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A Hybrid Filter-based and Graph-based approach to SLAM

Francesco Conte and Agostino Martinelli

Abstract— This paper introduces a new approach to SLAM
which combines an Information Filter and a non linear
optimizer. The basic idea of the suggested technique is to
use the Information Filter when the system non linearities
are negligible, and to switch to the use of the non linear
optimizer when the non linearities are not negligible. Extensive
simulations are provided in order to evaluate the performance
of the proposed approach. In particular, a comparison with the
Exactly Sparse Delayed-state Filers (ESDF) technique is carried
out.

I. INTRODUCTION
In the Simultaneous Localization and Mapping (SLAM)

problem, a mobile robot has to be able to autonomously
explore an unknown environment with its on-board sensors,
gain knowledge about it, interpret the scene, build an ap-
propriate map and localize itself relative to this map. One
of the most popular approaches to SLAM is the Filter-based
approach, in which the robot kinematics and observations are
modeled by a non linear system and tracked via an Extended
Kalman Filter (from now on EKF).

In 2006 Eustice et al, ([3]) introduced the innovative
technique Exactly Sparse Delayed-State Filters (from now
on ESDF). Basing on the Information Filter (from now on
IF or EIF with linearization) and only introducing negligible
approximations on the the state recovery, this technique
solves the SLAM problem through a constant-time filtering
algorithm. This means that the ESDF computational cost
does not grow up with the environment size. Therefore,
ESDF is considered as the solution to the scalability problem
for arbitrately large environments.

Because of this optimal computational behaviour, the
ESDF cannot be improved in terms of computational cost
through a Filter-based solution to SLAM. On the other hand,
the EIF used by the ESDF method suffers from the same
limitation of the EKF-SLAM in terms of map accuracy. In
particular, as well as the EKF, the EIF is based on the linear
approximation of the analyzed system. This approximation
represents the main limitation of every EKF-based (or EIF-
based) solutions to SLAM because the robot motion and
observations generally have a strong non linear nature. Julier
and Uhlmann [5] and Castellanos et al. [1] proved that the
conventional EKF-SLAM yields an inconsistent map. They
pointed out that this inconsistency arises from linearization.
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Indeed, this approximation only holds if the difference be-
tween the estimated state and the ground truth is small. Now,
in any map representation, the corresponding robot location
will drift if no crucial event like a loop closure occurs.
Therefore, when the drift is large enough, the linearization
is not a possible approximation. Moreover, such drift will be
naturally larger when the size of the environment increases.
Hence, the estimation process could become inconsistent if
the environment is large enough.

Recently, a new strategy has emerged that offers the
possibility to solve the SLAM problem without any linear ap-
proximation. This approach is called Graph-based approach.
It consists in facing the SLAM as a non linear optimization
problem: find the robot trajectory and the map with the
greatest probability, given the sensor measurements. In the
works realized by Olson [8] and Grisetti [4] non linear
optimization algorithms are proposed in order to solve the
SLAM problem. These suggested algorithms are able to build
very accurate maps, with a low computational cost.

In this paper we introduce a new approach to SLAM which
combines an EIF and a non linear optimizer. In particular, we
suggest a hybrid solution to SLAM which consists in using
a suitable modification of the ESDF filtering algorithm when
the system non linearities are supposed to be negligible,
and switching to a non linear optimizer when the system
non linearities are stronger (e.g. loop closure). An analogous
strategy was proposed in [6] in the context of the Relative
Map Approach to solve SLAM. We point out that the aim
of this work is not to use or to improve the optimization
algorithms suggested in [8] or in [4], but we only want fuse
their basic idea about the SLAM problem with the a more
conventional Filter-based solution to SLAM .

This work is organized as it follows. In Section II we
introduce the ESDF technique pointing out its advantages
and drawbacks. In section III we propose our hybrid solution
to SLAM. In section IV extensive simulation results are
provided in order to evaluate the performance of the proposed
approach. In particular, a comparison with the ESDF is
carried out. Conclusions are presented in section V.

II. ADVANTAGES AND DRAWBACKS IN THE
ESDF-APPROACH

In 2006 Eustice et al. [3] introduced the innovative tech-
nique called Exactly Sparse Delayed-state Filters. The ESDF
algorithm succeeds in exploiting the benefits of the EIF
by maintaining a sparse structure of the information matrix
(covariance inverse), without any approximation. This is
obtained through a state-augmentation technique and yields
a constant-time computational cost per iteration. In the



following we will summarize the ESDF method pointing out
some of its key properties.

Let us represent the robot motion and perception by the
following equations:

xk = f (xk−1, uk + wk) (1)
zk = h(xk,m) + vk (2)

where xk is the robot pose at the time step k, uk is
the control input (proprioceptive measurement), zk is the
exteroceptive measurement available at the time step k, m is
the environment map, f is the robot motion function, h is the
observation function, and wk and vk are the proprioceptive
and exteroceptive measurements errors, respectively.

The ESDF key idea is to extend the estimated state vector
each time an observation occurs. Specifically, at the time step
k the current estimated vector is:

XT
k =

(
xTk MT

)
(3)

where M is a vector carrying all the maintained old poses
and the map m. In the following we will often talk about
the size of Xk as the environment size.

The ESDF method uses the information form in order to
represent the Gaussian distribution. In this representation the
conventional pair (µk,Σk), mean and covariance value for
the state Xk, is replaced with the pair (ηk = Σ−1

k µk,Λk =
Σ−1
k ), corresponding information vector and matrix.
Basing on the information form and the state augmen-

tation, the ESDF technique solves the SLAM problem by
performing the following tasks: motion update, state aug-
mentation and observation update. If we suppose that the
current state mean µk is available at each iteration (i.e. the
state recovery problem is supposed to be solved), the three
mentioned tasks have constant-time computational costs (i.e.
independent of the environment size). This is possible thanks
to the estimated state structure, defined in (3). For a detailed
proof, the reader is referred to [3].

On the other hand, the ESDF suffers from a strong
limitation about the map precision. To be more precise, it
suffers from the same limitations of every Gaussian-Filter-
based solution to SLAM. The crucial problem is that a
Gaussian-filter generally is a linear estimator. Unfortunately,
the SLAM is a strong non linear problem, i.e. the robot
motion function f in (1) and the observation function h in
(2) are strongly non linear. This leads to the use of the linear
approximation of both the robot kinematics and observations.
In this way the estimation accuracy is obviously made worse.

III. IMPROVING ESDF BY USING A NON LINEAR
OPTIMIZER

The goal of this section is to introduce new changes in
the ESDF in order to improve its performance when the non
linearities are not negligible. The basic idea to achieve this
objective is to combine the ESDF with a non linear optimizer,
as suggested by the Graph-based approach. In order to do this
it is more convenient to work with relative coordinates.

In the following we will first outline a key well known
property of the EIF, then we will describe how to use the

relative coordinates in the ESDF and finally how to combine
the ESDF with a suitable non linear optimizer.

A. Estimation process with the EIF

Let us refer to the equations (1) and (2) and let us focus on
the observation update step of the EIF. The integration of the
exteroceptive measurement zk is obtained by implementing
the following equations:

Λk = Λk +HT
k R

−1
k Hk (4)

ηk = ηk +HT
k R

−1
k (zk − h (µk) +Hkµk) (5)

where Rk is the covariance matrix of the exteroceptive
measurement error, Hk is the Jacobian of the observation
function h computed in µk. The overline indicates the values
of the quantities before the integration of the considered
observation. We introduce the two following assumptions.

Assumption 1 (Sparse Observation) The observation
function h only depends on q components of Xk and q is
independent of the size of Xk.

Assumption 2 (Easy State Recovery) It is possible to re-
cover the estimated state Xk (i.e. obtain µk) from the infor-
mation quantities (ηk,Λk) with a complexity independent of
the size of Xk.

Under the previous assumptions we obtain the following
property characterizing the complexity of the observation
update.

Property 1 (Observation Update Complexity) Under the
assumptions 1 and 2 the observation update defined by the
equations (4) and (5) can be computed with a complexity
independent of the size of Xk, i.e. the observation update
has a constant-time cost.

Proof: if the observation function h depends on q elements
of Xk, at any time step k, the integration of the information
from the corresponding measurement requires to update only
q entries of ηk and q2 entries of Λk (actually even less(
q(q+1)

2

)
because of the symmetry of Λk). Furthermore, the

overall complexity is proportional to q2. In the assumption
1 we suppose that q is independent of the size of Xk.
Therefore, if we suppose that the mean value µk is available
(assumption 2) the cost to implement the equations (4) and
(5) is independent of the size of Xk.�

In this paper we suppose that the state recovery problem
is solved, i.e. we suppose that the assumption 2 is always
satisfied. In [3] it is shown that it is possible to recover
the mean value in a constant-time but its value will be
approximated (see [3] for more details). Moreover, at any
time, the robot typically makes a limited number, q, of
relative observations to individual landmarks, i.e. a limited
number of elements of the state Xk. This means that the
assumption 1 is satisfied.

From property 1 we obtain that the ESDF observation
update task has a constant-time computational cost.



B. Using Relative Coordinates in ESDF

In this subsection we describe how to use the relative coor-
dinates in the ESDF framework. In particular, we define the
new coordinates to represent the same quantities estimated
by ESDF, i.e. the robot poses and the landmark locations.

Before introducing the new coordinates, we define the
structure of the new estimated state as it follows:

DT
k =

(
DR
k

T
DL
k

T
)

(6)

where DR
k contains all the stored robot poses, and DL

k

contains all the landmark locations.
1) Robot Pose Coordinates: Instead of defining the robot

poses in a common global reference frame, each robot pose
is defined in the frame of the robot at the previous time
step. Let us indicate with dRk the robot pose at the time
step k in the reference of the robot at the time step k − 1,
i.e. xk = xk−1 ⊕ dRk , where ⊕ is the composition operator
between two robot poses. Therefore, the portion DR

k of the
estimated state has the following structure:

DR
k

T
= (dRk

T
dRk−1

T · · · dR1
T

). (7)

Now, let us focus on the robot motion function f , defined
in (1). It describes the relation between the current robot
pose xk with the old robot pose xk−1 and the proprioceptive
measurement uk, which is available at each time step. We
can generally express this relation in the following way:

xk = f(xk−1, uk + wk) = xk−1 ⊕ (uk + wk) . (8)

We are assuming that the proprioceptive measurements
contain the necessary information to provide the shift and
the rotation of the robot occurred at every step. This is for
instance the case of the wheel encoders.

From the definition of the new coordinates of the robot
pose dRk and the equation (8) it follows that:

uk = dRk + wk. (9)

The expression in (9) allows us to consider uk as a
measurement of the estimated state. The idea is that the
proprioceptive measurement can be considered as an obser-
vation of the estimated state: uk = h̃(Dk) + wk. If this
is possible the proprioceptive measurement information can
be integrated via the observation update defined in (4) and
(5), applied to the measurement uk. Furthermore, in our
special case, the measurement function defined in (9) satisfies
the hypothesis of sparse observation (assumption 1). This
means that we can integrate the considered information with
a constant-time computational cost.

2) Landmark Coordinates: Instead of defining the coor-
dinates of each landmark in a global and unique reference
frame, the new state defines a given landmark by its coordi-
nates in the frame of the robot pose where it was observed for
the first time. Let us indicate with dLj

k the coordinates of the
landmark j in the reference attached to the robot pose at the
time step k, i.e. we suppose that the landmark j is observed at
the time step k for the first time. When the robot, at a given

time step l > k observes again this landmark, the relative
measurement can be expressed by the following expression:

zl = h(xl,mj) (10)

where mj represents the coordinates of the landmark j
in the global frame. Since we are considering a relative
measurement, the inputs of the function h in (10) can be
expressed in any reference frame (provided that it is the same
for both inputs). By choosing the frame attached to the robot
pose xk we have:

zl = h(dRk+1 ⊕ · · · ⊕ dRl , d
Lj

k ). (11)

With the exception of the loop closure, the function h
depends on a number of elements of the estimated state
which is independent of the size of the environment. To this
regard, a loop closure event is defined as follows.

Definition 1 (Loop Closure) The loop closure is the re-
observation of a landmark after a while large enough to
have at least one of the two following conditions:

• l−k i.e. the number of elements dRk+q (q = 1, . . . , l−k)
in (11), is large enough to make the execution of the
observation update not possible in real time;

• the linearization of (11) makes the estimation process
inconsistent.

In order to detect the previous two conditions we propose
the following criteria.

Regarding the first condition, we simply set a threshold
on the computational time. As soon as the time required by
the information filter to integrate a landmark re-observation
exceeds this threshold, we consider the re-observation a loop
closure.

Regarding the second condition, we propose the following
criterion. Since we base on local relative coordinates we
expect the innovation norm ‖ zk − h(µk) ‖ will be bounded
by a given threshold. Once defined σ2 as the max eigenvalue
of the innovation covariance matrix, a possible threshold
value can be 2σ. Indeed, in a linear estimation process we
know that the mentioned norm is bounded by 2σ with 0.95
likelihood. On the other hand, the non linearities could lead
the innovation norm to overtake this threshold. When the
norm is really bounded we are sure about the estimation
consistency. On the contrary, when the innovation norm
overtakes the threshold, we cannot say the same. Thus,
this overtake event can be considered as a loop closure.
Unfortunately, since we base on the information filter, the
innovation covariance matrix is not available. However, bas-
ing on the measurements covariance matrices, we can build
an approximated innovation covariance matrix whose norm
is larger than that of the real one. In this way, we have
a consistent threshold since it is larger than the theoretical
one.

When a loop is closed, new coordinates corresponding
to the re-observed landmark are introduced in the state.
They are the coordinates of the landmark in the frame of
the robot pose where the landmark is re-observed. Thus,



Fig. 1. The loop closure information. The blue discs represent the
landmarks, the triangles represent the robot poses, the edges (blue and red
dashed) represent the relative coordinates stored in the estimated state.

in this approach there are landmarks whose configuration
is defined in more than one frame. This means that there
are geometrical dependencies among state elements. These
geometrical dependencies contain the information gained at
the loop closure. We can say that by adding redundant
coordinates we just freeze the loop closure information in
these geometrical dependencies. This allows us to maintain
the estimation process of the relative coordinates consistent
and totally unaffected by the system non linearities. The
exploitation of the information at the loop closure, namely
of the previous geometrical dependencies, will be performed
separately by a suitable non linear optimizer. We point out
that this optimization can be computed only once, even if
more than one loop closure event occurs.

C. Combining ESDF with a non linear Optimizer

The basic idea consists in introducing a cost function.
Such a cost function must carry the loop closure information,
which is kept by the geometrical dependencies among the
estimated state elements. Hence, it must be based on this
geometrical information.

In order to simplify the notation, let us indicate the
estimated state Dk with r, the corresponding mean value
with r̂ and the information vector and matrix with η and Λ,
respectively. Furthermore, we indicate with P the estimate
error covariance matrix (i.e. inverse of Λ). We remark that
both η and Λ are provided by our ESDF modification
algorithm.

Let us focus on the example represented in figure 1.
When the robot re-observes a landmark a loop is closed.
The blue edges and the red dashed one represent all the
relative quantities carried by the estimated vector r. The
quantity represented by the red dashed edge can be expressed
as a function of some of the other quantities, i.e. there are
geometrical dependencies among state elements. In order to
exploit this information, we introduce a new state containing
only independent quantities. Possible choices are:

• the independent relative coordinates (e.g. the ones rep-
resented by the blue edges in figure 1);

• the global coordinates of both robot poses and land-
marks in a common frame.

Let us indicate this state with τ . As said, the quantities
in r can be expressed as a function of the components of τ .
Let us indicate this function with ψ (τ) (i.e. r = ψ (τ)).

Our goal is to evaluate τ starting from Λ and η. Let us
indicate the best evaluation of τ with τbest.
τbest minimizes the following cost function:

c(τ) = (r̂ − ψ (τ))
T
P−1 (r̂ − ψ (τ)) (12)

namely τbest = argminτ c(τ).
By expanding the expression of c(τ) and dropping the part

independent of τ , we obtain:

c(τ) = ψ (τ)
T

Λ ψ (τ)− 2ψ (τ)
T
η. (13)

This last expression is very important since it shows
that the computation of the cost function is based on the
information quantities η and Λ, namely it does not require
to invert Λ.

Our method can now be completed by optimizing the cost
function in (13) through a suitable optimization method.
Literature provides lots of methods able to find a local
minimum (or maximum) for a non linear function. We
decided to use the well known quasi-Newton.

In order to use an optimization method we need to provide
the cost function (13) computed for a given value of τ
and the corresponding gradient. To do this, we must exactly
define the meaning of the τ components and find the relation
expressed by the function ψ (τ).

For our simulation, whose results can be found in the
next section, we defined τ as the global coordinates of both
the robot poses and the landmarks in a common frame.
Therefore, the function ψ (τ) we obtained is made by inverse
compositions which return the relative coordinates, given the
absolute coordinates in τ . Moreover, we observed that such
a function is linear on the robot and landmarks location
components of τ , and non linear on the robot orientation
components. This makes the cost function in (13) quadratic
for the first mentioned portion of τ and non linear for the sec-
ond portion. Thanks to this particular property, we minimized
on the first portion through a suitable algebraical method (i.e.
by solving a system of linear equations). Then, we minimized
on the second portion through the non linear optimizer. This
algebraical manipulation reduced the dimension of the space
in which the optimization algorithm had to move, making
the optimization significantly faster.

The described optimization method is obviously able
to only find a local minimum of the cost function (13).
Actually, in our framework it would be better to find a
global minimum. Indeed, there exist situations in which
a local minimum does not represent the best solution to
the mapping problem. A deterministic method able to find
a global minimum does not exist. Nevertheless, there are
method, such as the Stochastic Gradient Descent (from now
on SGD), which attempt to find the most “popular” minimum
(i.e. the likelihood for the reached minimum to not be global
is made low as much as possible). In the Graph-based
approach some improvements of the SGD are suggested to
solve the general SLAM minimization problem.
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Fig. 2. Simulation 1: estimation results of our method before the loop
closure.
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Fig. 3. Simulation 1: ESDF estimation results before the loop closure.

As said in section I, in this paper we only take the basic
idea of the Graph-based approach. Thus, we restrict ourself
to find local minima. As the results in section IV show,
this could be enough to find a very accurate map in our
framework since the optimization process starts from the
pre-elaborated data returned by the filtering process. On
the contrary, in the Graph-based approach the optimization
directly starts from the measurements.

However, our future works will be developed in order to
apply the SGD in our framework. In this way, we will give
a more general solution to our problem.

IV. RESULTS

In order to evaluate the performances of the proposed
method, we performed many simulations. We considered a
conventional scenario defined by a few parameters which
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Fig. 4. Simulation 1: estimation results of our method after the loop closure.
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Fig. 5. Simulation 1: ESDF estimation results after the loop closure.

regard the robot perception and the environment properties.
In the following, we will first define this scenario clearly
pointing out the meaning of some simulation parameters.
Then, we will provide the results of a few simulations in
which we analyze the behavior of our method. Furthermore,
we will compare the performances of our approach with
those of the ESDF one.

All our simulations are implemented in Matlab and tested
on a computer with 1 Intel Pentium CPU M 1.70GHz,
512MB of memory.

A. Simulated scenario

In our simulations we consider a two-wheels robot moving
in a 110mx110m rectangular area in which many point
landmarks are randomly distributed. Let us indicate the
average landmark density with ρL, the robot average speed
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Fig. 6. Simulation 2: estimation results of our method before the loop
closure.

−50 −40 −30 −20 −10 0 10 20 30 40 50

−40

−30

−20

−10

0

10

20

30

40

[m]

[m
]

 

 
True  trajectory
Estimated trajectory
True landmarks
Estimated landmarks

Fig. 7. Simulation 2: ESDF estimation results before the loop closure.

with v, and the distance traveled by the robot with d. The
data associations ere supposed to be given. We consider a
robot equipped with wheel encoders which provide the pro-
prioceptive measurements. We base on the Chong-Kleeman
([2]) error model. According to this model, the translation
of the right/left wheel as estimated by the odometry sensors
is generated as a Gaussian random quantity

satisfying the following relations:

δρR/L = δρaR/LδR/L + νR/L, (14)

νR/L ∼ N(0,K|δρaR/L|).

In other words, both δρR and δρL are assumed Gaussian
random variables, whose mean values are given by the actual
values (respectively, δρaR and δρaL), and whose variance
also increases linearly with the travelled distance. In our
simulation we set K = 0.00001m, which corresponds to
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Fig. 8. Simulation 2: estimation results of our method after the loop closure.
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Fig. 9. Simulation 2: ESDF estimation results after the loop closure.

an indoor environment [7]. Finally, the frequency is 100Hz.
The simulated exteroceptive sensor provides bearings and

ranges of the landmarks whose distance does not exceed
12m. Furthermore, the sensor angle of view is 360deg.
Both the bearings and the distances are generated as Gaussian
quantities with variances equal to σ2

R and σ2
B , respectively.

The frequency is 0.2Hz.

B. Performance Evaluation

Figs 2-5 show the results provided by a given simulation in
which the robot closes a loop in counter clockwise direction.
Let us point out that the loop closure does not consist of
the trajectory closure but it consists of the re-observation of
landmarks located close to the starting point.

We implemented both our method and the ESDF one. As
said in section III, the minimization is carried out through
a quasi-Newton method. We set σB = 1deg, σR = 1cm,



ρL = 0.02m−2, v = 1ms−1, d = 180m. The simulation
time is Ts = 180s.

Figs 2 and 3 show the results obtained before the loop
closure. In each figure, we represent the true robot trajectory
and the true landmark locations (ground truth) by a solid
blue line and cross blue markers, respectively. Moreover, the
estimated trajectory and landmark locations are represented
by a dash-dotted red line and red x-markers, respectively.

In order to provide quantitative results, we consider the
error on the estimated map by computing for all the land-
marks the distance between the estimated location and the
corresponding true location. Then, the mean value on all the
landmarks is taken. We refer to this mean value as the map
error (Eblm before the loop closure and Ealm after the loop
closure).

The behavior of our estimation process and that of the
ESDF one are very similar. However, the map errors are
Eblm = 1.30m for our method and Eblm = 2.02m for the
ESDF. Therefore, our method shows a better behavior also
before the loop closure.

Figs 4 and 5 show the results after the loop closure.
The correction we obtained through the non linear optimizer
clearly outperforms the one computed by the ESDF method.
This is confirmed by the map errors: Ealm = 0.15m for our
method and Ealm = 1.01m for the ESDF.

The total computation time needed for the estimation
process is Tc = 16.20s for our method (5.45s for the
filtering process and 10.75s for the optimization) and Tc =
39.67s for the ESDF.

Figs 6-9 show the results provided by a second simulation
in which the robot closes a loop in counter clockwise
direction and than goes on re-traversing a region for a long
time. The parameters of this simulation are: σB = 1deg,
σR = 1cm, ρL = 0.02m−2, v = 1.2ms−1, d = 325m. The
simulation time is Ts = 270s.

Figs 6 and 7 show the two methods before exploiting the
loop closure information. Concerning our method, as said
in section III, a loop closure does not necessary activate the
optimization . Indeed, in this case the estimation process goes
on considering the re-observed landmarks as new landmarks.
In figure 6 these phantom landmarks are represented by star
red markers. As the figures clearly show, our estimation
process outperforms the ESDF one. This is confirmed by the
map errors: Eblm = 3.17m for our method and Eblm = 3.91m
for the ESDF.

Figure 8 shows the results obtained through the non linear
optimizer which is activated only once, after a long time from
the first loop closure. Moreover, figure 9 shows the results
of the correction computed by the ESDF technique after the
loop closure. The comparison of these two last figures clearly
shows the success of our hybrid approach in improving the
ESDF performances. This is confirmed by the map errors:
Ealm = 0.38m for our method and Ealm = 0.58m for the
ESDF.

The total computation time needed for the estimation
process is Tc = 46.36s for our method (13.67s for the
filtering process and 32.70s for the optimization) and Tc =

91.44s for the ESDF.

V. CONCLUSIONS

In this paper we considered the SLAM problem. Currently,
the community has to solve two contrasting problems, which
are often faced with a trade-off: the map precision and the
computational requirement for real-time/real-world imple-
mentations. In order to propose a SLAM solution able to face
with both the problems, we decided to combine two different
approaches: the Filter-based approach and the Graph-based
approach ([8],[4]).

In particular, we considered ESDF technique ([3]) which
makes possible a real-time/real-world implementation for any
kind of environment. The only drawback of this technique
is the use of the linear approximation which could become
not consistent when the environment is large enough.

On the contrary, in the Graph-based approach, SLAM is
solved as a non linear optimization problem. This leads to
more accurate results.

Therefore, we proposed a method able to combine a suit-
able modification of the ESDF with a non linear optimizer.
This solution allows us to use the modified ESDF when the
non linearities are negligible and to switch to the optimizer
when the non linearities are not negligible.

The results provided in section IV show how our hybrid
approach succeeds in outperforming the ESDF in terms of
map precision.
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