N

N
N

HAL

open science

Specification and Verification of a Steam-Boiler with
Signal-Coq

Mickael Kerboeuf, David Nowak, Jean-Pierre Talpin

» To cite this version:

Mickael Kerboeuf, David Nowak, Jean-Pierre Talpin. Specification and Verification of a Steam-Boiler
with Signal-Coq. 13th International Conference on Theorem Proving in Higher Order Logics (TPHOLs
2000), Aug 2000, Portland, Oregon, United States. pp.356-371, 10.1007/3-540-44659-1_22 .

00544631

HAL Id: hal-00544631
https://hal.science/hal-00544631
Submitted on 8 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-

https://hal.science/hal-00544631
https://hal.archives-ouvertes.fr

Specification and Verification of a Steam-Boiler with Signal-Coq

Mickaél Kerbceuf!', David Nowak?, and Jean-Pierre Talpin®

!INRIA-Rennes — Irisa, Campus de Beaulieu, Rennes, France
2Oxford University Computing Laboratory, Wolfson Building, Oxford, England

Abstract Over the last decade, the increasing demand for the validation
of safety critical systems has led to the development of domain-specific
programming languages (e.g. synchronous languages) and automatic ve-
rification tools (e.g. model checkers). Conventionally, the verification of
a reactive system is implemented by specifying a discrete model of the
system (i.e. a finite-state machine) and then checking this model against
temporal properties (e.g. using an automata-based tool). We investigate
the use of a synchronous programming language, SIGNAL, and of a proof
assistant, CoQ, for the specification and the verification of co-inductive
properties of the well-known steam-boiler problem.

By way of this large-scale case-study, the SIGNAL-Co0Q formal approach,
i.e. the combined use of SIGNAL and Co0Q, is demonstrated to be a well-
suited and practical approach for the validation of reactive systems. In-
deed, the deterministic model of concurrency of SiGNAL, for specifying
systems, together with the unparalleled expressive power of the CoqQ
proof assistant, for verifying properties, enables to disregard any com-
promise incurred by any limitation of either the specification and the
verification tools.

Keywords: synchronous programming, theorem proving, the steam-
boiler problem.

1 Introduction

In recent years, the verification of safety critical systems has become an area
of increasing importance for the development of softwares in sensitive fields:
medicine, telecommunication, transportation, energy.

The notion of reactive system has emerged to focus on the issues related
to the control of interaction and of response-time in mission-critical systems.
This has led to the development of specific programming languages and related
verification tools for reactive systems.

Conventionally, the verification of a reactive system is implemented by, first,
elaborating a discrete model of the system (i.e. an approximation of its behaviour
by a finite-state machine) specified in a dedicated language (e.g. a synchronous
programming language) and, then, by checking a property against the model
(i.e. model checking).

Synchronous languages (such as ESTEREL [5], LUSTRE [9], SIGNAL [4], STATE-
CHARTS [10]) have proved to be well adapted to the verification of safety and

liveness properties of reactive systems. For instance, model checking has been
used at an industrial scale on SIGNAL programs to check properties such as
liveness, invariance, reachability and attractivity.

Whereas model checking efficiently decides discrete properties of finite state
systems, the use of formal proof systems enables to prove numerical and para-
meterized properties about infinite state systems. Using a proof system, we can
not only prove the safety and liveness of a reactive system but also its correctness
and completeness.

Such a proof is of course not automatic and requires interaction with he
user to direct its strategy. The prover can nonetheless automate he most tedious
and mechanical parts of the proof. In general, formal roofs of programs are
difficult and time-consuming. In the very case of modeling a reactive system using
a declarative synchronous language, however, this difficulty is milded thanks
to the elegant stylistic combination of declarative programming and relational
modeling.

We investigate the combined use of the synchronous language SIGNAL and of
the proof assistant CoqQ for specifying and verifying properties of a large-scale
case study, namely, the steam-boiler problem.

2 The Signal-Coq Formal Approach

Synchronous languages assume that computation takes no time (this is the so-
called “synchronous hypothesis’). Actually, this means that the duration of com-
putations is negligible in comparison to the time of reaction of the system. This
synchronous hypothesis is particularly well adapted to verify safety and some
forms of liveness properties. SIGNAL is a synchronous, declarative, data-flow ori-
ented programming language. It is built around a simple paradigm: a process is
a system of equations on signals; and a minimal kernel of primitive operators.
A signal represents an infinite flow of data. At every instant, it can be absent
or present with a value. The instants when values are present are determined by
its associated clock. Interested reader may find more about SIGNAL in [4].

Coq [7] is a proof assistant for higher-order logic. It allows the development
of computer programs that are consistent with their formal specification. The
logical language used in COQ is a variety of type theory, the Calculus of Inductive
Constructions [15]. It has been extended with co-inductive types (types defined
as greatest fixed points rather than as least fixed points [8]) to handle infinite
objects, It is thus well suited to represent signals.

In [14], we have introduced a co-inductive semantics for the kernel of the
language SIGNAL and formalized it in the proof assistant CoQ. In this section,
we summarize the CoqQ definitions given for the primitive operators of SIGNAL.
Interested reader may find the generalization to the complete language in [13].

A signal X is defined as a stream of L and values v. Let D be a set, of values.
The set of signals Sp is the largest set such that:

Sp={LX|XeSp}U{vX|veD, X eSp}

Instantaneous Relation. The relation R} is used in SIGNAL to specify an in-
stantaneous relation between n signals. At each instant, these signals satisfy the
predicate P. In CoQ, according to the Curry-Howard isomorphism, a pair proof-
specification is represented by a pair term-type. The type of non-well-founded
proofs of R is introduced as a co-inductive type. Co-induction is needed to deal
with infinite signals. For instance, R% is introduced as follows:

CoInductive Relation2 [U,V:Set; P:U->V->Prop]
(Signal U)->(Signal V)->Prop :=
relation2_a: (X:(Signal U))(Y:(Signal V))
(Relation2 P X Y)->
(Relation2 P (Cons (absent U) X) (Cons (absent V) Y))
| relation2_p: (X:(Signal U)) (Y:(Signal V)) (u:U) (v:V)
(P u v)->(Relation2 P X Y)->
(Relation2 P (Cons (present u) X) (Cons (present v) Y)).

Down-Sampling. The SIGNAL equation Z := X When Y states that the signal
Z down-samples X when X is present and when Y is present with the value
true. When is the least fixpoint of the following continuous functional:

(LX,LY)— L.f(X)Y)

(L.X,0Y) — L.f(X,Y)

FWhen(f) =def (v.X,LY)— L.f(X,Y)
(v.X, false.Y) — L.f(X,Y)

(v.X,true.Y) — v.f(X,Y)

Deterministic Merge. The SIGNAL equation Z := X Default Y states that X
and Y are merged in Z with the priority to X. Default is the least fixpoint of
the following continuous functional:

(LX,LY)— Lf(X,Y)

B (LX,0Y) — v.f(X,Y)
FDefautt(f) =aer § (X1 v) — w.f(X, V)
(u.X,0.Y) — u.f(X,Y)

Delay. The SIGNAL function Pre is used to access to the previous value of a
signal. Pre is the least fixpoint of the following continuous functional:

(LX) — L.f(u, X)
FPre(f) —def { (u,’U-X) — ’u,f(U,X)

Using the previously defined denotations of primitive processes, we can derive
the denotations of the derived operators of SIGNAL. The parallel composition is
denoted by the logical and of the underlying logic and the introduction of local
signals is denoted by an existential quantifier.

This co-inductive trace semantics of SIGNAL has been implemented with the
proof assistant CoQ (see [12] for details). Many lemmas are proved to ease the
correctness proof of a reactive system specified with SIGNAL. The case study
introduced in this paper confirms that our co-inductive approach is a natural,
simple and efficient way to prove correctness of reactive systems.

3 Steam-Boiler Control Specification Problem

In order to compare the strengths and weaknesses of different design formalisms
for reactive systems, the steam-boiler case study has been suggested by J.-R.
Abrial, E. Bérger and H. Langmaack. In this section, we briefly recall its original
specification (see [2] for more details), and the additional precisions we bring
(see [11] for more details).

3.1 Physical Environment

The physical environment is composed of several units (Fig. 1). Each one is
characterized by physical constants and some of them provide data.

W : maximal outcome of steam
U; : maximum gradient of increase
U, maximum gradient of decrease

| steam measurement device
| provided data: outcome of steam

maximal capacity: C
:|:H:’: minimal limit: M,
maximal limit: M,

maximal normal: N,
pumps
capacity: P M
provided data: status
M

pump controllers
provided data: flow

| water level measurement device
| provided data: quantity of water

Figurel. Physical environment

3.2 Behaviour of the Steam-Boiler

The program has to control the level of water in the steam-boiler. This quantity
should not be too low or too high. Otherwise, the system might be affected.
The program also has to manage the possible failure of physical units. For that
purpose, at every instant, it takes into account the global state of the physical
environment which is denoted by an operation mode. The program follows a
cycle which takes place each five seconds. A cycle consists of the reception of

messages coming from the units, the analysis of the received informations, and
the transmission of messages to the units. According to the operation mode, the
program decides at each cycle if the system must stop or not. If not, it activates
or deactivates pumps in order to keep the level of water in the middle of the
steam-boiler.

The specification also gives additional information regarding the physical be-
haviour of the steam-boiler. Namely, new values, called adjusted and calculated
values, are proposed. They enable a sustained control of the system, by providing
a vision of its dynamic, when a measurement device is defective.

At each cycle, adjusted variables contain either real measurements or ex-
trapolated values which are calculated during the preceding cycle. An adjusted
variable contains a real measurement when the corresponding device works prop-
erly. Otherwise, it contains an extrapolated value.

Calculated variables provide, at each cycle, extrapolated values of measure-
ments for the following cycle. They contain the extreme values that are possibly
reachable from the current adjusted values.

3.3 Precisions and Decisions about the Original Specification

Because of the flexibility with which the original specification of the steam-boiler
can be interpreted, we first need to make some details more precise, on the phys-
ical behaviour of the steam-boiler, and on the logical behaviour of its implemen-
tation in SIGNAL. Different items are concerned by our decisions. Namely:

Distinction between pump failures and pump controller failures. We cannot rely
on the fact that controllers always provide a reliable information about their
associated pumps. Indeed, according to the specification, failures of controllers
have to be taken into account and thus, we have to consider them as being
fallible. Consequently, how could pump failures and pump controller failures be
distinguished ?

We first could try to detect the real throughput of each pump with an analysis
of water-level variations in the boiler. But such a method presupposes a too
restrictive set of conditions about the physical characteristics of pumps and
their controllers. Moreover, it actually makes controllers useless.

We have therefore chosen to determinate what the real state of each pump
and controller should be, for each possible combination of values. This solution,
which seems to be the most reasonable and intuitive one, was proposed in [6] (a
solution of the steam-boiler problem in LUSTRE).

Message occurrences. In order to have more flexibility for controlling the steam-
boiler, each pump and each controller is connected to the main program by its
own communication line. Thus, each pump can be managed simultaneously and
independently.

Moreover, some incoming messages from pumps essential are not always rele-
vant for the system at every instant. For example, a pump should not necessarily
provide its state if it did not receive a command during the preceding cycle. But

it can still provide its state at each cycle as specified in the original text. Only
the presence of compulsory messages will be checked.

In addition to these messages, we introduce a new message H. This message
is a pure signal and stands for the main clock of the program. All involved signals
in the program have a clock which is a sub-clock of H. This signal is supposed
to be reliable. It enables to detect the absence of compulsory messages.

Activation, deactivation of the pumps, and stop of the system. The decisions
concerning the activation or the deactivation of the pumps, and the decision of
stopping the system, are made according to the adjusted and calculated values.
At first, a specific decision is made for each pair of extremum level, adjusted and
calculated. Then, the program globally decides if the system shall stop or not.
If not, the program decides how the level shall move (up or down), if necessary,
and by taking into account each specific decision.

We calculate the best quantity of water to be provided, rather than just
opening or closing all the pumps. Thus, at each cycle, the program calculates
the optimal combination of open and closed pumps, in order to have an optimal
progression of the level of water toward the middle of the boiler, taking into
account failures of pumps and controllers.

3.4 Design and Architecture

The steam-boiler controller in SIGNAL is composed of four main processes (fig. 2).

— The 10 MANAGER process detects transmission failures. It implements a
filter that guarantees the presence of the outgoing data, necessary to the
processing. This process also provides a signal which announces the manual
stop of the system.

— The FAILURE _MANAGER process is in charge of managing the dialogue be-
tween the physical units and the program regarding failure detections and
repair indications. It detects failures and provides a global vision of the state
of the physical system.

— The DYNAMIC process directly implements the equations suggested in the
specification according to the detected failures and the values provided by
the measurement devices.

— The CONTROL process is the main program. Starting from the global vision
of the state of the system, and from the adjusted measurements provided by
the preceding process, it manages the operation modes, makes the decision
to stop the system or not, and finally delivers activation and deactivation
commands to the pumps.

STOP

FAILURE_MANAGER

H | 10_MANAGER | L pynamic CONTROL
MOD|
FEADY, PROG_READY
VALVE_ACTION
ALVE J OP_MODE

MANUAL_STOP
TRANS_FAILURE

Figure2. SIGNAL processes of the steam-boiler controller

3.5 Motivation for the choice of this case study

This case study is well adapted to our aim, i.e. to show the interest of the
S1GNAL-CoQ formal approach. Indeed, the program has to handle several phys-
ical parameters and it may use non linear numerical values (e.g. extrapolated
values of the level which take into account gradients of increase and decrease of
the steam throughput, i.e. typically non linear numerical terms). Thus, safety
properties cannot be simply and directly proved with a standard model checker.

4 Verification of the Steam-Boiler with Coq

Proofs of program properties are built on the co-inductive trace semantics of
SIGNAL which has been implemented with CoqQ [13].

This axiomatization is a set of CoqQ libraries which gathers the modeling of
signals, the modeling of the primitives of the kernel language, and a number of
functions, predicates and theorems about signals. These C0Q libraries, as well
as the proofs of the properties that are stated in the rest of this article, are
available at [12].

4.1 Safety obligations
A global safety property can be informally stated in the following way:

When a stop condition is satisfied, the system stops indeed, i.e. the pro-
gram enters the emergency stop mode.

This statement implies several sub-properties. Our aim is to emphasize the in-
terest of using CoQ for their verification. Thus, in the sequel of this article, we
concentrate our work especially on safety sub-properties that cannot be directly
and simply proved by a standard model checker.

Since four stop conditions are specified, the global safety property has to be
proved for each one:

1. Manual stop. The program received consecutively the required number of
sTOP messages from the user for manually stopping the system.

2. Crritical level. The system is in danger because the water level is either too
low or too high.

3. Transmission failure. The program detected a transmission failure.

4. Initialization. The water level measurement device is defective in the initial-
ization mode.

In our SIGNAL specification, these situations are associated with critical mes-
sages. When one of these signals carries a value, the corresponding condition
holds and so, the program must stop.

First of all, the expected relations between these critical messages and the
operation mode have to be checked. Then, we have to verify that each critical
message is actually present when the condition to which it corresponds holds.
For that purpose, the implied sub-properties are divided into two main classes:

— A first class gathers properties that specify the correct behaviour of critical
messages, regarding the critical situations to which they correspond.

— The second class gathers properties that justify some simplifications or spec-
ify the use of some internal signals in the processing.

We now only consider sub-properties coming from Manual Stop and Critical
level because they involve parameters and non linear numerical values, unlike
Transmission failure and Initialization. So, they are convincing examples to il-
lustrate our approach. Moreover, Critical level gathers essential properties of our
solution.

4.2 Manual Stop

The problem of manual stop is generalized, using a parameter called nb_stop,
which stands for the number of STOP messages required for manually stopping
the program, instead of the fixed value “3” initially suggested in the specification.

Since we are using a proof assistant, we do not need to instantiate this param-
eter with a particular value. First, A predicate that denotes the right behaviour
of a counter of the successive synchronous instants between two signals is co-
inductively defined in CoQ. Then, we prove that our SIGNAL process provides
indeed a signal (called CPT) that behaves like a counter of the successive syn-
chronous instants between the sTOP signal (well called ... STOP) and the main
clock (called H).

Instead of using a co-inductive predicate that denotes the expected behaviour
of CPT, we define a co-recursive function that specifies CPT. This function is
the least fixpoint of the following continuous functional:

F: (N x Fougay X Fovogey = Favogen)

— (N X Fougey X Frvoey = Favuiip)
(n,Cons(L, X),Cons(L,Y)) — Cons(L, f(n,X,Y))
(n,Cons(x, X),Cons(L,Y)) — Cons(0, f(0,X,Y))
(n,Cons(L, X),Cons(y,Y)) +— Cons(0, f(0,X,Y))
(n,Cons(z, X),Cons(y,Y)) + Cons(n+1, f(n+1,X,Y))

fr—

Let cssm, the least fixpoint of F'. The CoqQ definition of cssm is the following;:

CoFixpoint cssm :
(U,V:Set)nat->(Signal U)->(Signal V)->(Signal nat) :=
[U,V:Set] [n:nat] [X: (Signal U)][Y:(Signal V)]Cases X Y of

(Cons absent X’) (Cons absent Y?’)
=> (Cons (absent nat) (cssmn X’ Y?))

| (Cons (present _) X’) (Cons absent Y’)
=> (Cons (present 0) (cssm 0 X’ Y?))

| (Cons absent X’) (Cons (present _) Y?)
=> (Cons (present 0) (cssm 0 X’ Y?))

| (Cons (present _) X’) (Cons (present _) Y’)
=> (Cons (present (S n)) (cssm (S n) X’ Y’))
end.

Using this function, the predicate that denotes the expected behaviour of CPT
can now be stated:

CPT = ¢ssm(0,STOP, H)

We open in COQ a section in which hypotheses are stated. Those hypotheses
correspond to the SIGNAL equations which are concerned by the property to be
proved:

q

| CPT ~=H

| CPT := ((ZCPT+1) when STOP) default (0 when H)
I

I

ZCPT := CPT$1 init O
MANUAL_STOP := when (CPT=nb_stop)

D)

Those equations use constant signals. We first have to define them explicitly.
Then, we have to state the hypothesis regarding H, the main clock of the pro-
gram. In particular, the clock of STOP is a sub-clock of H.

This yields to the following equations:

0 | STOP ~< H

1 | CPT ~= H

2 | Cst0 := 0

3| Cst0 "= H

4 | CPT := ((ZCPT+1) when STOP) default (CstO when H)
5 | ZCPT := CPT$1 init O

6 | A := (CPT=nb_stop)

7 | Csttrue := true

8 | Csttrue "= A

9 | MANUAL_STOP := Csttrue when A

Using the co-inductive axiomatization of SIGNAL in Coq [13], this system of
equations is translated into the following CoQ hypotheses:

Variable nb_stop : nat.

Variables CPT,ZCPT,CstO : (Signal nat).
Variables H,STOP,MANUEL_STOP,Csttrue : Clock.
Variable A : (Signal bool).

Hypothesis Equation0 : (OrderClock STOP H).
Hypothesis Equationl : (Synchro CPT H).
Hypothesis Equation2 : (Constant 0 CstO).
Hypothesis Equation3 : (Synchro Cst0 H).
Hypothesis Equation4 :
CPT = (SignalAA_to_SignalA
(default (when (fonctionl [n:nat](plus n (S 0)) ZCPT)
(Clock_to_Signal_bool STOP))
(when CstO
(Clock_to_Signal_bool H)))).
Hypothesis Equationb : ZCPT = (pre 0 CPT).
Hypothesis Equation6 : A = (fonctionl [n:nat](beq_nat n nb_stop) CPT).
Hypothesis Equation7 : (Constant tt Csttrue).
Hypothesis Equation8 : (Synchro Csttrue A).
Hypothesis Equation9 : MANUAL_STOP = (when Csttrue A).

In this environment, we aim at proving the following lemma:
Lemma 11 : CPT = (cssm O H STOP).

This property is too general for a model-checker because of the involved nb_stop
parameter. It is also too restrictive for an inductive proof because of the instan-
tiated parameters (values “0”) involved in the cssm predicate and in the SIGNAL
pre term. A more general property must be stated with non instantiated param-
eters. Additional hypotheses about these formal parameters can also be stated.
For that purpose, the fifth SIGNAL equation of the previous specification is pre-
ferred the following, more general, one:

Variable ni : nat.
Hypothesis Equation5 : ZCPT = (pre ni CPT).

Then, the following lemma can be proved:
Lemma 11b : CPT = (cssm ni H STOP).

In particular, the initial property is verified. This is the first part of the property.
Using the same method, we also prove that MANUAL STOP provides a value
when CPT reaches the nb_stop value. Finally, we prove that the program enters
the emergency stop mode in this case.

An important feature of the method outlined in this section is that it does not
at all impact the programming style because of verification constraints. SIGNAL
processes are naturally translated into CoQ objects (without, e.g., any variable
instantiation).

4.3 Critical water level.

The property concerning the water level can be divided into several sub-properties
which correspond to the different cases of critical level. Those properties involve
parameters like the boiler capacity, the extremal limits of the level, or the nom-
inal capacity of each pump. Moreover, the processing depends on the adjusted
values. Thus, those properties are parameterized and concern non linear numer-
ical values. It is therefore not possible to verify them simply and directly with a
standard model checker.

At first, a set of preliminary lemmas that justify some simplifications in
the program have to be proved. For instance, the following statements allow to
eliminate some cases in the processing:

vVt e N, ger(t) < qea(t) (1)
Vt €N, 0 <qai(t) < qax(t) <C (2)

where ga;(t) and gas(t) (resp. qci(t) and gea(t)) stand for the minimal and
maximal adjusted (resp. calculated) values of the level at instant ¢, and where
C' stands for the maximal capacity of the boiler. Indeed, the process in charge of
making a decision about activations of the pumps relies on a list of the different
possible interleavings of extrapolated and adjusted levels. But some of them are
omitted because of the statements (1) and (2). So they have to be proved.

The adjusted values ga; (t) and gaz(t) depend on calculated values geq (t) and
gca(t), which are defined as follows:

1

Vt € N* gei (t) = qar (t — 1) — vas(t — 1) At — §U1At2 +pai(t — 1)At (3)
1

Vt € N*, gea(t) = qas(t — 1) —vay (t — 1) At + §U2At2 + pasx(t — 1) At (4)

where va; (t) and vas(t) stand for the adjusted values of the outcome of steam,
and pay (t) and pas(t) stand for the adjusted values of the cumulated throughput

of the pumps. The parameters U; and U, denote the maximum gradients of
increase and decrease of the outcome of steam.

In order to prove a property equivalent to the statement (1) with a model
checker, the processing would have to be changed radically. For instance, the
interval of possible values could be divided into several sub-levels and then, new
boolean properties about the reachability of those levels could be defined. And
in every case, all parameters like Uy, Us or C should be instantiated. With our
SiGNAL-C0Q approach, we do not consider those verification problems during
the design of the program. Calculated values are textually stated (cf. (3) and (4))
in SIGNAL:

| QC1 ~= QC2

| QC1 := QA1 - (VA2%Dt) - (0.5*%U1#Dt*Dt) + (PA1xDt)
| QC2 := QA2 - (VA1xDt) + (0.5%U2xDt*Dt) + (PA2*Dt)
| VC1 ~= VvC2

| VC1 := VA1-(U2%Dt)

| VC2 := VA2+(U1%Dt)

Note that the calculated values concern the following cycle. The definition of
adjusted values are naturally given from the calculated values of the preceding
cycle:

ZQC2 := QC2$1 init C

ZQC1 := QC1$1 init 0.0

QA2 := (Q when J_OK) default ZQC2
QA1 := (Q when J_0K) default ZQC1
ZVC2 := VC2$1 init 0.0

ZVC1 := VC1$1 init 0.0

VA2 := (V when U_OK) default ZVC2
VA1 := (V when U_OK) default ZVC1

Signals Q and V carry the values coming from the measurement devices. Signals
J_OK and U_OK provide at each cycle a boolean information about the physi-
cal state of the measurement devices. We just have to translate these SIGNAL
equations into CoQ hypotheses and we prove the properties (1) and (2) using co-
induction. CoQ offers a natural syntax for manipulating such numerical objects.
For instance, consider the following statement:

(Vr,y e Z)(0<z)=> (0<y) = (0<z+y)
Using the ZArith library of CoQ, the definition of this statement is the following:
(x,y:Z) (Z1le ZERO x)->(Z1t ZERO y) -> (Z1t ZERO (Zplus x y))

Meanwhile, the ZArith library also provides syntactical facilities. Thus, we have
an equivalent way to define this statement:

(x,y:Z)¢0 <= x>0 < y*->‘0 < x+y°¢

Such a syntax is more intuitive and so, proving equations or inequations on 7Z
in CoQ is much easier.

The following first lemma is very simple to prove:

Lemma I_N : (a,b,c,d,e:Z) ‘a <= b -> ‘c <= 4¢ >
‘0 < 2%(b-Dt*c+Dt*e)+U2x(Dt*Dt) - 2% (a-Dtxd+Dtxe)-Ul*x(Dt*Dt) .

And then it is used to prove the statement (1):

CoInductive Globally2 [U,V:Set;P:(Stream U)->(Stream V)->Prop]
(Stream U)->(Stream V)->Prop :=
globally2 : (X:(Stream U))(Y:(Stream V))(P X Y)
->(Globally2 P (tl X) (tl Y))->(Globally2 P X Y).

This CoQ statement defines a co-inductive predicate which implements
the “00” connector for temporal logic. Indeed, in our co-inductive seman-
tics of SIGNAL, we cannot handle explicit temporal indexes (see [13] for
more details).

Definition 1tSt := [X:(Signal Z)][Y:(Signal Z)]
(x,y:Z2) (hd X)=(present x)->(hd Y)=(present y)->(Z1lt x y).

This statement defines the predicate that will be applied to the Globally2
connector.

Theorem QA1_1t_QA2 : (Globally2 1tSt QC1 QC2).

This statement is equivalent to the statement (1)

The decision concerning the stop of the system because of a critical level is
founded on the adjusted levels. Using the preceding theorem, it is very simple
to prove the following property:

YVt € N,qgay(t) < q(t) < qas(t) (5)

where ¢ stands for the real level in the boiler. It means that even if a measurement
device is defective, the program always knows the interval of possible current
levels. Moreover, the program knows the interval of possibly reachable levels for
the next cycle. Regarding these intervals, we have to check that the level is never
likely to reach a critical value. For instance we have:

Vt € N, (gay(t) < My A qeq (t) < My) = Critical _Level(t) =T (6)

It means that the program will stop (the critical message Critical _Level carries a
value T') if the minimal next level is below M; (which is the minimal level under
which the system is in danger after one cycle) while the current level is possibly
already below M;.

We also prove properties like the following one:

Vt € N, (ger (t) < My A gea(t) > Ma) = Critical _Level(t) =T (7)

It means that if the interval of possibly reachable levels for the next cycle is too
wide for making a safe decision, the program stops.

These examples emphasize an important advantage of our approach. The
statements of the expected safety properties are especially clear. Moreover, the
programmer does not need to have in mind what kind of property checkable
or not during the design phase. Thus, specifying, programming and verifying a
problem are more natural and intuitive operations.

Unlike a model checker, a proof assistant, and more generally a theorem
prover cannot provide a counter-example when the check fails. But CoQ gives
a strong logical framework in which the user acquires a great confidence in
the conformity of the program to the specification. Moreover, if the program is
erroneous, the proof progression will stop on an impossible sub-goal which is
often explicit enough to understand the mistake.

Nevertheless, theorem proving is often less efficient and often more tedious
than model checking. Then, even if we could check all properties with only a
proof assistant like CoQ, the optimal solution for verification consists in using
a model checker as much as possible and in using a theorem prover when a
property is out of the scope of the model checker.

5 Related Works

The steam-boiler problem has become a classical case study for testing and
comparing formal methods. It has been entirely specified and proved with the
B tool approach ([1]). In [6], a steam-boiler has been implemented in the syn-
chronous data-flow language LUSTRE (quite similar to SIGNAL) and verified with
its model-checker LESAR that allows verification of safety properties. This ap-
proach enables to prove boolean safety properties but cannot deal with numerical
and parameterized properties. In [3], the semantics of LUSTRE has been formal-
ized in the theorem prover PV'S but co-induction is not used to represent infinite
signals. The solution proposed in the LUSTRE-PVS approach consists of viewing
signals as infinite sequences. In this setting, a signal is represented by a function
which associates any instant i (a natural number) with the value v of the sig-
nal (if it is present) or with L (if it is absent). The declarative and equational
style of SIGNAL is similar to LUSTRE. However, LUSTRE programs always have
a unique reference of logical time: they are endochronous. SIGNAL specifications
differ from LUSTRE programs in that they can be ezochronous (i.e. they can have
many references of logical time). For instance, the process x:=1 | y:=2 does not
constrain the clocks of x and y to be equal. Hence, had we used functions over

infinite sequences to represent signals, we would have faced the burden of having
to manipulate several, possibly unrelated, indexes of time 3.

6 Conclusion

The axiomatization of the trace semantics of SIGNAL within the proof assistant
CoQ offers a novel approach for the validation of reactive systems.

We demonstrate the benefits of this formal approach for specifying and ver-
ifying properties of reactive systems by considering a large-scale case study, the
steam-boiler controller problem.

Disregarding any compromise between the modeling tools and the modeled
system, we augmented the original specification of the steam-boiler of [2] with a
more precise description of the physical environment.

This case study shows to be well adapted to the evaluation of the SIGNAL-
CoqQ formal approach, allowing the modeling of parameterized strong safety
property with non-linear numerical constraints. In spite of the strong implication
for the user during the proof-checking process, it appears that the use of a proof
assistant like CoQ has many advantages.

In addition to the facts that the approach alleviates any limitation in the
expression of properties, it makes it possible to acquire a strong confidence in
the system being specified. Moreover, it is noticeable that experiences at using
CoqQ allowed to develop libraries which improved the efficiency of latter proofs.

However, this approach is interesting only with properties that cannot be
directly proved by a model checker. It is thus advisable to use a proof assistant
in complement to more classical approaches to check these particular (e.g. pa-
rameterized, co-inductive, non-linear) properties. In conclusion, the integration
of model-checking and theorem-proving within a unified framework seems to be
a promising prospect.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1995.

2. J.-R. Abrial, E. Borger, and H. Langmaack. Formal Methods for Industrial Appli-
cations: Specifying and Programming the Steam Boiler Control. Lecture Notes in
Computer Science, 1165, October 1996.

3. S. Bensalem, P. Caspi, and C. Parent-Vigouroux. Handling Data-flow Programs
in PVS. Research report (draft), Verimag, May 1996.

4. A. Benveniste and P. Le Guernic. Synchronous Programming with Events and
Relations: the SIGNAL Language and its Semantics. Science of Computer Pro-
gramming, 16(2):103-149, 1991.

5. G. Berry and G. Gonthier. The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming, 19:87—
152, 1992.

6. T. Cattel and G. Duval. The Steam-Boiler Problem in LUSTRE. Lecture Notes in
Computer Science, 1165:149-164, 1996.

10.

11.

12.

13.

14.

15.

B. Barras et al. The Coq Proof Assistant Reference Manual - Version 6.2. INRIA,
Rocquencourt, May 1998.

E Giménez. Un Calcul de Constructions Infinies et son Application & la Vérifica-
tion des Systémes Communicants. PhD thesis, Laboratoire de I'Informatique du
Parallélisme, Ecole Normale Supérieure de Lyon, December 1996.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Dataflow
Programming Language LUSTRE. Proc. of the IEEE, 79(9):1305-1320, September
1991.

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231-274, 1987.

M. Kerbeeuf, D. Nowak, and J.-P. Talpin. The Steam-boiler Controller Problem in
S1GNAL-C0Q. Research Report 3773, INRIA, Campus universitaire de Beaulieu,
35042 RENNES Cedex (France), October 1999.
http://www.irisa.fr/prive/Mickael.Kerboeuf/gh/SBGB.htm.

D. Nowak. Spécification et preuve de systémes réactifs. PhD thesis, Irsic, Univer-
sité Rennes I, October 1999.

D. Nowak, J.-R. Beauvais, and J.-P. Talpin. Co-inductive Axiomatization of a
Synchronous Language. In Proceedings of Theorem Proving in Higher Order Logics
(TPHOLs’98), number 1479 in LNCS, pages 387-399. Springer Verlag, September
1998.

B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Université
Paris VII, May 1994.

