Burgers equation.

Since 2007, the results of Cao, Titi and Kobelkov have been slightly improved (with less de-

manding hypotheses on the domain, see [KZ07]) and the review paper [PTZ08] is dedicated to

the recent history of the HPEs.

In the following, we want to extend the above results to the QHPEs, for which no theoretical

study has ever been published to the best of our knowledge (see however [DS05, LR08, LR10]

for the role of 2Ω cos θ Coriolis terms in more simple models).

The paper is organized as follows: in Section 2, we present the derivation of the QHPEs,

thanks to an asymptotic analysis that underlines the potential inconsistency of the traditional

approximation. Then, we present in Section 3 a rigorous mathematical analysis of the cor-

responding initial-boundary value problem, extending the results of previous authors on the

HPEs. A distinction between weak and strong solutions is done, as for the review paper

[PTZ08].
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2 Derivation of the Model

We start with the full equations of ocean dynamics:

∂u

∂t
+ (VVV3 · ∇)u − fv + f∗w +

∂φ

∂x
− µvvv∆hu − νvvv

∂2u

∂z2 = 0, (2.1a)

∂v

∂t
+ (VVV3 · ∇)v + fu +

∂φ

∂y
− µvvv∆hv − νvvv

∂2v

∂z2 = 0, (2.1b)

∂w

∂t
+ (VVV3 · ∇)w − f∗u +

∂φ

∂z
− µvvv∆hw − νvvv

∂2w

∂z2 = −
ρ

ρ0
g, (2.1c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.1d)

∂T

∂t
+ (VVV3 · ∇)T − µT ∆hT − νT

∂2T

∂z2 = FT , (2.1e)

∂S

∂t
+ (VVV3 · ∇)S − µS∆hS − νS

∂2S

∂z2 = 0. (2.1f)

Here VVV3 = (u, v, w) = (vvv, w), ρ, T and S are respectively the three-dimensional velocity, den-

sity, temperature and salinity of the fluid, and φ is the renormalized pressure, φ = p/ρ0. The

constant numbers f = 2Ω sin(θ) and f∗ = 2Ω cos(θ) are the Coriolis parameters. The vector
−→
Ω = Ω

(
cos(θ), sin(θ), 0

)
represents the Earth’s rotation at the constant latitude θ, g is the uni-

versal gravity constant, and ρ0 stands for the averaged density of the fluid. Finally, (µvvv, µT , µS)

and (νvvv, νT , νS) are the horizontal and vertical viscosities, and FT represent the external heat-

ing term. For the sake of simplicity and since it does not raise any additional mathematical

difficulty, FT will be set to zero in the sequel.

This model is closed by the state equation that describes the relationship between density,

temperature and salinity. We will consider a linear dependency of ρ with respect to T and S

(the linear dependency between ρ, T and S is widely admitted in the literature (see articles

cited above)):

ρ(T, S) = ρ0

(
1 − βT (T − T ∗) + βS(S − S∗)

)
, (2.2)

where βT and βS are two positive constants.

The model (2.1) relies on a fundamental approximation on the density: the Boussinesq

approximation. It consists in considering the water density as constant (ρ0) in the momentum

equations, except in the gravity term of (2.1c) where its variations are taken into account. Apart

from the Boussinesq approximation on the density of the fluid, numerous other approximations

have been proposed, discussed and implemented in the literature. Among others, the hydrostatic

approximation consists in replacing (2.1c) by

∂φ

∂z
= −

ρ

ρ0
g, (2.3)

and is one of the most important, leading to the so-called hydrostatic primitive equations

(HPEs) of the ocean. In this section, we will present and justify a different set of equations,

called the quasi-hydrostatic primitive equations (QHPEs), from which the hydrostatic approx-

imation has been removed, and replaced by a weaker (less demanding) approximation.
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Thanks to a scale analysis based on Table 1 below, we will explain why the cos θ Coriolis

terms cannot comfortably be neglected in global circulation models. The interested reader

is referred to [WB95, WHRS05] and references therein for additional details on the physical

phenomena involved in the various approximations.

2.1 Orders of Magnitude

In order to perform a scale analysis and discriminate between the terms that can be neglected

and those that should be retained, we list in Table 1 the values that we consider for the physi-

cal parameters (length and height of the domain, earth’s rotation angular velocity, vertical and

horizontal velocities, etc.). These orders of magnitude typically correspond to a planetary-scale

motion (WL/UH ≈ 1, see [Bur91]), for example to the realistic configuration of the Northern

Atlantic Ocean.

Height (H) 1000m
Length (L) 1000km

Horizontal Velocity (U) 1.0m.s−1

Vertical Velocity (W ) 10−3m.s−1

Time (T = L/U) 106s
Earth rot. velocity (Ω) 7.10−5rad.s−1

Table 1: Typical orders of magnitude for the Northern Atlantic Ocean.

Given those values, the aspect ratio ε = H/L (= W/U) = 10−3 denotes the strong shallow-

ness of the considered domain.

2.2 Traditional Hydrostatic Approximation

Let us compare the material derivative Dw/Dt = ∂w/∂t + (U.∇)w to the Coriolis term f∗u in

the vertical momentum equation (2.1c). Thanks to Table 1 above, the ratio between these two

terms ranges like

W/T

2Ω cos θ U
=

ε

T2Ω cos θ
< ε. (2.4)

It is hence justified to neglect the vertical acceleration in (2.1c).

A naive comparison between f∗ w and fv in the zonal equation (2.1a) rapidly leads to the

so-called traditional approximation and to the hydrostatic primitive equations: indeed, since

W scales as ε U , the cos θ Coriolis term is neglected in the zonal equation, leading to the

withdrawal of the term f∗ u in the vertical equation for conservation purposes. We finally come
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to the following (hydrostatic) primitive equations:

∂u

∂t
+ (VVV3 · ∇)u − fv +

∂φ

∂x
− µvvv∆hu − νvvv

∂2u

∂z2 = 0, (2.5a)

∂v

∂t
+ (VVV3 · ∇)v + fu +

∂φ

∂y
− µvvv∆hv − νvvv

∂2v

∂z2 = 0, (2.5b)

∂φ

∂z
= −

ρ

ρ0
g, (2.5c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.5d)

∂T

∂t
+ (VVV3 · ∇)T − µT ∆hT − νT

∂2T

∂z2 = 0. (2.5e)

∂S

∂t
+ (VVV3 · ∇)S − µS∆hS − νS

∂2S

∂z2 = 0. (2.5f)

Over the last decades, this model has been widely used by oceanographers for operational

computations and studied by applied mathematicians (see references in Section 1 above).

2.3 Importance of the cos θ Coriolis terms

We want to show in the sequel that the cos θ Coriolis terms are by far the largest of the

omitted terms. The following alternate scale analysis, together with the theoretical clues for

the well-posedness of the corresponding mathematical problem, makes us believe that the quasi-

hydrostatic primitive equations realize the best compromize between physical representativeness

and mathematical solvability.

Let us proceed to an alternate scale analysis of the zonal equation, and consider the term f∗ w

in relation to the material derivative Du/Dt in the zonal equation (2.1a). The ratio scales like

2Ω cos θ W

U/T
=

2εΩ

T
cos θ = 14%cos θ, (2.6)

and thus the retention of the term f∗ w seems desirable. For conservation purposes, it is also

desirable to retain the 2Ω cos θ u term in the vertical momentum equation (2.1c) (it can also be

shown that the 2Ω cos θ u term may be retained in Equation (2.1c) (see [WB95]) regardless of

conservation arguments, see Remark 2.1), so that the Coriolis force remains orthogonal to the

fluid velocity. We finally end up with the following quasi-hydrostatic primitive equations:

∂u

∂t
+ (VVV3 · ∇)u − fv + f∗w +

∂φ

∂x
− µvvv∆hu − νvvv

∂2u

∂z2 = 0, (2.7a)

∂v

∂t
+ (VVV3 · ∇)v + fu +

∂φ

∂y
− µvvv∆hv − νvvv

∂2v

∂z2 = 0, (2.7b)

−f∗u +
∂φ

∂z
= −

ρ

ρ0
g, (2.7c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7d)

∂T

∂t
+ (VVV3 · ∇)T − µT ∆hT − νT

∂2T

∂z2 = 0. (2.7e)

∂S

∂t
+ (VVV3 · ∇)S − µS∆hS − νS

∂2S

∂z2 = 0. (2.7f)
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In Section 3 below, we investigate the mathematical properties of the QHPEs. In particular, we

extend the global existence results obtained in [CT07, Kob07, PTZ08] both for weak and strong

solutions of the HPEs. As the salinity and temperature equations have the same structure (and

can thus be similarly considered from the mathematical viewpoint), we forget Equation (2.7f)

with no loss of generality.

Remark 2.1 Importance of the 2Ω cos θ u in Equation (2.1c)

Regardless of conservation arguments, we can also justify the retention of the f∗ u term in

Equation (2.1c). Indeed, the ratio between this term and the pressure vertical derivative scales

like

2Ω cos θ U

P/ρH
=

2Ω cos θ U

UΩ/ε
= 2 cos θε, (2.8)

which is actually small, but not as small as the ratio between Dw/Dt and the pressure verti-

cal derivative, which scales like ε2/70. In a way, we can say that the QHPEs consist in the

conservation of terms of order 0 and order ε, getting rid of the ε2 terms...

2.4 Quasi-Hydrostatic Model: the Initial Boundary Value Problem

Let us consider the QHPEs (2.7) on a cylindrical domain: M = M′ × (−h, 0) (see Figure 1

below), where M′ is a smooth bounded domain of R
2. We denote by Γi the surface at z = 0, Γb

the bottom at z = −h, and Γℓ the lateral surface. We also define nnn = (nnnh,nnnz) the unit outward

normal on the boundary of the domain. We supplement equations (2.7) with the following

Γ!

z

Γi

Γb

x

z = −h

z = 0

y

nnn

Figure 1: Cylindrical domain on which we solve the QHPEs.

boundary conditions (wind driven on the top surface and no-slip non-heat flux on side walls
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and bottom):

on Γi :
∂vvv

∂z
= hτ, w = 0,

∂T

∂z
= −αT (T − T ∗), (2.9a)

on Γb :
∂vvv

∂z
= 0, w = 0,

∂T

∂z
= 0, (2.9b)

on Γl : vvv ·nnn = 0,
∂vvv

∂nnn
×nnn = 0,

∂T

∂nnn
= 0, (2.9c)

where τ(x, y) and T ∗(x, y) are the wind stress and a typical temperature distribution on the

ocean surface. With no loss of generality (see [CT07, Remark 1]), we assume that τ = 0 and

T ∗ = 0, but our results remain valid for sufficiently smooth non-zero data. Taking T ∗ = 0

corresponds to the study of the perturbed temperature (and hence we substract the hydrostatic

equilibrium pressure from the definition of φ). That is, taking into account the state equation

(2.2), Equation (2.7c) becomes
∂φ

∂z
= βT Tg + f∗u. (2.10)

We also supply our equations with initial data:

vvv(t = 0) = vvv0(x, y, z), (2.11a)

T (t = 0) = T0(x, y, z), (2.11b)

where vvv0 and T0 belong to spaces to be defined later on.

3 Well-Posedness of the QHPEs

In this section, we first prove global existence of weak solutions of (2.7), before studying the

question of strong solutions. These results are based on previous works on HPEs, and do not

take the cos θ Coriolis terms into account. After recalling the main step of the proofs, we focus

on the estimates for the new terms.

3.1 Weak Solutions

In order to write the weak formulation of equations (2.7), we introduce some notations:

UUU = (u, v, T ) = (vvv, T ),

V =

{
UUU ∈ (H1(M))3 s. t.

∫ 0

−h

∇h · vvv dz = 0, vvv = 0 on Γb ∪ Γℓ

}
,

H =

{
UUU ∈ (L2(M))3 s. t.

∫ 0

−h

∇h · vvv dz = 0, nnnh ·

∫ 0

−h

vvv dz = 0 on Γℓ

}
,

‖UUU‖ = ((UUU,UUU))1/2 and |UUU|H = (UUU,UUU)
1/2
H where

((UUU, ŨUU)) =

∫

M

(
µvvv∇hvvv · ∇hṽvv + νvvv

∂vvv

∂z

∂ṽvv

∂z

)
dM

+KT

∫

M

(
µT∇hT · ∇hT̃ + νT

∂T

∂z

∂T̃

∂z

)
dM + KT

∫

Γi

αT T T̃ dΓi,

(UUU, ŨUU)H =

∫

M

(
vvv · ṽvv + KT T T̃

)
dM,
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where KT is an arbitrary positive constant.

We also denote by φs the renormalized pressure at the surface z = 0, such that:

φ(x, y, z, t) = φs(x, y, t) − βT g

∫ 0

z

T (x, y, ξ, t) dξ − f∗

∫ 0

z

u(x, y, ξ, t) dξ,

where we integrated Equation (2.10) in the vertical direction.

In the same way, integrating Equation (2.7d), we can express w as a function of vvv. The functions

φ and w are said to be diagnostic variables, contrarily to UUU which gathers the prognostic

variables.

We consider a sufficiently regular test function ŨUU = (ṽvv, T̃ ) = (ũ, ṽ, T̃ ) in V and we multiply

Equation (2.7a) by ũ, Equation (2.7b) by ṽ, Equation (2.7e) by T̃ . We integrate over the

domain M and find the weak formulation of the QHPEs:
(

d

dt
UUU, ŨUU

)

H

+ a(UUU, ŨUU) + b(UUU,UUU, ŨUU) + e(UUU, ŨUU) = 0,

UUU(t = 0) = UUU0,

(3.1)

with

a(UUU, ŨUU) = ((UUU, ŨUU)) −

∫

M

φs∇h · ṽvv dM + βT g

∫

M

(∫ 0

z

T (x, y, ξ, t) dξ

)
∇h · ṽvv dM,

b(UUU, ŨUU,UUU♯) =

∫

M

(
vvv · ∇hṽvv + w(vvv)

∂ṽvv

∂z

)
vvv♯ dM

+KT

∫

M

(
vvv · ∇hT̃ + w(vvv)

∂T̃

∂z

)
T ♯ dM,

e(UUU, ŨUU) = f

∫

M

(uṽ − vũ) dM

+f∗

∫

M

(∫ 0

z

u(x, y, ξ, t) dξ

)
∇h · ṽvv dM + f∗

∫

M

w(vvv)ũ dM.

In [PTZ08, Section 2.2], the authors studied this system, without the f∗ terms in the expression

of e. Their proof relies on finite differences in time, a priori estimates and passage to the limit.

In particular, they need a+e to be a coercive bilinear form and b to be trilinear and continuous.

Here, as the bilinear form a is not modified, its coercivity properties are still satisfied; for

the trilinear form b also we do not need any supplementary verification. The only point we

detail in the following is the influence of the two new Coriolis terms in the expression of the

bilinear form e.

Let us remark that, if

Ic := f∗

∫

M

(∫ 0

z

u(x, y, ξ, t) dξ

)
∇h · vvv dM + f∗

∫

M

w(vvv)u dM,

we have (remember that the domain is a cylinder):

Ic = f∗

∫

M

(∫ 0

z

u(x, y, ξ, t) dξ

)
∇h · vvv dM + f∗

∫

M

(∫ 0

z

∇h · vvv(x, y, ξ, t) dξ

)
u dM,

= f∗

∫

M′

∫ 0

−h

(∫ 0

z

u(x, y, ξ, t) dξ

)
∇h · vvv dz dM′

+f∗

∫

M′

∫ 0

−h

(∫ 0

z

∇h · vvv(x, y, ξ, t) dξ

)
u dz dM′.
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Thanks to an integration by parts on the vertical variable and using the boundary conditions

on Γi and Γb, we find Ic = 0 so that e(UUU,UUU) is not modified compared to the expression given

by M. Petcu, R. Temam and M. Ziane. Consequently, the bilinear form e still satisfies the

relation:

e(UUU,UUU) = 0,

and a + e is coercive. At this point, we are exactly in the same conditions as in [PTZ08], and

the existence of weak solutions of the QHPEs follows immediately:

Theorem 3.1 Let M be a cylindrical domain, t1 > 0 and UUU0 ∈ H the initial condition.

Then there exists UUU = (u, v, T ) solution of system (3.1) such that

UUU = (u, v, T ) ∈ L∞(0, t1;H) ∩ L2(0, t1;V ).

3.2 Strong Solutions

The existence of strong solutions of (2.7) can be proved in the same way as in [CT07] for the

hydrostatic primitive equations (without the cosφ terms of the Coriolis force). For the sake of

clarity, let us first recall the main steps of this paper.

The idea of C. Cao and E. S. Titi is to give a bound on the H1 norm of the velocity and

the temperature, in order to obtain global existence in time. But the overestimation of the

H1 norms is not a straightforward consequence of an energy inequality. Indeed, they have to

compute several a priori estimates, especially a L6 inequality, to be able to write the sought

relation.

In the case of the quasi-hydrostatic primitive equations (with complete Coriolis force), we can

only consider the influence of the new terms on these inequalities, and try to obtain the same

type of a priori bounds.

3.2.1 Reformulation of the problem

Let us reformulate system (2.7): integrating equation (2.7d) on the vertical and taking into

consideration the boundary conditions, we have the following expression of vertical velocity

w(x, y, z, t) = −

∫ z

−h

∇h · vvv(x, y, ξ, t) dξ. (3.2)
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Then we integrate equation (2.10) and replace the expression of φ in Equation (2.7a)-(2.7b) to

obtain:

∂vvv

∂t
+ (vvv · ∇h)vvv −

(∫ z

−h

∇h · vvv

)
∂vvv

∂z
+ f kkk× vvv + f∗

(
w
0

)

+∇h

(
φs − βT g

∫ 0

z

T − f∗

∫ 0

z

u

)
− µvvv∆hvvv − νvvv

∂2vvv

∂z2 = 0, (3.3a)

∂T

∂t
+ (vvv · ∇h)T −

(∫ z

−h

∇h · vvv

)
∂T

∂z
− µT ∆hT − νT

∂2T

∂z2 = 0, (3.3b)

∂vvv

∂z

∣∣∣∣
z=0

= 0,
∂vvv

∂z

∣∣∣∣
z=−h

= 0, vvv ·nnn|Γℓ
= 0,

∂vvv

∂nnn
×nnn

∣∣∣∣
Γℓ

= 0, (3.3c)

(
∂T

∂z
+ αT T

)∣∣∣∣
z=0

= 0,
∂T

∂z

∣∣∣∣
z=−h

= 0,
∂T

∂nnn

∣∣∣∣
Γℓ

= 0, (3.3d)

vvv(x, y, z, t = 0) = vvv0(x, y, z), T (x, y, z, t = 0) = T0(x, y, z) . (3.3e)

where φs(x, y, t) = φ(x, y, z = 0, t).

We denote by V1 the closure space of {vvv ∈ C∞ satisfying (3.3c)} and V2 is the closure space of

{T ∈ C∞ satisfying (3.3d)} in H1(M).

We decompose the horizontal velocity vvv as the sum of its barotropic part vvv (equal to the

mean value of vvv on the vertical) and its baroclinic part ṽvv. We also write w = w + w̃ with

w = 1
h

∫ 0

−h
w(x, y, z, t) dz. Then the following equations hold:

∂vvv

∂t
+ (vvv · ∇h)vvv + (ṽvv · ∇h)ṽvv + (∇h · ṽvv)ṽvv + f kkk× vvv + f∗

(
w
0

)
− µvvv∆hvvv

+∇h

(
φs −

βT g

h

∫ 0

−h

(∫ 0

z

T

)
dz −

f∗

h

∫ 0

−h

(∫ 0

z

u

)
dz

)
= 0, (3.4a)

∇h · vvv = 0, (3.4b)

vvv ·nnn|Γℓ
= 0,

∂vvv

∂nnn
×nnn

∣∣∣∣
Γℓ

= 0, (3.4c)

and

∂ṽvv

∂t
+ (ṽvv · ∇h)ṽvv + (ṽvv · ∇h)vvv + (vvv · ∇h)ṽvv − (ṽvv · ∇h)ṽvv + (∇h · ṽvv)ṽvv

−

(∫ z

−h

∇h · ṽvv

)
∂ṽvv

∂z
+ f kkk× ṽvv + f∗

(
w̃
0

)
− µvvv∆hṽvv − νvvv

∂2ṽvv

∂z2

−∇h

(
βT g

∫ 0

z

T −
βT g

h

∫ 0

−h

(∫ 0

z

T

)
dz + f∗

∫ 0

z

u −
f∗

h

∫ 0

−h

(∫ 0

z

u

)
dz

)
= 0, (3.5a)

∂ṽvv

∂z

∣∣∣∣
z=0

= 0,
∂ṽvv

∂z

∣∣∣∣
z=−h

= 0, ṽvv ·nnn|Γℓ
= 0,

∂ṽvv

∂nnn
×nnn

∣∣∣∣
Γℓ

= 0. (3.5b)

In Equation (3.4a), compared to the HPEs, the difference appears from the two terms

f∗

(
w
0

)
and

f∗

h
∇h

∫ 0

−h

(∫ 0

z

u

)
dz.

For ṽvv, in Equation (3.5a), the new terms are:

f∗

(
w̃
0

)
and ∇h

(
−f∗

∫ 0

z

u +
f∗

h

∫ 0

−h

(∫ 0

z

u

)
dz

)
.



Quasi-hydrostatic primitive equations for ocean global circulation models 100000011

First, one must note that the L2 estimates are not modified by the new terms. So vvv is in

L∞(0, tmax; (L
2(M))2), ∇vvv is in L1(0, tmax; (L

2(M))6) and similar properties stand for T .

We can improve this result and prove uniform bounds on UUU = (vvv, T ) (see [PTZ08]). More

precisely, there exists t0 that only depends on UUU0 = UUU|t=0
, such that, for all t ≥ t0 and r > 0:

∫ t+r

t

‖UUU(s)‖2 ds ≤ K,

where K is a constant that does not depend on UUU0 and ‖UUU‖ = ((UUU,UUU))1/2 is defined by:

((UUU, ŨUU)) =

∫

M

(
µvvv∇hvvv · ∇hṽvv + νvvv

∂vvv

∂z

∂ṽvv

∂z

)
dM

+ KT

∫

M

(
µT∇hT · ∇hT̃ + νT

∂T

∂z

∂T̃

∂z

)
dM + KT

∫

Γi

αT T T̃ dΓi.

Next, we have to study step by step all the bounds that are necessary to obtain the existence

of strong solutions in [CT07].

3.2.2 L6 bounds on the horizontal velocity

Lemma 3.1 Let ṽvv be a solution of system (3.5). Then, for all t ≥ t0 + r (defined above),

we have a time-uniform bound on the L6 norm of ṽvv.

Proof. We multiply equation (3.5a) by |ṽvv|4 ṽvv and integrate over the domain M. Following

[CT07], we obtain

1

6

d‖ṽvv‖6
6

dt
+

µvvv

6

∫

M

|∇hṽvv|
2|ṽvv|4 dM +

νvvv

6

∫

M

|ṽvvz|
2|ṽvv|4 dM + A1 − A2

≤ C‖vvv‖2
2‖∇hvvv‖

2
2‖ṽvv‖

6
6 + C‖ṽvv‖6

6‖∇hṽvv‖
2
2 + C‖T‖2

2‖∇hT‖2
2 + C‖ṽvv‖2

2‖ṽvv‖
6
6, (3.6)

where the new Coriolis terms are:

A1 := f∗

∫

M

w̃|ṽvv|4ũ dM,

A2 :=

∫

M

∇h

(
f∗

∫ 0

z

u(x, y, ξ, t) dξ −
f∗

h

∫ 0

−h

(∫ 0

z

u(x, y, ξ, t) dξ

)
dz

)
· |ṽvv|4 ṽvv dM.

Note that, for the sake of simplicity, we will always denote by C a positive constant, but this

constant may be different for each term.

First, let us study the contribution of the term A1.

Replacing w̃ by the difference between w and its mean value, using the expression of w as a

function of vvv (3.2), and thanks to an integration by parts, we get:

A1 = −f∗

∫

M

(∫ z

−h

vvv(x, y, ξ, t) dξ −
1

h

∫ 0

−h

∫ z

−h

vvv(x, y, ξ, t) dξ dz

)
· ∇h

(
|ṽvv|4ũ

)
dM,

A1 ≤ Cf∗

∫

M

(∫ 0

−h

|vvv(x, y, ξ, t)| dξ

) ∣∣∇h(|ṽvv|4ũ)
∣∣ dM,

A1 ≤ C

∫

M

(∫ 0

−h

|vvv(x, y, ξ, t)| dξ

)
|∇hṽvv||ṽvv|

4 dM.
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But, since M = M′ × (−h, 0), one can write:

A1 ≤ C

∫

M′

(∫ 0

−h

|vvv(x, y, ξ, t)| dξ

)(∫ 0

−h

|∇hṽvv||ṽvv|
2|ṽvv|2 dz

)
dM′,

A1 ≤ C‖|vvv|‖L4(M′)

(∫

M

|∇hṽvv|
2|ṽvv|4 dM

)1/2
(∫

M′

(∫ 0

−h

|ṽvv|4 dz

)2

dM′

)1/4

. (3.7)

Using an integral version of Minkowsky inequality for the L2 space and a Sobolev and La-

dyzhenskaya’s inequality in R
2, we have a bound on the square of the last term:

(∫

M′

(∫ 0

−h

|ṽvv|4 dz

)2

dM′

)1/2

≤ C

∫ 0

−h

(∫

M′

|ṽvv|8 dM′

)1/2

dz

≤ C

∫ 0

−h

‖ṽvv‖3
L6(M′)

(
‖∇hṽvv‖L2(M′) + ‖ṽvv‖L2(M′)

)
dz

≤ C‖ṽvv‖3
6 (‖∇hṽvv‖2 + ‖ṽvv‖2) ,

and (∫

M′

(∫ 0

−h

|ṽvv|4 dz

)2

dM′

)1/4

≤ C‖ṽvv‖
3/2
6

(
‖∇hṽvv‖

1/2
2 + ‖ṽvv‖

1/2
2

)
. (3.8)

We also study the first term of inequality (3.7) with the same arguments:

‖|vvv|‖L4(M′) ≤ ‖|vvv|‖
1/2
L2(M′)‖∇h|vvv|‖

1/2
L2(M′) ≤ C‖vvv|‖

1/2
2 ‖∇hvvv‖

1/2
2 . (3.9)

We replace inequalities (3.8)-(3.9) in (3.7) and obtain:

A1 ≤ C‖vvv‖
1/2
2 ‖∇hvvv‖

1/2
2

(∫

M

|∇hṽvv|
2|ṽvv|4 dM

)1/2

‖ṽvv‖
3/2
6

(
‖∇hṽvv‖

1/2
2 + ‖ṽvv‖

1/2
2

)
,

A1 ≤ C‖vvv‖2
2‖∇hvvv‖

2
2 +

µvvv

24

∫

M

|∇hṽvv|
2|ṽvv|4 dM + C‖ṽvv‖6

6

(
‖∇hṽvv‖

2
2 + ‖ṽvv‖2

2

)
. (3.10)

For the second term A2, we start with an integration by parts:

A2 = −

∫

M

(
f∗

∫ 0

z

u(x, y, ξ, t) dξ −
f∗

h

∫ 0

−h

(∫ 0

z

u(x, y, ξ, t) dξ

)
dz

)
∇ ·
(
|ṽvv|4 ṽvv

)
dM.

This expression is exactly the same as the one of A1 if we replace u by vvv. We directly have:

A2 ≤ C‖|u|‖L4(M′)

(∫

M

|∇hṽvv|
2|ṽvv|4 dM

)1/2
(∫

M′

(∫ 0

−h

|ṽvv|4 dz

)2

dM′

)1/4

,

and

A2 ≤ C‖u‖2
2‖∇hu‖2

2 +
µvvv

24

∫

M

|∇hṽvv|
2|ṽvv|4 dM + C‖ṽvv‖6

6

(
‖∇hṽvv‖

2
2 + ‖ṽvv‖2

2

)
. (3.11)

Gathering estimates (3.6), (3.10) and (3.11), we get

1

6

d‖ṽvv‖6
6

dt
+

µvvv

12

∫

M

|∇hṽvv|
2|ṽvv|4 dM +

νvvv

6

∫

M

|ṽvvz|
2|ṽvv|4 dM

≤ C‖ṽvv‖6
6

(
‖vvv‖2

2‖∇hvvv‖
2
2 + ‖∇hṽvv‖

2
2 + ‖ṽvv‖2

2

)

+ C‖T‖2
2‖∇hT‖2

2 + C‖u‖2
2‖∇hu‖2

2 + C‖vvv‖2
2‖∇hvvv‖

2
2.
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Thanks to Gronwall lemma (as the bounds on UUU are uniform, we can apply uniform Gronwall

lemma as in [PTZ08]), we obtain:

‖ṽvv(t)‖6 ≤ K for all t ≥ t0 + r, (3.12)

where K is a constant that does not depend on the initial data.

The equation for T is not modified by the Coriolis terms, it has the same structure as for

the classical Primitive Equations. So we will obtain exactly the same estimates as in [PTZ08],

namely a time-uniform bound on the L6 norm of the temperature.

3.2.3 H1 estimates on the horizontal velocity

Lemma 3.2 Let vvv be a solution of system (3.3). Then, for all t ≥ t0 + r, we have a

time-uniform bound on the H1 norm of vvv.

Proof. To have H1 estimates, or more precisely L2 estimates on the tridimensional gradient of

the horizontal velocity, we proceed as follows: first, we get estimates on ∇hvvv, then we obtain a

bound on the vertical derivative of vvv and finally we are able to write a result on ∇hvvv.

We start multiplying equation (3.4a) by −∆hvvv and obtain:

1

2

d‖∇hvvv‖
2
2

dt
+

µvvv

2
‖∆hvvv‖

2
2 + A3 − A4

≤ C‖vvv‖2
2‖∇hvvv‖

4
2 + C‖∇hṽvv‖

2
2 + C

∫

M

|ṽvv|4|∇hṽvv|
2 dM + C‖vvv‖2

2, (3.13)

Here again, A3 and A4 are the two contributions of the new Coriolis terms:

A3 := f∗

∫

M′

w (−∆hu) dM′,

A4 :=
f∗

h

∫

M′

∇h

(∫ 0

−h

(∫ 0

z

u(x, y, ξ, t) dξ

)
dz

)
(−∆hvvv) dM′.

In order to find bounds on A3, we replace w by its expression (3.2):

A3 = −
f∗

h

∫

M′

(∫ 0

−h

∫ z

−h

∇h · vvv(x, y, ξ, t) dξ dz

)
(−∆hu) dM′,

A3 ≤ C

∫

M′

(∫ 0

−h

|∇h · vvv| dz

)
|∆hu| dM′,

A3 ≤ C

(∫

M′

(∫ 0

−h

|∇h · vvv| dz

)2

dM′

)1/2(∫

M′

|∆hu|
2
dM′

)1/2

.

Applying Cauchy-Schwarz inequality again, one can write:

∫

M′

(∫ 0

−h

|∇h · vvv| dz

)2

dM′ ≤ C

∫

M′

∫ 0

−h

|∇h · vvv|
2
dzdM′ = C‖∇h · vvv‖2

2,
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so that

A3 ≤ C‖∇hvvv‖2‖∆hu‖2 ≤ C‖∇hvvv‖
2
2 +

µvvv

8
‖∆hvvv‖

2
2. (3.14)

For the term A4, remark that it is the same as A3 replacing u by vvv. We also obtain:

A4 ≤ C‖∇hvvv‖
2
2 +

µvvv

8
‖∆hvvv‖

2
2. (3.15)

Combining equations (3.13), (3.14), (3.15) and thanks to the L2 estimates, we can apply uniform

Gronwall lemma to get:

‖∇hvvv(t)‖2 ≤ K for all t ≥ t0 + r. (3.16)

The next step is to deduce estimates for vvvz, the vertical derivative of vvv (from now on we do

not need to distinguish between the mean value of vvv and its oscillating part anymore). Let us

derive equation (3.3a) with respect to z:

∂vvvz

∂t
+ (vvvz · ∇h)vvv + (vvv · ∇h)vvvz −

(∫ z

−h

∇h · vvv

)
∂vvvz

∂z
− (∇h · vvv)vvvz

+ f kkk× vvvz + f∗

(
wz

0

)
+ ∇h (βT gT + f∗u) − µvvv∆hvvvz − νvvv

∂2vvvz

∂z2 = 0

We multiply this equation by vvvz and integrate over the domain. Following [CT07] and using

(3.3c), we obtain:

1

2

d‖vvvz‖
2
2

dt
+

µvvv

2
‖∇hvvvz‖

2
2 +

νvvv

2

∥∥∥∥
∂vvvz

∂z

∥∥∥∥
2

2

+ A5 + A6 ≤ C
(
‖∇hvvv‖

4
2 + ‖ṽvv‖4

6

)
+ C‖T‖2

2. (3.17)

The new Coriolis terms are:

A5 := f∗

∫

M

wzuz dM = −f∗

∫

M

(∇h · vvv)uz dM,

A6 := f∗

∫

M

∇hu · vvvz dM.

These two extra-terms do not bring any technical difficulty as

A5,6 ≤ C‖vvv‖2‖∇hvvvz‖2 ≤ C‖vvv‖2
2 +

µvvv

8
‖∇hvvvz‖

2
2. (3.18)

We replace (3.18) in (3.17) and, using the previous estimates on ‖ṽvv‖6 (Lemma 3.1 and equation

(3.12)) and ‖∇hvvv‖2 (equation (3.16)), we can apply once again uniform Gronwall lemma:

‖vvvz(t)‖2 ≤ K for all t ≥ t0 + r. (3.19)

All these estimates enable us to give a bound on the H1 norm of the horizontal velocity vvv.

We multiply equation (3.3a) by the Laplacian of the velocity −∆hvvv and get:

1

2

d‖∇hvvv‖
2
2

dt
+

µvvv

2
‖∆hvvv‖

2
2 +

νvvv

2
‖∇hvvvz‖

2
2 + A7 + A8

≤ C
(
‖vvv‖4

6 + ‖∇hvvv‖
2
2‖vvvz‖

2
2

)
‖∇hvvv‖

2
2 + C‖∇hT‖2

2, (3.20)
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where the new Coriolis terms are defined by:

A7 := −f∗

∫

M

w ∆hu dM = f∗

∫

M

(∫ z

−h

∇h · vvv(x, y, ξ, t) dξ

)
(∆hu) dM,

A8 := −f∗

∫

M

(
∇h

∫ 0

z

u(x, y, ξ, t) dξ

)
· (−∆hvvv) dM.

In order to replace these terms in equation (3.20), we use the following bounds:

A7,8 ≤ C‖∇hvvv‖2‖∆hvvv‖2 ≤
µvvv

8
‖∆hvvv‖

2
2 + C‖∇hvvv‖

2
2 (3.21)

and obtain with Gronwall lemma:

‖∇hvvv(t)‖2 ≤ K for all t ≥ t0 + r, (3.22)

which gives us a uniform bound on the H1 norm of vvv.

3.2.4 Main result

We also have the classical bound on the H1 norm of the temperature, as the Coriolis terms do

not appear in equation (3.3b).

These H1 bounds on the velocity and the temperature give us the global existence, uniqueness

and continuous dependency on initial data of the strong solution to the QHPE (2.7) with the

same arguments as [CT07]:

Theorem 3.2 Let vvv0 ∈ V1, T0 ∈ V2 and tmax > 0 given. Then there exists a unique strong

solution (vvv, T ) of the system (3.3) on the interval [0, tmax] which depends continuously on the

initial data.

Furthermore, thanks to the uniform bounds, there exist absorbing balls for the solution (vvv, T )

in H1(M).
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