Micka L Kerb Uf

David Nowak

Jean-Pierre Talpin

Speci cation and Veri cation of a Steam-Boiler with Signal-Coq

Keywords: synchronous programming, theorem proving, the steamboiler problem

Over the last decade, the increasing demand for the validation of safety critical systems has led to the development of domain-speci c programming languages (e.g. synchronous languages) and automatic veri cation tools (e.g. model checkers). Conventionally, the veri cation of a reactive system is implemented by specifying a discrete model of the system (i.e. a nite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a synchronous programming language, Signal, and of a proof assistant, Coq, for the speci cation and the veri cation of co-inductive properties of the well-known steam-boiler problem. By way of this large-scale case-study, the Signal-Coq formal approach, i.e. the combined use of Signal and Coq, is demonstrated to be a wellsuited and practical approach for the validation of reactive systems. Indeed, the deterministic model of concurrency of Signal, for specifying systems, together with the unparalleled expressive power of the Coq proof assistant, for verifying properties, enables to disregard any compromise incurred by any limitation of either the speci cation and the veri cation tools.

Introduction

In recent years, the veri cation of safety critical systems has become an area of increasing importance for the development of softwares in sensitive elds: medicine, telecommunication, transportation, energy.

The notion of reactive system has emerged to focus on the issues related to the control of interaction and of response-time in mission-critical systems. This has led to the development of speci c programming languages and related veri cation tools for reactive systems.

Conventionally, the veri cation of a reactive system is implemented by, rst, elaborating a discrete model of the system (i.e. an approximation of its behaviour by a nite-state machine) speci ed in a dedicated language (e.g. a synchronous programming language) and, then, by checking a property against the model (i.e. model checking).

Synchronous languages (such as Esterel 5], Lustre 9], Signal 4], Statecharts 10]) have proved to be well adapted to the veri cation of safety and liveness properties of reactive systems. For instance, model checking has been used at an industrial scale on Signal programs to check properties such as liveness, invariance, reachability and attractivity.

Whereas model checking e ciently decides discrete properties of nite state systems, the use of formal proof systems enables to prove numerical and parameterized properties about in nite state systems. Using a proof system, we can not only prove the safety and liveness of a reactive system but also its correctness and completeness.

Such a proof is of course not automatic and requires interaction with he user to direct its strategy. The prover can nonetheless automate he most tedious and mechanical parts of the proof. In general, formal roofs of programs are di cult and time-consuming. In the very case of modeling a reactive system using a declarative synchronous language, however, this di culty is milded thanks to the elegant stylistic combination of declarative programming and relational modeling.

We investigate the combined use of the synchronous language Signal and of the proof assistant Coq for specifying and verifying properties of a large-scale case study, namely, the steam-boiler problem.

The Signal-Coq Formal Approach

Synchronous languages assume that computation takes no time (this is the socalled synchronous hypothesis). Actually, this means that the duration of computations is negligible in comparison to the time of reaction of the system. This synchronous hypothesis is particularly well adapted to verify safety and some forms of liveness properties. Signal is a synchronous, declarative, data-ow oriented programming language. It is built around a simple paradigm: a process is a system of equations on signals; and a minimal kernel of primitive operators. A signal represents an in nite ow of data. At every instant, it can be absent or present with a value. The instants when values are present are determined by its associated clock. Interested reader may nd more about Signal in 4].

Coq 7] is a proof assistant for higher-order logic. It allows the development of computer programs that are consistent with their formal speci cation. The logical language used in Coq is a variety of type theory, the Calculus of Inductive Constructions 15]. It has been extended with co-inductive types (types de ned as greatest xed points rather than as least xed points 8]) to handle in nite objects, It is thus well suited to represent signals.

In 14], we have introduced a co-inductive semantics for the kernel of the language Signal and formalized it in the proof assistant Coq. In this section, we summarize the Coq de nitions given for the primitive operators of Signal. Interested reader may nd the generalization to the complete language in 13].

A signal X is de ned as a stream of ? and values v. Let D be a set of values. The set of signals S D is the largest set such that: S D = f?:X j X 2 S D g fv:X j v 2 P is introduced as follows:

CoInductive Relation2 U,V:Set; P:U->V->Prop] : (Signal U)->(Signal V)->Prop := relation2_a: (X:

(Signal U))(Y:(Signal V)) (Relation2 P X Y)-> (Relation2 P (Cons (absent U) X) (Cons (absent V) Y)) | relation2_p: (X:(Signal U))(Y:(Signal V))(u:U)(v:V) (P u v)->(Relation2 P X Y)-> (Relation2 P (Cons (present u) X) (Cons (present v) Y)).
Down-Sampling. The Signal equation Z := X When Y states that the signal Z down-samples X when X is present and when Y is present with the value true. When is the least xpoint of the following continuous functional:

F When (f) = def 8 > > > > < > > > > :
(?:X; ?:Y) 7 ! ?:f(X; Y) (?:X; b:Y) 7 ! ?:f(X; Y) (v:X; ?:Y) 7 ! ?:f(X; Y) (v:X; false:Y) 7 ! ?:f(X; Y) (v:X; true:Y) 7 ! v:f(X; Y) Deterministic Merge. The Signal equation Z := X Default Y states that X and Y are merged in Z with the priority to X. Default is the least xpoint of the following continuous functional: F Default (f) = def 8 > > < > > :

(?:X; ?:Y) 7 ! ?:f(X; Y) (?:X; v:Y) 7 ! v:f(X; Y) (u:X; ?:Y) 7 ! u:f(X; Y) (u:X; v:Y) 7 ! u:f(X; Y) Delay. The Signal function Pre is used to access to the previous value of a signal. Pre is the least xpoint of the following continuous functional:

F Pre (f) = def (u; ?:X) 7 ! ?:f(u; X) (u; v:X) 7 ! u:f(v; X)

Using the previously de ned denotations of primitive processes, we can derive the denotations of the derived operators of Signal. The parallel composition is denoted by the logical and of the underlying logic and the introduction of local signals is denoted by an existential quanti er.

This co-inductive trace semantics of Signal has been implemented with the proof assistant Coq (see 12] for details). Many lemmas are proved to ease the correctness proof of a reactive system speci ed with Signal. The case study introduced in this paper con rms that our co-inductive approach is a natural, simple and e cient way to prove correctness of reactive systems.

Steam-Boiler Control Speci cation Problem

In order to compare the strengths and weaknesses of di erent design formalisms for reactive systems, the steam-boiler case study has been suggested by J.-R. Abrial, E. B rger and H. Langmaack. In this section, we brie y recall its original speci cation (see 2] for more details), and the additional precisions we bring (see 11] for more details).

Physical Environment

The physical environment is composed of several units (Fig. 1). Each one is characterized by physical constants and some of them provide data.

P M 2 N 2 N 1 M 1 M 1 M 2 N 1 N 2
steam boiler maximal capacity: minimal limit: maximal limit: minimal normal: maximal normal:

C U 2

Behaviour of the Steam-Boiler

The program has to control the level of water in the steam-boiler. This quantity should not be too low or too high. Otherwise, the system might be a ected.

The program also has to manage the possible failure of physical units. For that purpose, at every instant, it takes into account the global state of the physical environment which is denoted by an operation mode. The program follows a cycle which takes place each ve seconds. A cycle consists of the reception of messages coming from the units, the analysis of the received informations, and the transmission of messages to the units. According to the operation mode, the program decides at each cycle if the system must stop or not. If not, it activates or deactivates pumps in order to keep the level of water in the middle of the steam-boiler. The speci cation also gives additional information regarding the physical behaviour of the steam-boiler. Namely, new values, called adjusted and calculated values, are proposed. They enable a sustained control of the system, by providing a vision of its dynamic, when a measurement device is defective.

At each cycle, adjusted variables contain either real measurements or extrapolated values which are calculated during the preceding cycle. An adjusted variable contains a real measurement when the corresponding device works properly. Otherwise, it contains an extrapolated value.

Calculated variables provide, at each cycle, extrapolated values of measurements for the following cycle. They contain the extreme values that are possibly reachable from the current adjusted values.

Precisions and Decisions about the Original Speci cation

Because of the exibility with which the original speci cation of the steam-boiler can be interpreted, we rst need to make some details more precise, on the physical behaviour of the steam-boiler, and on the logical behaviour of its implementation in Signal. Di erent items are concerned by our decisions. Namely: Distinction between pump failures and pump controller failures. We cannot rely on the fact that controllers always provide a reliable information about their associated pumps. Indeed, according to the speci cation, failures of controllers have to be taken into account and thus, we have to consider them as being fallible. Consequently, how could pump failures and pump controller failures be distinguished ?

We rst could try to detect the real throughput of each pump with an analysis of water-level variations in the boiler. But such a method presupposes a too restrictive set of conditions about the physical characteristics of pumps and their controllers. Moreover, it actually makes controllers useless.

We have therefore chosen to determinate what the real state of each pump and controller should be, for each possible combination of values. This solution, which seems to be the most reasonable and intuitive one, was proposed in 6] (a solution of the steam-boiler problem in Lustre).

Message occurrences. In order to have more exibility for controlling the steamboiler, each pump and each controller is connected to the main program by its own communication line. Thus, each pump can be managed simultaneously and independently.

Moreover, some incoming messages from pumps essential are not always relevant for the system at every instant. For example, a pump should not necessarily provide its state if it did not receive a command during the preceding cycle. But it can still provide its state at each cycle as speci ed in the original text. Only the presence of compulsory messages will be checked.

In addition to these messages, we introduce a new message H. This message is a pure signal and stands for the main clock of the program. All involved signals in the program have a clock which is a sub-clock of H. This signal is supposed to be reliable. It enables to detect the absence of compulsory messages.

Activation, deactivation of the pumps, and stop of the system. The decisions concerning the activation or the deactivation of the pumps, and the decision of stopping the system, are made according to the adjusted and calculated values. At rst, a speci c decision is made for each pair of extremum level, adjusted and calculated. Then, the program globally decides if the system shall stop or not.

If not, the program decides how the level shall move (up or down), if necessary, and by taking into account each speci c decision.

We calculate the best quantity of water to be provided, rather than just opening or closing all the pumps. Thus, at each cycle, the program calculates the optimal combination of open and closed pumps, in order to have an optimal progression of the level of water toward the middle of the boiler, taking into account failures of pumps and controllers.

Design and Architecture

The steam-boiler controller in Signal is composed of four main processes (g. 2).

The io_manager process detects transmission failures. It implements a lter that guarantees the presence of the outgoing data, necessary to the processing. This process also provides a signal which announces the manual stop of the system.

The failure_manager process is in charge of managing the dialogue between the physical units and the program regarding failure detections and repair indications. It detects failures and provides a global vision of the state of the physical system.

The dynamic process directly implements the equations suggested in the speci cation according to the detected failures and the values provided by the measurement devices.

The control process is the main program. Starting from the global vision of the state of the system, and from the adjusted measurements provided by the preceding process, it manages the operation modes, makes the decision to stop the system or not, and nally delivers activation and deactivation commands to the pumps.

Motivation for the choice of this case study

This case study is well adapted to our aim, i.e. to show the interest of the Signal-Coq formal approach. Indeed, the program has to handle several physical parameters and it may use non linear numerical values (e.g. extrapolated values of the level which take into account gradients of increase and decrease of the steam throughput, i.e. typically non linear numerical terms). Thus, safety properties cannot be simply and directly proved with a standard model checker.

Veri cation of the Steam-Boiler with Coq

Proofs of program properties are built on the co-inductive trace semantics of Signal which has been implemented with Coq 13].

This axiomatization is a set of Coq libraries which gathers the modeling of signals, the modeling of the primitives of the kernel language, and a number of functions, predicates and theorems about signals. These Coq libraries, as well as the proofs of the properties that are stated in the rest of this article, are available at 12].

Safety obligations

A global safety property can be informally stated in the following way:

When a stop condition is satis ed, the system stops indeed, i.e. the program enters the emergency stop mode. This statement implies several sub-properties. Our aim is to emphasize the interest of using Coq for their veri cation. Thus, in the sequel of this article, we concentrate our work especially on safety sub-properties that cannot be directly and simply proved by a standard model checker.

Since four stop conditions are speci ed, the global safety property has to be proved for each one:

1. Manual stop. The program received consecutively the required number of stop messages from the user for manually stopping the system.

2. Critical level. The system is in danger because the water level is either too low or too high.

3. Transmission failure. The program detected a transmission failure.

4.

Initialization. The water level measurement device is defective in the initialization mode.

In our Signal speci cation, these situations are associated with critical messages. When one of these signals carries a value, the corresponding condition holds and so, the program must stop. First of all, the expected relations between these critical messages and the operation mode have to be checked. Then, we have to verify that each critical message is actually present when the condition to which it corresponds holds. For that purpose, the implied sub-properties are divided into two main classes:

A rst class gathers properties that specify the correct behaviour of critical messages, regarding the critical situations to which they correspond.

The second class gathers properties that justify some simpli cations or specify the use of some internal signals in the processing. We now only consider sub-properties coming from Manual Stop and Critical level because they involve parameters and non linear numerical values, unlike Transmission failure and Initialization. So, they are convincing examples to illustrate our approach. Moreover, Critical level gathers essential properties of our solution.

Manual Stop

The problem of manual stop is generalized, using a parameter called nb_stop, which stands for the number of stop messages required for manually stopping the program, instead of the xed value 3 initially suggested in the speci cation.

Since we are using a proof assistant, we do not need to instantiate this parameter with a particular value. First, A predicate that denotes the right behaviour of a counter of the successive synchronous instants between two signals is coinductively de ned in Coq. Then, we prove that our Signal process provides indeed a signal (called CPT) that behaves like a counter of the successive synchronous instants between the stop signal (well called ... STOP) and the main clock (called H).

Instead of using a co-inductive predicate that denotes the expected behaviour of CPT, we de ne a co-recursive function that speci es CPT. This function is the least xpoint of the following continuous functional:

F : (N F (U f?g) F (V f?g) ! F (N f?g)) ! (N F (U f?g) F (V f?g) ! F (N f?g)) f 7 ! 8 > > < > > :
(n; Cons(?; X); Cons(?; Y)) 7 ! Cons(?; f(n; X; Y)) (n; Cons(x; X); Cons(?; Y)) 7 ! Cons(0; f(0; X; Y)) (n; Cons(?; X); Cons(y; Y)) 7 ! Cons(0; f(0; X; Y)) (n; Cons(x; X); Cons(y; Y)) 7 ! Cons(n + 1; f(n + 1; X; Y))

Let cssm, the least xpoint of F. The Coq de nition of cssm is the following:

CoFixpoint cssm : (U,V:Set)nat->(Signal U)->(Signal V)->(Signal nat) := U,V:Set] n:nat] X:(Signal U)] Y:(Signal V)]Cases X Y of (Cons absent X') (Cons absent Y') => (Cons (absent nat) (cssm n X' Y')) |(Cons (present _) X') (Cons absent Y') => (Cons (present O) (cssm O X' Y')) |(Cons absent X') (Cons (present _) Y') => (Cons (present O) (cssm O X' Y')) |(Cons (present _) X') (Cons (present _) Y') => (Cons (present (S n)) (cssm (S n) X' Y')) end.
Using this function, the predicate that denotes the expected behaviour of CPT can now be stated:

CPT = cssm(0; STOP; H)
We open in Coq a section in which hypotheses are stated. Those hypotheses correspond to the Signal equations which are concerned by the property to be proved:

(| ... | CPT ^= H | CPT := ((ZCPT+1) when STOP) default (0 when H) | ZCPT := CPT$1 init 0 | MANUAL_STOP := when (CPT=nb_stop) ... |)
Signals Q and V carry the values coming from the measurement devices. Signals J_OK and U_OK provide at each cycle a boolean information about the physical state of the measurement devices. We just have to translate these Signal equations into Coq hypotheses and we prove the properties (1) and (2) using coinduction. Coq o ers a natural syntax for manipulating such numerical objects. For instance, consider the following statement:

(8x; y 2 Z)(0 x)) (0 < y)) (0 < x + y)
Using the ZArith library of Coq, the de nition of this statement is the following:

(x,y:Z)(Zle ZERO x)->(Zlt ZERO y) -> (Zlt ZERO (Zplus x y))
Meanwhile, the ZArith library also provides syntactical facilities. Thus, we have an equivalent way to de ne this statement: (x,y:Z)`0 <= x`->`0 < y`->`0 < x+yS uch a syntax is more intuitive and so, proving equations or inequations on Z in Coq is much easier.

The following rst lemma is very simple to prove: This Coq statement de nes a co-inductive predicate which implements the 2 connector for temporal logic. Indeed, in our co-inductive semantics of Signal, we cannot handle explicit temporal indexes (see 13] for more details). This statement de nes the predicate that will be applied to the Globally2 connector.

Theorem QA1_lt_QA2 : (Globally2 ltSt QC1 QC2).

This statement is equivalent to the statement (1)

The decision concerning the stop of the system because of a critical level is founded on the adjusted levels. Using the preceding theorem, it is very simple to prove the following property: 8t 2 N;qa 1 (t) q(t) qa 2 (t) [START_REF] Berry | The Esterel Synchronous Programming Language: Design, Semantics, Implementation[END_REF] where q stands for the real level in the boiler. It means that even if a measurement device is defective, the program always knows the interval of possible current levels. Moreover, the program knows the interval of possibly reachable levels for the next cycle. Regarding these intervals, we have to check that the level is never likely to reach a critical value. For instance we have: 8t 2 N;(qa 1 (t) M 1 ^qc 1 (t) M 1)) Critical_Level(t) = T [START_REF] Cattel | The Steam-Boiler Problem in Lustre[END_REF] It means that the program will stop (the critical message Critical_Level carries a value T) if the minimal next level is below M 1 (which is the minimal level under which the system is in danger after one cycle) while the current level is possibly already below M 1 .

We also prove properties like the following one: 8t 2 N;(qc 1 (t) M 1 ^qc 2 (t) M 2)) Critical_Level(t) = T [START_REF] Barras | The Coq Proof Assistant Reference Manual -Version 6[END_REF] It means that if the interval of possibly reachable levels for the next cycle is too wide for making a safe decision, the program stops.

These examples emphasize an important advantage of our approach. The statements of the expected safety properties are especially clear. Moreover, the programmer does not need to have in mind what kind of property checkable or not during the design phase. Thus, specifying, programming and verifying a problem are more natural and intuitive operations.

Unlike a model checker, a proof assistant, and more generally a theorem prover cannot provide a counter-example when the check fails. But Coq gives a strong logical framework in which the user acquires a great con dence in the conformity of the program to the speci cation. Moreover, if the program is erroneous, the proof progression will stop on an impossible sub-goal which is often explicit enough to understand the mistake.

Nevertheless, theorem proving is often less e cient and often more tedious than model checking. Then, even if we could check all properties with only a proof assistant like Coq, the optimal solution for veri cation consists in using a model checker as much as possible and in using a theorem prover when a property is out of the scope of the model checker.

Related Works

The steam-boiler problem has become a classical case study for testing and comparing formal methods. It has been entirely speci ed and proved with the B tool approach [START_REF] Talpin | The B-Book[END_REF]). In 6], a steam-boiler has been implemented in the synchronous data-ow language Lustre (quite similar to Signal) and veri ed with its model-checker Lesar that allows veri cation of safety properties. This approach enables to prove boolean safety properties but cannot deal with numerical and parameterized properties. In 3], the semantics of Lustre has been formalized in the theorem prover PVS but co-induction is not used to represent in nite signals. The solution proposed in the Lustre-PVS approach consists of viewing signals as in nite sequences. In this setting, a signal is represented by a function which associates any instant i (a natural number) with the value v of the signal (if it is present) or with ? (if it is absent). The declarative and equational style of Signal is similar to Lustre. However, Lustre programs always have a unique reference of logical time: they are endochronous. Signal speci cations di er from Lustre programs in that they can be exochronous (i.e. they can have many references of logical time). For instance, the process x:=1 | y:=2 does not constrain the clocks of x and y to be equal. Hence, had we used functions over in nite sequences to represent signals, we would have faced the burden of having to manipulate several, possibly unrelated, indexes of time i.

Conclusion

The axiomatization of the trace semantics of Signal within the proof assistant Coq o ers a novel approach for the validation of reactive systems.

We demonstrate the bene ts of this formal approach for specifying and verifying properties of reactive systems by considering a large-scale case study, the steam-boiler controller problem.

Disregarding any compromise between the modeling tools and the modeled system, we augmented the original speci cation of the steam-boiler of 2] with a more precise description of the physical environment.

This case study shows to be well adapted to the evaluation of the Signal-Coq formal approach, allowing the modeling of parameterized strong safety property with non-linear numerical constraints. In spite of the strong implication for the user during the proof-checking process, it appears that the use of a proof assistant like Coq has many advantages.

In addition to the facts that the approach alleviates any limitation in the expression of properties, it makes it possible to acquire a strong con dence in the system being speci ed. Moreover, it is noticeable that experiences at using Coq allowed to develop libraries which improved the e ciency of latter proofs.

However, this approach is interesting only with properties that cannot be directly proved by a model checker. It is thus advisable to use a proof assistant in complement to more classical approaches to check these particular (e.g. parameterized, co-inductive, non-linear) properties. In conclusion, the integration of model-checking and theorem-proving within a uni ed framework seems to be a promising prospect.

 Figure1. Physical environment

Figure2.

 Figure2. Signal processes of the steam-boiler controller

 Lemma I_N : (a,b,c,d,e:Z) `a <= b`-> `c <= d`-> `0 < 2*(b-Dt*c+Dt*e)+U2*(Dt*Dt) -2*(a-Dt*d+Dt*e)-U1*(Dt*Dt)`. And then it is used to prove the statement (1): CoInductive Globally2 U,V:Set;P:(Stream U)->(Stream V)->Prop] : (Stream U)->(Stream V)->Prop := globally2 : (X:(Stream U))(Y:(Stream V))(P X Y) ->(Globally2 P (tl X) (tl Y))->(Globally2 P X Y).

 Definition ltSt := X:(Signal Z)] Y:(Signal Z)] (x,y:Z)(hd X)=(present x)->(hd Y)=(present y)->(Zlt x y).

 D; X 2 S D g Instantaneous Relation. The relation R n P is used in Signal to specify an instantaneous relation between n signals. At each instant, these signals satisfy the predicate P. In Coq, according to the Curry-Howard isomorphism, a pair proofspeci cation is represented by a pair term-type. The type of non-well-founded proofs of R n P is introduced as a co-inductive type. Co-induction is needed to deal with in nite signals. For instance, R 2

... | ZQC2 := QC2$1 init C | ZQC1 := QC1$1 init 0.0 | QA2 := (Q when J_OK) default ZQC2 | QA1 := (Q when J_OK) default ZQC1 | ZVC2 := VC2$1 init 0.0 | ZVC1 := VC1$1 init 0.0 | VA2 := (V when U_OK) default ZVC2 | VA1 := (V when U_OK) default ZVC1 ...

Those equations use constant signals. We rst have to de ne them explicitly. Then, we have to state the hypothesis regarding H, the main clock of the program. In particular, the clock of STOP is a sub-clock of H. This yields to the following equations: (Clock_to_Signal_bool H)))). Hypothesis Equation5 : ZCPT = (pre O CPT). Hypothesis Equation6 : A = (fonction1 n:nat](beq_nat n nb_stop) CPT). Hypothesis Equation7 : (Constant tt Csttrue). Hypothesis Equation8 : (Synchro Csttrue A). Hypothesis Equation9 : MANUAL_STOP = (when Csttrue A).

In this environment, we aim at proving the following lemma:

This property is too general for a model-checker because of the involved nb_stop parameter. It is also too restrictive for an inductive proof because of the instantiated parameters (values 0) involved in the cssm predicate and in the Signal pre term. A more general property must be stated with non instantiated parameters. Additional hypotheses about these formal parameters can also be stated. For that purpose, the fth Signal equation of the previous speci cation is preferred the following, more general, one:

Variable ni : nat. Hypothesis Equation5 : ZCPT = (pre ni CPT).

Then, the following lemma can be proved:

In particular, the initial property is veri ed. This is the rst part of the property. Using the same method, we also prove that MANUAL_STOP provides a value when CPT reaches the nb_stop value. Finally, we prove that the program enters the emergency stop mode in this case.

An important feature of the method outlined in this section is that it does not at all impact the programming style because of veri cation constraints. Signal processes are naturally translated into Coq objects (without, e.g., any variable instantiation).

Critical water level.

The property concerning the water level can be divided into several sub-properties which correspond to the di erent cases of critical level. Those properties involve parameters like the boiler capacity, the extremal limits of the level, or the nominal capacity of each pump. Moreover, the processing depends on the adjusted values. Thus, those properties are parameterized and concern non linear numerical values. It is therefore not possible to verify them simply and directly with a standard model checker.

At rst, a set of preliminary lemmas that justify some simpli cations in the program have to be proved. For instance, the following statements allow to eliminate some cases in the processing: 8t 2 N; qc 1 (t) < qc 2 (t) [START_REF] Talpin | The B-Book[END_REF] 8t 2 N; 0 qa 1 (t) qa 2 (t) C [START_REF] Abrial | Formal Methods for Industrial Applications: Specifying and Programming the Steam Boiler Control[END_REF] where qa 1 (t) and qa 2 (t) (resp. qc 1 (t) and qc 2 (t)) stand for the minimal and maximal adjusted (resp. calculated) values of the level at instant t, and where C stands for the maximal capacity of the boiler. Indeed, the process in charge of making a decision about activations of the pumps relies on a list of the di erent possible interleavings of extrapolated and adjusted levels. But some of them are omitted because of the statements (1) and (2). So they have to be proved.

The adjusted values qa 1 (t) and qa 2 (t) depend on calculated values qc 1 (t) and qc 2 (t), which are de ned as follows: 8t 2 N ; qc 1 (t) = qa 1 (t 1) va 2 (t 1) t 1 2 U 1 t 2 + pa 1 (t 1) t (3) 8t 2 N ; qc 2 (t) = qa 2 (t 1) va 1 (t 1) t + 1 2 U 2 t 2 + pa 2 (t 1) t (4) where va 1 (t) and va 2 (t) stand for the adjusted values of the outcome of steam, and pa 1 (t) and pa 2 (t) stand for the adjusted values of the cumulated throughput of the pumps. The parameters U 1 and U 2 denote the maximum gradients of increase and decrease of the outcome of steam.

In order to prove a property equivalent to the statement (1) with a model checker, the processing would have to be changed radically. For instance, the interval of possible values could be divided into several sub-levels and then, new boolean properties about the reachability of those levels could be de ned. And in every case, all parameters like U 1 , U 2 or C should be instantiated. With our Signal-Coq approach, we do not consider those veri cation problems during the design of the program. Calculated values are textually stated (cf. (3) and (4)) in Signal: