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ABSENCE OF GROUND STATE

FOR THE NELSON MODEL ON STATIC SPACE-TIMES

C. GÉRARD, F. HIROSHIMA, A. PANATI, AND A. SUZUKI

Abstract. We consider the Nelson model on some static space-times and
investigate the problem of absence of a ground state. Nelson models with
variable coefficients arise when one replaces in the usual Nelson model the flat
Minkowski metric by a static metric, allowing also the boson mass to depend
on position. We investigate the absence of a ground state of the Hamiltonian
in the presence of the infrared problem, i.e. assuming that the boson mass

m(x) tends to 0 at spatial infinity. Using path space techniques, we show
that if m(x) ≤ C|x|−µ at infinity for some C > 0 and µ > 1 then the Nelson
Hamiltonian has no ground state.

1. Introduction

In this paper we continue the study of the so-called Nelson model with variable
coefficients began in [GHPS1, GHPS2]. The Nelson model with variable coefficients
describes a system of quantum particles linearly coupled to a scalar quantum field
with an ultraviolet cutoff. Typically the scalar field is the Klein-Gordon field on a
static Lorentzian manifold, (see [GHPS2]).

In this respect the Nelson model with variable coefficients is an extension of
the standard Nelson model introduced by [N] to the case when the Minkowskian
space-time is replaced by a static Lorentzian manifold.

The Hamiltonian of the Nelson model with variable coefficients is defined as a
selfadjoint operator on L2(R3, dx)⊗ Γs(L

2(R3, dx)), formally given by

H = −1

2

∑

1≤j,k≤3

∂xjA
jk(x)∂xk

+ V (x)(1.1)

+
1

2

∫ (
π(x)2 + ϕ(x)ω2(x,Dx)ϕ(x)

)
dx

+
q√
2

∫
ω−1/2(x,Dx)ρ(x − x)ϕ(x)dx,

where ϕ(x) is the time-zero scalar field, π(x) its conjugate momentum, q ∈ R a

coupling constant, ρ a non-negative cutoff function, and ω(x,Dx) = h
1
2 with

(1.2) h = −c(x)−1




∑

1≤j,k≤3

∂xja
jk(x)∂xk


 c(x)−1 +m2(x).

Here m2(x) describes a variable mass. The assumptions on ajk, Ajk and c will be
given later in Section 2. We refer to [GHPS2] for the derivation of (1.1) starting
from the Lagrangian of a Klein-Gordon field on a static space-time linearly coupled
to a non-relativistic particle.
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The standard Nelson model is defined by taking ω(x,Dx) = ω(Dx) for ω(k) =

(k2 +m2)
1
2 with a constant m ≥ 0, and Ajk = δjk. Then m > 0 (resp. m = 0)

corresponds to the massive (resp. massless) case. The model is called infrared
singular (resp. regular) if

∫

R3

|ρ̂(k)|2
ω(k)3

dk = ∞ (resp. <∞),

in particular the massive case is always infrared regular. In this paper we will
assume that ρ ≥ 0 and

∫
R3 ρ(x)dx = 1, which in the standard Nelson model leads

to an infrared singular interaction (see Remark 2.4). In the infrared regular case,
it is now well known that the standard Nelson Hamiltonian has a unique ground
state, see [BFS, DG1, GGM, G, Sp] and [HHS, HS, P, Sa] for more general results.
The ground state properties are discussed in [BHLMS] using path space techniques.
It is also known that in the infrared singular case the standard Nelson Hamiltonian
has no ground state. See [AHH, H, LMS, DG2].

In [GHPS2] the existence of ground states of H is shown when

(1.3) m(x) ≥ C〈x〉−1, C > 0,

where 〈x〉 = (1 + |x|2)1/2. In this paper we will consider the case

(1.4) m(x) ≤ C〈x〉−µ, µ > 1.

In [GHPS1], the absence of ground state of the Nelson model (1.1) is proven if (1.4)
holds for µ > 3/2, for a sufficiently small coupling constant, and Ajk(x) = δjk =
ajk(x). In the present paper we drastically extend [GHPS1]. In fact we show that
if (1.4) holds for some µ > 1 then H has no ground state. Therefore combining the
results of [GHPS2] with those of the present paper gives an essentially complete
discussion of the problem of existence of a ground state for the Nelson model with
variable coefficients.

In [DG2] the absence of ground states for an abstract class of models including
the standard Nelson model is shown by making use of the so-called pull-through
formula. This method does not seem to be applicable in our situation. Instead
we use the method developed in [LMS] based on path space arguments. We now
briefly explain this approach.

Path space representation of the Nelson model.

One can write the physical Hilbert space L2(R3) ⊗ Γs(L
2(R3)) as L2(M,dm)

for some probability space (M,m) in such a way that the interaction term ϕρ(x)
becomes a multiplication operator on M and the semi-group e−tH is positivity
improving. Moreover the expectation values (F |e−tHG) can be written using an
appropriate path space measure and a Feynman-Kac formula, and the ground state
of the free Hamiltonian H0, (i.e. H with q = 0), is mapped to the constant function1.

The probability space (M,m) and the path space measure are obtained by ten-
soring the corresponding objects for the particle and field Hamiltonians. For the
particle Hamiltonian K we use the fact that K has a strictly positive ground state
ϕp. We then apply the so called ground state transform by unitarily identifying
L2(R3, dx) with L2(R3, ψp(x)dx), obtaining a new particle Hamiltonian L. One
can then construct a diffusion process associated to the semi-group e−tL.

For the field Hamiltonian we use the well-known Gaussian process. The path
space representation for the Nelson model is then obtained from a Feynman-Kac-
Nelson formula.

Absence of ground state.
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After mapping everything to L2(Q,µ), an easy argument based on Perron-Frob-
enius shows that H has no ground state iff

γ(T ) :=
(1|e−TH1)2
(1|e−2TH1)

tends to 0 when T → +∞. Using the Feynman-Kac formula the expectation value
(1|e−TH1) can be explicitly expressed in terms of the pair potential W given by

W (x, y, |t|) = (ρ(· − x)|e
−|t|ω

2ω
ρ(· − y)).

The key ingredient to estimate W are Gaussian bounds such as

C1e
tC2∆(x, y) ≤ e−tω2

(x, y) ≤ C3e
tC4∆(x, y).

By modifying the method used in [LMS, KV] and using the super-exponential decay
of ψp, we can finally show that γ(T ) → 0 as T → ∞ and we conclude that H has
no ground state.

Organization.
This paper is organized as follows. In Section 2 we define the Nelson Hamiltonian

with variable coefficients. In Section 3 we consider the semi-groups e−tK and e−tL

associated to the two versions of the particle Hamiltonian. We prove the Feynman-
Kac formula and various Gaussian bounds on e−tK and e−th. We also construct
the diffusion process associated with e−tL. In Section 4 the functional integral
representation of e−tH is given. In Section 5 we prove the absence of ground state.
Finally Appendix A is devoted to the proof of Proposition 3.12 about the diffusion
process associated with L.

2. The Nelson model with variable coefficients

In this section we define the Nelson model with variable coefficients and state
our main theorem.

2.1. Notation. We collect here some notation used in this paper for reader’s con-
venience.

Hilbert space and operators: The domain of a linear operator A on Hilbert
space H will be denoted by DomA, and its spectrum by σ(A). The set of bounded
operators from H to K is denoted by B(H,K) and B(H,H) by B(H) for simplicity.
The scalar product on H is denoted by (u|v). Let X be a real or complex Hilbert
space. If a is a selfadjoint operator on X , we will write a > 0 if a ≥ 0 and
Kera = {0}. Note that if a > 0 and s ∈ R, ‖h‖s = ‖a−sh‖X is a norm on Doma−s.
We denote then by asX the completion of Doma−s for the norm ‖ ‖s. The map as

extends as a unitary operator from atX to as+tX . One example of this notation
are the familiar Sobolev spaces, where Hs(Rd) is equal to (−∆ + 1)−s/2L2(Rd).
Finally if B ∈ B(L2(R3)), the distribution kernel of B will be denoted by B(x, y).

Bosonic Fock space: If h is a Hilbert space, the bosonic Fock space over h,
denoted by Γs(h), is

Γs(h) :=

∞⊕

n=0

⊗n
s h.

Ω = (1, 0, 0, · · · ) ∈ Γs(h) is called the Fock vacuum. We denote by a∗(h) and a(h)
for h ∈ h the creation and annihilation operators, acting on Γs(h). If K is another
Hilbert space and v ∈ B(K,K ⊗ h), then one defines the operators a∗(v), a(v) and
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φ(v) as unbounded operators on K ⊗ Γs(h) by

a∗(v)
∣∣∣
K⊗(⊗n

s h)
:=

√
n+ 1

(1K ⊗ Sn+1

)(
v ⊗ 1⊗

n
s h

)
,

a(v) :=
(
a∗(v)

)∗
,

φ(v) :=
1√
2
(a(v) + a∗(v).

Here Sn+1 denotes the symmetrization. If T is a contraction on H, then Γ(T ) :
Γs(h) → Γs(h) is defined as

Γ(T )
∣∣∣⊗n

s h
:= T ⊗ · · · ⊗ T︸ ︷︷ ︸

n

, n ≥ 1,

Γ(T )
∣∣∣⊗0

s h
:= 1, n = 0.

If b is a selfadjoint operator on h, its second quantization dΓ(b) : Γs(h) → Γs(h) is
defined as

dΓ(b)
∣∣∣⊗n

s h
:=

n∑
j=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗b⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−j

, n ≥ 1,

dΓ(b)
∣∣∣⊗0

s h
:= 0, n = 0.

Let N = dΓ(1). The creation operator and the annihilation operators satisfy the
estimates

(2.5) ‖a♯(v)(N + 1)−
1
2 ‖ ≤ ‖v‖,

where a♯ = a, a∗ and ‖v‖ is the norm of v in B(K,K ⊗ h).
We denote by x ∈ R

3 (resp. x ∈ R
3) the boson (resp. particle) position.

2.2. Particle Hamiltonian. In this section we define the particle Hamiltonian K
on L2(R3). We set

K0 = −1

2

∑

1≤j,k≤3

∂xjA
jk(x)∂xk

,

acting on K = L2(R3, dx). We assume

(E1) C01 ≤ [Ajk(x)] ≤ C11, C0 > 0,
(E2) ∇x[A

jk(x)] ∈ L∞(R3).

In Subsection 3.2 we will consider the drift vector:

b(x) = (b1(x), b2(x), b3(x)), bk(x) =
1

2

3∑

j=1

∂jA
jk(x),

and we will need the assumption:

(E3) ∇xbj(x) ∈ L∞(R3).

Under assumption (E1), K0 is defined as the positive selfadjoint operator associated
with the closed quadratic form:

(2.6) q0(f, f) =
1

2

∫ ∑

1≤j,k≤3

∂xjf(x)A
jk(x)∂xk

f(x)dx,

with form domainH1(R3). Assuming also (E2), then by standard elliptic regularity,
we know that

K0f = −1

2

∑

1≤j,k≤3

∂xj (A
jk(x)∂xk

f)
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with DomK0 = H2(R3). We also introduce an external potential V . We assume
that

(E4) V ∈ L1
loc(R

3), V ≥ 0.

The operator

K := K0 +̇ V

is defined as the positive selfadjoint operator associated with the closed quadratic
form:

q(f, f) = q0(f, f) +

∫
V (x)|f |2(x)dx,

with form domainH1(R3)∩DomV
1
2 . If we assume the following confining condition:

(E5) b0〈x〉2δ ≤ V (x), b0 > 0, δ > 0.

then K has compact resolvent.

2.3. Boson one-particle energy. Next we define boson one-particle Hamiltonian.
Let

(2.7)
h0 := −c(x)−1




∑

1≤j,k≤d

∂ja
jk(x)∂k



 c(x)−1,

h := h0 +m2(x),

where ajk, c, m are real functions and

(B1)

C01 ≤ [ajk(x)] ≤ C11, C0 ≤ c(x) ≤ C1, C0 > 0,

∂αx a
jk(x) ∈ O(〈x〉−1), |α| ≤ 1,

∂αx c(x) ∈ O(1), |α| ≤ 2,

∂αxm(x) ∈ O(1), |α| ≤ 1.

We assume that the variable mass term m(x) decays at infinity faster than 〈x〉−1:

(B2) m(x) ∈ O(〈x〉−µ), µ > 1.

Clearly h is selfadjoint on H2(R3) and h ≥ 0. The one-particle space and one-
particle energy are

(2.8) h := L2(R3, dx), ω := h
1
2 .

By [GHPS2, Lemma 3.1] we know that

Kerω = {0}, infσ(ω) = 0.

2.4. Nelson Hamiltonians. We fix a charge density ρ : R3 → R such that

(B3) ρ(x) ≥ 0,

∫
ρ(x)dx = 1, |k|−αρ̂(k) ∈ L2(R3, dk), α = 1,

1

2
.

where ρ̂ denotes the Fourier transform of ρ, and set ρx(x) = ρ(x − x). We define
the UV cutoff fields as

(2.9) ϕρ(x) := φ(ω− 1
2 ρx).

Note that setting ϕ(x) := φ(ω− 1
2 δx), one has ϕρ(x) =

∫
ϕ(x−y)ρ(y)dy. The Nelson

Hamiltonian is

(2.10) H := K ⊗ 1+ 1⊗ dΓ(ω) + qϕρ(x),

acting on

(2.11) H = K⊗ Γs(h).
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The constant q has the interpretation of the charge of the particle. We assume of
course that q 6= 0. We also set

H0 := K ⊗ 1+ 1⊗ dΓ(ω),

which is selfadjoint on DomH0 = Dom(K ⊗ 1) ∩Dom(1⊗ dΓ(ω)).

Proposition 2.1. Assume hypotheses (E1), (E4), (B1), (B2), (B3). Then H is
selfadjoint and bounded below on DomH0. Moreover H is essentially selfadjoint on
any core of H0.

Proof. Since −∆x ≤ Cω2 it follows from the Kato-Heinz theorem that

sup
x∈R3

‖ω−αρx‖L2 ≤ C‖|k|−αρ̂‖L2, α =
1

2
, 1.

It follows e.g., from [GGM, Section 4] that ϕρ(x) is H0 bounded with the infinites-
imal bound, and the proposition follows from the Kato-Rellich theorem. 2

Remark 2.2. In the previous paper [GHPS1] we considered the case

ω = (−∆x +m2(x))
1
2 but with ϕρ replaced by ϕ̃ρ given by

(2.12) ϕ̃ρ(x) = φ(ω− 1
2 ρ̃x),

where

(2.13) ρ̃x(·) = (2π)−3/2

∫
Ψ(k, ·)Ψ(k, x)ρ̂(k)dk,

and the generalized eigenfunctions Ψ(k, x) are solutions to the Chapman-Kolmogor-
ov equation:

(2.14) Ψ(k, x) = eik·x − 1

4π

∫

R3

ei|k||x−y|m2(y)Ψ(k, y)

|x− y| dy.

Note that if ρ is radial e.g., ρ(x) = ρ(|x|) then ϕ̃ρ(x) = φ(ω− 1
2 ρ̂(ω)δx). If m(x) ≡ 0

then ϕ̃ρ(x) = ϕρ(x). In the general case, ω = h
1
2 , the natural definition (2.9)

is much more convenient than (2.12). In particular we do not need to consider
generalized eigenfunctions for h defined in (2.7).

2.5. Absence of ground state for Nelson Hamiltonians. The main theorem
in this paper is as follows:

Theorem 2.3. Assume hypotheses (E1), (E2), (E3), (E5), (B1), (B2) and (B3).
Then H has no ground state.

Remark 2.4. Since ρ̂(0) = 1, we see that

(2.15)

∫

R3

|ρ̂(k)|2
|k|3 dk = ∞.

As is well known if ω = (−∆x)
1
2 , (2.15) is called the infrared singular condition.

In this case Theorem 2.3 is well known, see e.g., [DG2].

Remark 2.5. In [GHPS2] we show that if instead of (B2) we assume that m(x) ≥
C〈x〉−1 then H as a (unique) ground state. Therefore Theorem 2.3 is sharp with
respect to the decay rate of the mass at infinity.

3. Feynman-Kac formula for the particle Hamiltonian

In this section we prove some Gaussian bounds on the heat kernels e−tK0 , e−th0

and e−th. The bounds for e−tK0 and e−th0 are well known in various contexts. In
our situation they are due to [PE, Theorems 3.4 and 3.6]. Note that by identifying
x and x and setting c(x) ≡ 1, K0 is a particular case of h0.
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3.1. Gaussian upper and lower bounds on heat kernels. The bounds for
e−th were proved previously by [Se] for operators in divergence form and by [Zh]
for Laplace-Beltrami operators.

Proposition 3.1. [PE, Theorems 3.4 and 3.6] Assume (B1), or (E1), (E2). Then
there exist constants Ci, ci > 0 such that

(3.16) C1e
c1t∆(x, y) ≤ e−th0(x, y) ≤ C2e

c2t∆(x, y), ∀ t > 0, x, y ∈ R
3,

(3.17) C1e
c1t∆(x, y) ≤ e−tK0(x, y) ≤ C2e

c2t∆(x, y), ∀ t > 0, x, y ∈ R
3.

Proposition 3.2. Assume (B1) and (B2). Then there exist constants Ci, ci > 0
such that

C1e
c1t∆(x, y) ≤ e−th(x, y) ≤ C2e

c2t∆(x, y), ∀ t > 0, x, y ∈ R
d.

Remark 3.3. Conjugating by the unitary

U : L2(Rd, dx) ∋ u 7→ c(x)−1u ∈ L2(Rd, c2(x)dx),

we obtain
h̃0 := Uh0U

−1 = −c(x)−2
∑

1≤j,k≤d ∂ja
jk(x)∂k,

h̃ := UhU−1 = h̃0 +m2(x),

which are selfadjoint with domain H2(Rd). Let e−th̃(x, y) for t > 0 the integral

kernel of e−th̃ i.e. such that

e−th̃u(x) =

∫

Rd

e−th̃(x, y)u(y)c2(y)dy, t > 0.

Then since e−th(x, y) = c(x)e−th̃(x, y)c(y), the bounds in Proposition 3.1 also hold

for h̃0 and it suffices to prove Proposition 3.2 for e−th̃.

By the above remark, we will consider the operators h̃0 and h̃. We note that
they are associated with the closed quadratic forms:

(3.18)

h̃0(f, f) =

∫

Rd

∑

1≤j,k≤3

∂jf(x)a
jk(x)∂kf(x) dx,

h̃(f, f) = h̃0(f, f) +

∫

Rd

|f |2(x)m2(x)c2(x) dx,

with domain H1(Rd). We will use the following well known convexity result. For
completeness we sketch its proof below.

Lemma 3.4. Assume that w ∈ L∞(R3) is a real potential. Then

R ∋ λ 7→ e−t(h̃0+λw)(x, y)

is logarithmically convex for all t > 0 and a.e. x, y ∈ R
3.

Proof. Note that if F1 and F2 are log-convex, then F1F2 and CF1 are log-convex.
Moreover (see [S, Theorem 13.1]) if for all y ∈ R

d the function R ∋ λ 7→ F (λ, y) is
log-convex, so is λ 7→

∫
Rd F (λ, y)dy. To prove the claim we use the Trotter product

formula. We can set t = 1.

e−(h̃0+λw)(x, y) = lim
n→∞

(e−h̃0/ne−λw/n)n(x, y), a.e. x, y.

Let Aλ(x, y), Bλ(x, y) the kernels of two operators Aλ, Bλ assumed to be log-convex
in λ for a.e. x, y. Then by the above remarks the kernel of AλBλ

(AλBλ)(x, y) =

∫

Rd

Aλ(x, y
′)Bλ(y

′, y)dy′
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is also log-convex in λ. The kernel of e−h̃0/ne−λw/n equals to e−h̃0/n(x, y)e−λw(y)/n

is log-convex in λ. Applying the above remark and the Trotter formula we obtain
our claim. 2

Proof of Proposition 3.2. We use the unitary transformation as in Remark
3.3. We know from Proposition 3.1 that

(3.19) C1e
c1t∆(x, y) ≤ e−th̃0(x, y) ≤ C2e

c2t∆(x, y), ∀ t > 0, x, y ∈ R
d.

Since m2(x) ≥ 0, the upper bound in the proposition follows from the Trotter-
Kato formula. Let us now prove the lower bound, following the arguments in [Se,
Theorem 6.1]. Since m2(x)c2(x) ∈ O(〈x〉−2−ǫ) it follows from Hardy’s inequality
and (3.18) that

h̃0 ≥ c0m
2, for some c0 > 0.

Set now w(x) = −c0m2(x)/4. Since h̃0 + 2w ≥ 1
2 h̃0, we deduce from [D, Theorem

2.4.2] that

‖e−t(h̃0+2w)‖L2→L∞ ≤ Ct−d/4.

By duality this implies that

‖e−t(h̃0+2w)‖L1→L2 ≤ Ct−d/4,

and hence

‖e−t(h̃0+2w)‖L1→L∞ ≤ ‖e−t(h̃0+2w)/2‖L2→L∞‖e−t(h̃0+2w)/2‖L1→L2 ≤ Ct−d/2.

By [D, Lemma 2.1.2] we obtain

e−t(h̃0+2w)(x, y) ≤ Ct−d/2.

Applying then Lemma 3.4 this yields

(3.20) e−t(h̃0+w)(x, y) ≤ t−d/4e−th0(x, y)
1
2 , a.e. x, y ∈ R

d.

Applying once more the log-convexity, we get that

e−th̃0(x, y) ≤ e−t(h̃0+v)(x, y)se−t(h̃0+w)(x, y)1−s, for s = c0/(4 + c0),

and hence using (3.20):

e−th̃0(x, y)(1+s)/2t(1−s)d/4 ≤ e−t(h̃0+m2c2)(x, y)s,

which implies the lemma using the lower bound in (3.19). 2

3.2. Stochastic differential equation. Recall that we introduced the drift vector
b(x) in Subsection 2.2. We also define the diffusion matrix:

σ(x) := [Ajk]
1
2 (x),

and note that it follows from (E1), (E2), (E3) that b(x), σ(x) are uniformly Lipschitz
on R

3. We consider the stochastic differential equation:

(3.21)

{
dXx

t = b(Xx
t )dt+ σ(Xx

t )dBt, t ≥ 0,
Xx

0 = x,

on the probability space (X+, B(X+),W), where X+ = C([0,∞);R3), B(X+) is
the σ-field generated by cylinder sets and W the Wiener measure. (Bt)t≥0 denotes
the 3-dimensional Brownian motion on (X+, B(X+),W) starting at 0. We denote
by (Ft)t≥0 the natural filtration of the Brownian motion: Ft = σ(Bs, 0 ≤ s ≤ t).
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Proposition 3.5. Assume (E1), (E2), (E3). Then (3.21) has the unique solution
Xx = (Xx

t )t≥0 which is a diffusion process with respect to the filtration (Ft)t≥0:

(3.22) EW
[
f(Xx

s+t)|Fs

]
= EW

[
f(X

Xx
s

t )
]

for any bounded Borel measurable function f , where EW
[
f(X

Xx
s

t )
]
is EW [f(Xy

t )]

evaluated at y = Xx
s .

Proof. Since b, σ are bounded and uniformly Lipschitz, the proposition follows
from [O, Theorem 5.2.1]. 2

The following proposition is well-known. For lack of a precise reference, we will
sketch its proof.

Proposition 3.6. Assume (E1), (E2), (E3). Then

(3.23) e−tK0f(x) = EW [f(Xx
t )] , t ≥ 0, a.e. x ∈ R

3.

for f ∈ L2(R3).

Proof. We first prove (3.23) for f ∈ C∞
0 (R3), under the additional assumption

that

(3.24) ∂αxA
jk(x) ∈ L∞(R3), ∀ α ∈ N

3.

Let u(t, x) := e(t−T )K0f(x), 0 ≤ t ≤ T . By elliptic regularity we know that
DomKn

0 = H2n(R3) and using that u ∈ Ck([0, T ],DomKn
0 ) we see using Sobolev’s

inequalities that u(t, x) is a bounded C1,2([0, T ]× R
3) solution of:

∂tu(t, x) = K0u(t, x), u(T, x) = f(x).

By [KS, Thm. 7.6] it follows that

u(0, x) = e−TK0f(x) = EW [f(Xx
T )] ,

which proves (3.23) in this case.
We assume now only (E1), (E2), (E3). We can find a sequence [Ajk]n(x) satis-

fying (3.24), such that [Ajk]n(x), bn(x) are uniformly Lipschitz and

[Ajk]n → [Ajk], bn → b, uniformly in R
3.

This also implies that σjk
n → σjk uniformly in R

3.
Let us denote by Xx

t,n the solution of (3.21) with σn, bn and by K0,n the associ-
ated differential operator. By a well known stability result for solutions of stochastic
differential equations, see e.g. [E, Chapter 5] we obtain that

EW
[
|Xx

t,n −Xx
t |2
]
→ 0, ∀x ∈ R

3.

Let us fix f ∈ C∞
0 (R3). Taking a sub sequence, we obtain that f(Xx

t,n) → f(Xx
t ) a.e.

W and hence that Tt,nf(x) → Ttf(x). On the other hand we see that K0,n → K0

in norm resolvent sense, hence e−tK0,nf → e−tK0f in L2(R3). Taking again a sub
sequence, we obtain that e−tK0,nf(x) → e−tK0f(x) a.e. x. Therefore the identity
(3.23) holds for f ∈ C∞

0 (R3), under assumptions (E1), (E2), (E3).
We first extend (3.23) to f ∈ L2(R3)∩L∞(R3) by density. For t ≥ 0, f ∈ C2

0 (R
3)

we set

mt(f) =

∫
EW [f(Xx

t )]dx.

Clearly f ≥ 0 implies mt(f) ≥ 0. Since K0 is a uniformly elliptic operator, e−tK0

is a contraction on L1(R3) [D, Theorem 1.3.9]. Using again (3.23) we get

(3.25) |mt(f)| ≤
∫

R3

|f(x)|dx, f ∈ C2
0 (R

3),
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and (3.25) can be extended to f ∈ L1. It also follows from the Riesz-Markov
theorem that there exists a Borel measure ̺t on R

3 such that

(3.26)

∫

R3

f(x)d̺t(x) = mt(f)

for all f ∈ C2
0 (R

3). Together with (3.25) it follows that

(3.27)

∣∣∣∣
∫

R3

f(x)d̺t(x)

∣∣∣∣ ≤
∫

R3

|f(x)|dx.

Let now f ∈ L2(R3) ∩ L∞(R3). We can find a sequence (fn)n∈N with fn ∈ C2
0 (R

3)
such that fn → f in L2, fn → f a.e. in R

3 and supn ‖fn‖∞ <∞. Let us fix t > 0.
Since fn → f in L2, we get that e−tK0fn → e−tK0f in DomK0 = H2(R3), hence
uniformly on R

3. Let

N = {x ∈ R
3|fn(x) 6→ f(x)},

˜N = {(x, ω) ∈ R
3 × X+|fn(Xx

t (ω)) 6→ f(Xx
t (ω))}.

By (3.27) we have
∫ 1

Ñ
dx⊗ dW =

∫ 1N (Xx
t (ω))dx⊗ dW

=
∫ 1N (x)d̺t(x) ≤

∫ 1N (x)dx = 0,

since fn(x) → f(x) a.e. Hence

(3.28) fn(X
x
t (ω)) → f(Xx

t (ω)), a.e. (x, ω)

with respect to dx ⊗ dW . Therefore using that (fn)n∈N is uniformly bounded, we
have

EW [fn(X
x
t )] → EW [f(Xx

t )] a.e. x,

which proves (3.23) for f ∈ L2(R3) ∩ L∞(R3).
Finally let us extend (3.23) to f ∈ L2(R3). We may assume that f ≥ 0 without

loss of generality. We set fn := min{f, n}, n ∈ N, so that fn ∈ L2(R3) ∩ L∞(R3),
fn(x) ր f(x). Since e−tK0 is positivity preserving, we see that

(e−tK0fn)(x) ր (e−tK0f)(x) <∞, a.e. x.

By the same argument as above we get

fn(X
x
t (ω)) ր f(Xx

t (ω)), a.e. (x, ω),

and applying (3.23) to fn we see that supn EW [fn(X
x
t )] <∞ a.e. x. The monotone

convergence theorem yields that EW [fn(X
x
t )] ր EW [f(Xx

t )] < ∞ a.e. x, which
completes the proof of the proposition. 2

3.3. Feynman-Kac formula.

Proposition 3.7. (Feynman-Kac type formula) Let f ∈ L2(R3). Assume
(E1), (E2), (E3), (E4). Then

(3.29)
(
e−tKf

)
(x) = EW

[
f(Xx

t )e
−

∫
t
0
V (Xx

s )ds
]
.

Proof. We assume for simplicity that V is continuous. The extension to V ∈ L1
loc,

V ≥ 0 can be done by the same argument as in e.g. [S, Thm. 6.2]. By the
Trotter-Kato product formula [KM] we have

(3.30) e−tKf = lim
n→∞

(e−(t/n)K0e−(t/n)V )nf.
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Let 0 ≤ si ∈ R, fi ∈ L∞(R3) for 1 ≤ i ≤ n. By Proposition 3.6 we have:
(
e−s1K0f1 · · · e−snK0fn

)
(x)

= EW
[
f1(X

x
s1)
(
e−s2K0f1 · · · e−snK0fn

)
(Xx

s1)
]

= EW
[
f1(X

x
s1)EW

[
f2(X

Xx
s1

s2 )
(
e−s3K0f3 · · · e−snK0fn

)
(X

Xx
s1

s2 )
]]
.

By the Markov property (3.22) we also have

EW
[
f1(X

x
s1)EW

[
f2(X

Xx
s1

s2 )
(
e−s3K0f3 · · · e−snK0fn

)
(X

Xx
s1

s2 )
]]

= EW
[
f1(X

x
s1)EW

[
f2(X

x
s1+s2)

(
e−s3K0f3 · · · e−snK0fn

)
(Xx

s1+s2) |Fs1

]]

= EW
[
f1(X

x
s1)f2(X

x
s1+s2)

(
e−s3K0f3 · · · e−snK0fn

)
(Xx

s1+s2)
]
.

Inductively we obtain that
(3.31)

(
e−s1K0f1 · · · e−snK0fn

)
(x) = EW




n∏

j=1

fj(X
x
tj )



 , for t1 = s1, tj = tj−1 + sj .

Combining the Trotter product formula (3.30) and (3.31) with sj = t/n, fj =

e−(t/n)V we have

(3.32) e−tKf(x) = lim
n→∞

EW
[
e−(t/n)

∑n
j=1 V (Xx

tj/n)f(Xx
t )
]
.

Since t→ Xx
t is continuous a.e. W and V is continuous it follows that

(t/n)
n∑

j=1

V (Xx
tj/n) →

∫ t

0

V (Xx
s )ds, a.e. W when n→ ∞.

Using that V (x) ≥ 0 and the Lebesgue dominated convergence theorem, we obtain
that

EW
[
e−(t/n)

∑n
j=1 V (Xx

tj/n)f(Xx
t )
]
→ EW

[
e−

∫ t
0
V (Xx

s ds)f(Xx
t )
]
in L2(R3).

This completes the proof of the proposition. 2

3.4. Bounds on heat kernels. We first recall some easy consequences of the
Feynman-Kac formula.

Proposition 3.8. Assume (E1), (E2), (E3), (E4). Then there exist constants
C, c > 0 such that

(3.33) e−tK(x, y) ≤ ceCt∆(x, y), t ≥ 0, a.e. x, y ∈ R
3.

Here
eT∆(x, y) = (4πT )−3/2e−|x−y|2/(4T )

is the three dimensional heat kernel.

Proof. By the Feynman-Kac formula we know that

e−tK(x, y) ≤ e−tK0(x, y), t ≥ 0, a.e. x, y ∈ R
3.

Then we apply Proposition 3.1. 2

Using the upper bound in Proposition 3.8, we get the following corollary.

Corollary 3.9. (Ultracontractivity) Assume (E1), (E2), (E3), (E4). Then
e−tK maps L2(R3) to L∞(R3) for t > 0.

Corollary 3.10. (Positivity improving) Assume (E1), (E2), (E3), (E4). Then
e−tK is positivity improving for t > 0. In particular if (E5) holds K has a unique
strictly positive ground state.
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Proof.
We first claim that

(3.34)

∫ t

0

V (Xx
s )ds <∞, a.e.(x, ω).

Assume first that V ∈ L1(R3). Then since e−sK are contractions on L1 we get:
∫

R3

dxEW

[∫ t

0

V (Xx
s )ds

]
=

∫ t

0

(1|e−sKV )ds ≤ t‖V ‖1,

hence (3.34) holds for V ∈ L1(R3). If V ∈ L1
loc(R

3, then Vn := 1{|x|≤n}V ∈ L1(R3)

and there exist sets Nn ∈ R
3 × X+ of measure zero such that

∫ t

0

Vn(X
x
s )ds <∞, (x, ω) ∈ Nn.

Set N :=
⋃

n≥1 Nn. Since s 7→ Xx
s (ω) is continuous, for each (x, ω) there exists N =

N(x, ω) ∈ N such that N ≥ sup0≤s≤t |Xx
s (ω)| and hence V (Xx

s (ω)) = VN (Xx
s (ω))

for all 0 ≤ s ≤ t. Therefore
∫ t

0

V (Xx
s )ds <∞, (x, ω) 6∈ N ,

which proves (3.34). To prove that e−tK is positivity improving it suffices to prove
that for f, g ≥ 0 with f, g 6≡ 0 one has (f |e−tKg) > 0. Assume that

(3.35) (f |e−tKg) =

∫

R3

dxEW
[
f(x)g(Xx

t )e
−

∫
t
0
V (Xx

s )ds
]
= 0.

It follows from (3.34) that e−
∫

t
0
V (Xx

s )ds > 0 a.e. (x, ω). Hence (3.35) implies that
∫

R3

dxEW [f(x)g(Xx
t )] = (f |e−tK0g) = 0.

But this contradicts the lower bound in Prop. 3.1. 2

Lemma 3.11. (Exponential decay) Assume (E1), (E2), (E3), (E5). Let ψp be
the unique strictly positive ground state of K. Then there δ > 0 such that

eδ|x|
δ+1

ψp ∈ H1(R3).

Proof. If F ∈ C∞(R3) is real, bounded with all derivatives, then for u ∈ DomK
we have the well-known Agmon identity:

∫
1

2
〈∇(eFu), A∇(eFu)〉dx +

∫
e2F (V − 1

2
〈∇F,A∇F 〉)|u|2dx

=

∫
e2FuKudx + 2iIm

∫
e2F 〈∇u,A∇F 〉udx.

Applying this identity to the real function ψp, we obtain by the usual argument

that there exists δ > 0 such that eδ〈x〉
δ+1

ψp ∈ L2(R3) and ∇(eδ〈x〉
δ+1

ψp) ∈ L2(R3).
2

3.5. Ground state transformation and diffusion process. Assume (E1), (E2),
(E3) and (E5). ThenK has compact resolvent and by Corollary 3.10 it has a unique
normalized strictly positive ground state ψp. We set

(3.36) dµp(x) = ψ2
p(x)dx, Hp = L2(R3, dµp),

and introduce the ground state transformation:

Up : Hp → L2(R3), f 7→ ψpf.
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Let L be the corresponding transform of K − inf σ(K) defined by

(3.37) L = U
−1
p (K − inf σ(K))Up

with Dom(L) = U −1
p Dom(K). We note that

(f |Lg)Hp = (ψpf |Kψpg)L2 − inf σ(K)(ψpf, |ψpg)L2 .

Our goal in this subsection is to construct a three dimensional diffusion process
(i.e., a continuous Markov process) X = (Xt)t∈R associated with L. The operator
L is formally of the form

(3.38) L = −1

2

∑

1≤j,k≤3

Ajk∂xj∂xk
+

∑

1≤j,k≤3

(
1

2
(∂xjA

jk) +Ajk ∂xjψp

ψp

)
∂xk

.

A standard way to construct the diffusion process Xt is to solve the following
stochastic differential equation:

(3.39) dXj
t =

3∑

k=1

σjk(Xt)dB
k
t +

3∑

k=1

(
1

2
(∂kA

jk)(Xt) +Ajk(Xt)
∂kψp(Xt)

ψp(Xt)

)
dt

derived from (3.38), where Bt denotes the three-dimensional Brownian motion, and

the diffusion term is σ(x) = [Ajk]
1
2 (x). This is of course a formal description, since

the regularity of ψp is not clear at all, and it is thus hopeless to solve (3.39) directly.
Instead of this direct approach we use another strategy to construct the diffusion
process X associated with L. This is done in Appendix A.

We summarize the properties of Xt in Proposition 3.12 below. Let X =

C(R;R3). X
d
= Y means that X and Y has the same distribution.

Proposition 3.12. (Diffusion process associated with e−tL) Let

Xt(ω) = ω(t), ω(·) ∈ X ,

be the coordinate mapping process on (X , B(X )), where B(X ) denotes the σ−field
generated by cylinder sets. Assume (E1), (E2), (E3), (E5). Then there exists for
all x ∈ R

3 a probability measure Px on (X , B(X )) satisfying (1)-(5) below:

(1): (Initial distribution) Px(X0 = x) = 1.
(2): (Continuity) t 7→ Xt is continuous.
(3): (Reflection symmetry) (Xt)t≥0 and (Xt)t≤0 are independent

and X−t
d
= Xt.

(4): (Markov property) Let (Ft)t≥0 = σ(Xs, 0 ≤ s ≤ t) for t ≥ 0 and
(Ft)t≤0 = σ(Xs, t ≤ s ≤ 0) for t ≤ 0 be the associated filtrations. Then
(Xt)t≥0 and (Xt)t≤0 are Markov processes with respect to (Ft)t≥0 and
(Ft)t≤0, respectively, i.e.

EPx [Xt+s|Fs] = EPx [Xt+s|σ(Xs)] = EPXs [X
Xs
t ],

EPx [X−t−s|F−s] = EPx [X−t−s|σ(X−s)] = EPX
−s [X

X−s

−t ]

for s, t ≥ 0, where EPXs means EPy evaluated at y = Xs.
(5): (Shift invariance)

(3.40)∫
dµp(x)EPx [f0(Xt0) · · · fn(Xtn)] = (f0|e−(t1−t0)Lf1 · · · e−(tn−tn−1)Lfn)Hp

for fj ∈ L∞(R3), j = 1, ..., n, and the finite dimensional distribution of X
is shift invariant, i.e.:

∫
dµp(x)EPx




n∏

j=1

fj(Xtj )



 =

∫
dµp(x)EPx




n∏

j=1

fj(Xtj+s)



 , s ∈ R,
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for all bounded Borel measurable functions fj, j = 1, ..., n.

This proposition may be known, the proof will be however given in Appendix A
for self consistency. We define the full probability measure P on R

3 × X by

P(A×B) =

∫

A

dµp(x)

∫

B

dPx.

In the sequel we will denote EPx simply by E
x.

4. The Nelson model by path measures

4.1. Path space approach for boson fields. Let X be a real Hilbert space and
a > 0 a selfadjoint operator on X . It is well known that there exist a probability
space (Q,Σ, µC) and a linear map:

a
1
2X ∋ f 7→ Φ(f)

with values in measurable functions on (Q,Σ) such that
∫

Q

eiΦ(f)dµC = e−
1
2C(f,f), f ∈ a

1
2X ,

for C(f, f) = (f |a−1f)X . Moreover Σ is generated by the functions Φ(f), f ∈ a
1
2X .

Such a structure is called the Gaussian process indexed by X with covariance
C. Let XC be the complexification of X . It is well known that L2(Q, dµC) can be

unitarily identified with the bosonic Fock space Γs(a
1
2XC) by the map

(4.1) U : L2(Q, dµC) ∋ eiΦ(f) 7→ eiφ(f)Ω ∈ Γs(a
1
2XC), f ∈ a

1
2X .

Here we recall that Ω is the Fock vacuum. If we further identify Γs(a
1
2XC) with

Γs(XC) by the map Γ(a−
1
2 ), we obtain that Γs(XC) is unitarily identified with

L2(Q, dµC) by Uf = Γ(a−
1
2 )U :

(4.2) Uf : L
2(Q, dµC) ∋ eiΦ(f) 7→ eiφ(a

−
1
2 f)Ω ∈ Γs(XC), f ∈ a

1
2X .

We will apply this result to X = L2(R3) and a = 2ω, where ω is defined in (2.8)
(note that ω is a real operator). The associated probability space will be denoted
by (Q0,Σ0, µ0) and we set

Hf := L2(Q0, dµ0).

Note that under the above identification, any closed operator T on Γs(L
2(R3))

affiliated to the abelian von Neumann algebra generated by the eiφ(g) for g ∈ L2
R
(R3)

becomes a multiplication operator by a measurable function on (Q0,Σ0). We set

Hf := U
−1
f dΓ(ω)Uf .

We now recall the well known expression of the semi-group e−tHf through Gauss-
ian processes. Let us set Dt = −i∂t. Consider the Gaussian process indexed by
L2
R
(R4) = L2

R
(R, dt)⊗ L2

R
(R3, dx) with covariance

(4.3) C(f, f) = (f |(D2
t + ω2)−1f)L2(R4)

and set a = D2
t + ω2. The associated probability space will be denoted by

(QE,ΣE, µE) and the random variables by ΦE(f). It is well known that for t ∈ R,
the map

jt : (2ω)
1
2L2(R3) ∋ g 7→ δt ⊗ g ∈ a

1
2L2(R4)

is isometric, if δt denotes the Dirac mass at time t. Moreover one has

(4.4) (δt1 ⊗ g1|(D2
t + ω2)−1δt2 ⊗ g2)L2(R4) = (g1|

1

2ω
e−|t1−t2|ωg2)L2(R3).
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For t ∈ R and g ∈ (2ω)
1
2L2

R
(R3), we set

ΦE(t, g) := ΦE(δt ⊗ g).

It follows that ΦE(t, g) ∈ ∩1≤p<∞Lp(QE, dµE). Since the covariance C is invariant
under the group τs of time translations, we see that

Ts := U
−1
f Γ(τs)Uf , s ∈ R

is a strongly continuous unitary group on L2(QE, dµE). Clearly

TsΦE(t, g) = ΦE(t+ s, g).

For t ∈ R, we denote by Et : L2(QE,ΣE, µE) → L2(QE,ΣE, µE) the conditional
expectation with respect to the σ-algebra Σt generated by the Φ(t, g) for g ∈
(2ω)

1
2L2

R
(R3). As is well known one has Et = U

−1
f Γ(et)Uf for et = jtj

∗
t . Clearly

E0L
2(QE, dµE) can be identified with Hf and we will hence consider Hf as a closed

subspace of L2(QE, dµE). It follows then from (4.4) that

(4.5)

∫

QE

FTtGdµE = (F |e−tHfG)Hf
, t ≥ 0,

for F,G ∈ Hf .

4.2. Path space representation for the Nelson model. The Hilbert space
Hp ⊗Hf

∼= L2(R3 ×Q0, dµp ⊗ dµ0) and the Hamiltonian (Up ⊗ Uf)H(Up ⊗ Uf)
−1

will still be denoted by H and H respectively. Note that F ∈ H can be viewed as
a function: F : R3 ∋ x 7→ F (x) ∈ Hf defined almost everywhere. Note also that in
this representation the interaction qϕρ(x) becomes the multiplication operator by
the measurable function on QE × R

3: qΦE(0, ρ(· − x)).

Theorem 4.1. (1) Assume (E1), (E2), (E3), (E5). Let F,G ∈ H. Then for all
t ≥ 0

(4.6) (F |e−tHG)H =

∫
dµp(x)E

x
[
(F (X0)|e−q

∫ t
0
ΦE(s,ρ(·−Xs))dsTtG(Xt))L2(QE)

]
.

(2) In particular

(4.7) (1|e−TH1)H =

∫
dµp(x)E

x
[
e(q

2/2)
∫

T
0

dt
∫

T
0

dsW (Xt,Xs,|t−s|)
]
,

where

(4.8) W (x, y, |t|) = (ρ(· − x),
e−|t|ω

2ω
ρ(· − y))L2(R3).

Proof. Suppose that G ∈ L∞(R3 ×Q0, dµp ⊗ dµ0). By the Trotter-Kato product
formula [KM] we have

e−tH = s− lim
n→∞

(
e−(t/n)Le−(t/n)ΦE(0,qρ(·−x))e−(t/n)Hf

)n
.

Using the factorization formula (4.5), the Markov property of Et, we have

(F |e−tHG)(4.9)

= lim
n→∞

∫
dµp(x)E

x
[(
F (X0), e

−∑n
j=0

t
nΦE(jt/n,qρ(·−Xjt/n))TtG(Xt)

)]
.

We set ρs = ρ(· −Xs) for s ∈ R. Using that s 7→ Xs ∈ R
3 is continuous, we see

that

(4.10) R ∋ s 7→ ρs ∈ ω
1
2L2(R3)

is continuous. This implies that

(4.11) R ∋ s 7→ ΦE(s, ρs) ∈ ∩1≤p<∞L
p(QE, dµE)
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is also continuous. In fact

ΦE(t, ρt)− ΦE(s, ρs) = ΦE(t, ρt)− ΦE(s, ρt) + ΦE(s, ρt − ρs).

The first term in the right hand side tends to 0 when s→ t in ∩1≤p<∞Lp(QE, dµE)
since the time translation group {Tt}t∈R is strongly continuous
on ∩1≤p<∞Lp(QE, dµE). The same is true for the second term using (4.10). It
follows from (4.11) that

n∑

j=0

t

n
ΦE(jt/n, ρ(· −Xjt/n)) →

∫ t

0

ΦE(s, ρ(· −Xs))ds

in ∩1≤p<∞Lp(QE), when n→ ∞. We claim now that
(4.12)

lim
n→+∞

exp



−
n∑

j=0

t

n
ΦE(jt/n, qρ(· −Xjt/n))



 = exp

(
−q
∫ t

0

ΦE(s, ρ(· −Xs))ds

)

in ∩1≤p<∞Lp(QE). To prove (4.12) we set

fn = (t/n)

n∑

j=1

δtj/n ⊗ ρ(· −Xtj/n(ω)),

f =

∫ t

0

δs ⊗ ρ(· −Xs)ds.

The map

R ∋ s 7→ δs ⊗ ρ(· −Xs) ∈ (D2
t + ω2)

1
2L2(R4)

is continuous. Note that

ΦE(fn) =

n∑

j=0

t

n
ΦE(jt/n, ρ(· −Xjt/n))

ΦE(f) =

∫ t

0

ΦE(s, ρ(· −Xs))ds.

We write now

e−qΦE(f) − e−qΦE(fn) = q

∫ 1

0

e−qΦE(rf+(1−r)fn)ΦE(fn − f)dr.

We use the fact that ΦE(g) is a Gaussian random variable and hence
(4.13)

‖eΦE(g)‖pLp = ep
2C(g,g)/2 = e(p

2/2)‖ΦE(g)‖2
2 , 1 ≤ p <∞, g ∈ (D2

t + ω2)
1
2L2(R4).

Applying Hölder’s inequality we obtain (4.12). To complete the proof of (1) it
remains to justify the exchange of limit and integral. To do this we note that the
family of functions

F (X0)e
−qΦE(fn)TtG(Xt), n ∈ N

is equi-integrable if F ∈ L∞, G ∈ H, since it is uniformly bounded in Lp for
some p > 1, by Hölder’s inequality and (4.12). This completes the proof of (1) for
G ∈ L∞ and F ∈ H.

Next suppose thatG,F ∈ H. We can suppose F,G ≥ 0 without loss of generality.
Let Gn = min{G,n}, n ∈ N. Thus (F |e−tHGn) → (F |e−tHG) as n → ∞ and

F (X0)e
−q

∫ t
0
ΦE(s,ρ(·−Xs))dsTtGn(Xt) is monotonously increasing as N ↑ ∞. By the

monotone convergence theorem we get that

F (X0)e
−q

∫ t
0
ΦE(s,ρ(·−Xs))dsTtG(Xt) ∈ L1(R3 × X ×QE, dP⊗ dµE)
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and (1) follows. Applying (1) to F = G = 1, we get

(1|e−tH1) = ∫ dµp(x)E
x
[
(1, eqΦE(f)1)] = ∫ dµp(x)E

x
[
e(q

2/2)C(f,f)
]
.

Using (4.3), we get

C(f, f) =

∫ T

0

dt

∫ T

0

ds(δt ⊗ ρ(· −Xt)|(D2
t + ω2)−1δs ⊗ ρ(· −Xs))

=

∫ T

0

dt

∫ T

0

dsW (Xt, Xs, |t− s|).

This completes the proof of the theorem. 2

Proposition 4.2. Assume (E1), (E2), (E3), (E5). Then e−tH is positivity im-
proving for all t > 0.

Proof. Let t > 0 and F,G ∈ H with F,G ≥ 0, F,G 6= 0. We need to prove that

(F |e−tHG) > 0. Since
∫ t

0 ΦE(s, ρ(· −Xs))ds belongs to L1, e−
∫

t
0
ΦE(s,ρ(·−Xs))ds > 0

a.e. Therefore it suffices to prove that

(4.14)

∫
dµp(x)E

x [(F (X0)|TtG(Xt))] = (F |e−tH0G) > 0.

The equality above immediately shows that e−tH0 is positivity preserving for all
t > 0. Moreover 1⊗1 is the unique strictly positive ground state of H0. Therefore
by [RS, Theorem XIII.44] e−tH0 is positivity improving for all t > 0 and hence
(4.14) holds. This completes the proof of the proposition. 2

We complete this section by stating a standard abstract criterion for the existence
of a ground state for generators of positivity improving heat semi-groups.

Lemma 4.3. Let (Q,Σ, µ) be a probability space, and H a bounded below selfadjoint
operator on L2(Q,Σ, µ) such that e−tH is positivity improving for t > 0. Set

γ(T ) :=
(1|e−TH1)2
‖e−TH1‖2 ,

and E = inf σ(H). Then limT→+∞ γ(T ) = ‖1{E}(H)1‖2. In particular H has a
ground state iff limT→+∞ γ(T ) 6= 0.

Note that by Proposition 4.2, Lemma 4.3 can be applied to the Nelson Hamil-
tonian H .
Proof. We can assume that E = 0, so that s- limT→+∞ e−TH = 1{0}(H). If 0
is an eigenvalue, then by Perron-Frobenius arguments, 1{0}(H) = |u)(u| for some

u > 0. It follows that limT→+∞ γ(T ) = (u|1)2. Assume now that H has no ground
state and that there exists a sequence Tn → +∞ such that γ(Tn) ≥ δ2 > 0. This

implies that (1|e−TnH1) ≥ δ(1|e−2TnH1) 1
2 . Letting n → +∞, we obtain that

‖1{0}(H)1‖ ≥ δ, which is a contradiction. 2

5. Absence of ground state

5.1. Proof of Theorem 2.3. In this section we assume the hypotheses of Theo-
rem 2.3. We first prove some upper and lower bounds on the interaction kernels
W (x, y, t). This is the only place where the hypotheses (B2) on fast decay of the
variable mass m(x) and (B3) on the positivity of the space cutoff function ρ enter.

Set ρx(x) = ρ(x− x). We recall from (4.8) that

W (x, y, t) = (ρx|
e−tω

2ω
ρy), x, y ∈ R

3, t ≥ 0.
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We set h∞ = −∆x, ω∞ = h
1
2∞, and denote by W∞(x, y, t) the analog potential for

ω replaced by ω∞. Note also that

e−tω∞(x, y) =
1

π2

t

(|x− y|2 + |t|2)2 ,

which using the identity 1
λe

−tλ =
∫ +∞
t

e−sλds yields

W∞(x, y, t) =
1

4π2

∫
ρ(x− x)ρ(y − y)

|x− y|2 + t2
dxdy

=
1

4π2

∫
ρ(x)ρ(y)

|x− y + x− y|2 + t2
dxdy.(5.1)

We also have

(5.2) W∞(x, y, |t|) = 1

2

∫ |ρ̂|2(k)e−ik·(x−y)

|k| e−|t||k| dk.

Lemma 5.1. (1) W (x, y, |t|) ≥ 0 and W∞(x, y, |t|) ≥ 0,
(2) Assume (B2). Then there exist constants Cj > 0, j = 1, 2, 3, 4, such that

(5.3) C1W∞(x, y, C2|t|) ≤W (x, y, |t|) ≤ C3W∞(x, y, C4|t|)
for all x, y ∈ R

3 and t ∈ R.

Proof. We note that the function f(λ) = e−
√
λ on [0,∞) is completely monotone,

i.e., (−1)ndf(λ)/dλn ≥ 0 and that f(+0) = 0. Then by Bernstein’s theorem [BF]
there exists a Borel probability measure m on [0,∞) such that

e−
√
λ =

∫ ∞

0

e−sλdm(s),

and actually dm(s) =
1

2
√
π

e−1/(4s)

s3/2
ds. Hence

e−tω =

∫ ∞

0

e−st2ω2

dm(s) =
1

2
√
π

∫ ∞

0

te−t2/(4s)

s3/2
e−sω2

ds.

It follows that

W (x, y, |t|) = 1

2

∫ ∞

|t|
dr(ρx|e−rωρy) =

1

4
√
π

∫ ∞

|t|
dr

∫ ∞

0

re−r2/(4p)

p3/2
(ρx|e−phρy)dp.

This implies (1) since e−ph is positivity preserving.
To prove (2), we note that by Proposition 3.2 there exist constants cj such that

(5.4) c1e
c2t∆(x, y) ≤ e−th(x, y) ≤ c3e

c4t∆(x, y).

Since ρx and ρy are non-negative, we see that by change of variables that ,

c1c2W∞(x, y,
√
c2|t|) ≤W (x, y, |t|) ≤ c3c4W∞(x, y,

√
c4|t|),

which completes the proof of the lemma. 2

Let µT be the probability measure on R
3 ×X being absolutely continuous with

respect to P such that

(5.5) dµT =
1

ZT
e(q

2/2)
∫

T
−T

ds
∫

T
−T

dtW (Xs,Xt,|s−t|)dP,

where ZT denotes the normalizing constant such that µT becomes a probability
measure.

Lemma 5.2. One has

(5.6) γ(T ) ≤ EµT

[
e−q2

∫
0
−T

ds
∫

T
0

dtW (Xs,Xt,|s−t|)
]
.
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Proof. Using Theorem 4.1 (2) and the shift invariance of Xt (see Proposition 3.12)
it follows that the denominator of γ(T ) equals

‖e−TH1‖2 = (1|e−2TH1) = ∫ dµp(x)E
x
[
e(q

2/2)
∫

T
−T

dt
∫

T
−T

dsW (Xt,Xs,|t−s|)
]
= ZT .

The numerator of γ(T ) can be estimated by the Cauchy-Schwarz inequality and
shift invariance of Xt:

(1|e−tH1)2 =
(∫

dµp(x)E
x
[
e(q

2/2)
∫ T
0

dt
∫ T
0

dsW
])2

≤
∫
dµp(x)

(
E
x
[
e(q

2/2)
∫

T
0

dt
∫

T
0

dsW
]) (

E
x
[
e(q

2/2)
∫

0
−T

dt
∫

0
−T

dsW
])

=
∫
dµp(x)E

x
[
e(q

2/2)(
∫

T
0

dt
∫

T
0

dsW+
∫

0
−T

dt
∫

0
−T

dsW)
]
,

where in the last line we use the fact that Xs and Xt are independent for s ≤ 0 ≤ t.
Next we note that if F (s, t) = F (t, s) we have

∫ T

0
ds
∫ T

0
dtF (s, t) +

∫ 0

−T
ds
∫ 0

−T
dtF (s, t)

=
∫ T

−T
ds
∫ T

−T
dtF (s, t)− 2

∫ 0

−T
ds
∫ T

0
dtF (s, t).

We can apply this identity to F (s, t) =W (Xs, Xt, |t− s|) and obtain
(∫

dµp(x)E
x
[
e(q

2/2)
∫ T
0

dt
∫ T
0

dsW
])2

≤
∫
dµp(x)E

x
[
e−q2

∫ 0
−T

ds
∫ T
0

dtW+(q2/2)
∫ T
−T

ds
∫ T
−T

dtW
]
,

which using the definition of µT completes the proof of the lemma. 2

Let us take λ such that

(5.7)
1

δ + 1
< λ < 1,

where δ is the exponent in Assumption (E5) and set

(5.8) AT :=

{
(x, ω) ∈ R

3 × X | sup
|s|≤T

|Xs(ω)| ≤ T λ

}
.

The proof of Theorem 2.3 will follow immediately from the following two lemmas.

Lemma 5.3. One has

lim
T→∞

EµT

[1AT e
−q2

∫
0
−T

ds
∫

T
0

dtW (Xs,Xt,|s−t|)
]
= 0.

Lemma 5.4. One has

lim
T→∞

EµT

[1Ac
T
e−q2

∫
0
−T

ds
∫

T
0

dtW (Xs,Xt,|s−t|)
]
= 0.

Proof of Theorem 2.3. By Lemmas 5.3, 5.4 and 5.2 it follows that
limT→+∞ γ(T ) = 0. We apply then Lemma 4.3. 2

5.2. Proofs of Lemmas 5.3 and 5.4. We prove in this section Lemmas 5.3 and
5.4.

Proof of Lemma 5.3. By Lemma 5.1, it suffices to prove that

(5.9) lim
T→∞

EµT

[1AT e
−C1

∫
0
−T

ds
∫

T
0

dtW∞(Xs,Xt,C2|s−t|)
]
= 0.

The proof is similar to [LMS]. Let

∆T = {(s, t)|0 ≤ s ≤ T, 0 ≤ t ≤ T, 0 ≤ s+ t ≤ T/
√
2},

∆′
T = {(s, t)|0 ≤ s ≤ T/

√
2,−s ≤ t ≤ s},
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so that

(5.10)

∫ 0

−T dt
∫ T

0 dt 1
a2+|t−s|2

≥
∫ ∫

∆T
dsdt 1

a2+|s+t|2

=
∫ ∫

∆′

T
dsdt 1

a2+s2 = log
(

a2+T 2/2
a2

)
.

We note now that |x− y+x− y|2 + |t− s|2 ≤ 8T 2λ +2|x− y|2 + |t− s|2 uniformly
for |x| ≤ T λ, |y| ≤ T λ. Using (5.1) and (5.10) this yields1AT

∫ 0

−T ds
∫ T

0 dtW∞(Xs, Xt, C2|s− t|)

≥ 1
4π21AT

∫ 0

−T
ds
∫ T

0
dt
∫
dxdy ρ(x)ρ(y)

8T 2λ+2|x−y|2+C2|t−s|2

≥ 1
4C2π21AT

∫
dxdyρ(x)ρ(y) log

(
8T 2λ+2|x−y|2+C2T

2/2
8T 2λ+2|x−y|2

)
.

Note that ρ ≥ 0 and λ < 1. Since the right-hand side above goes to +∞ as T → ∞,
(5.9) follows. 2

Proof of Lemma 5.4.
Using again Lemma 5.1 it suffices to prove

(5.11) lim
T→∞

EµT

[1Ac
T
e−C1

∫
0
−T

ds
∫

T
0

dtW∞(Xs,Xt,C2|s−t|)
]
= 0.

By a change of variables we see that

∫ T

−T

∫ T

−T

e−|s−t|λdsdt ≤
∫ √

2T

−
√
2T

∫ √
2T

−
√
2T

e−|t|λdsdt ≤ CTλ−1, ∀λ > 0.

Using (5.2) and Lemma 5.1 this implies that

0 ≤
∫ T

−T

ds

∫ T

−T

dtW∞(Xs, Xt, C2|s− t|) ≤ C
T

2
‖ρ̂/|k|‖2,(5.12)

0 ≤
∫ T

−T

ds

∫ T

−T

dtW (Xs, Xt, C2|s− t|) ≤ C
T

2
‖ρ̂/|k|‖2.(5.13)

Set 1
2‖ρ̂/|k|‖2 = ξ. Hence (5.12), (5.13) and the Cauchy-Schwartz inequality yield

that

EµT

[1Ac
T
e−

∫
0
−T

ds
∫

T
0

dtW∞

]
≤ eTCξ

EµT

[1Ac
T

]

= eTCξ

∫ 1Ac
T
e(q

2/2)
∫

T
−T

ds
∫

T
−T

dtWdP
∫
e(q

2/2)
∫ T
−T

ds
∫ T
−T

dtWdP

≤ eTCξ

(∫
eq

2
∫ T
−T

ds
∫ T
−T

dtWdP
)1/2

∫
e(q

2/2)
∫

T
−T

ds
∫

T
−T

dtWdP

(∫ 1Ac
T
dP

)1/2

≤ eTC′ξ

(∫ 1Ac
T
dP

)1/2

.

By Lemma 5.5 below we know that there exist constants a, b > 0 such that

(5.14)

∫ 1Ac
T
dP ≤ T−λ(a+ bT )

1
2 e−Tλ(δ+1)

.

Since λ(δ + 1) > 1 this completes the proof of the lemma. 2

Lemma 5.5. There exist constants a, b > 0 such that (5.14) is satisfied, where
δ > 0 is the exponent appearing in Assumption (E5).
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5.3. Proof of Lemma 5.5. This section is devoted to the proof of Lemma 5.5.
Let G ⊂ R

3 be a closed set, and T > 0 and n ∈ N are fixed. We define the stopping
time

(5.15) τ := inf{Tj | j = 0, 1, ..., n,XTj ∈ G}, Tj =
j

n
T.

Lemma 5.6. Let ψ ∈ Hp with ψ ≥ 0 and ψ ≥ 1 on G. Let τ be in (5.15). Then
for all 0 < ̺ < 1 one has

∫
dµp(x)(E

x[̺τ ])2 ≤ (ψ|ψ) + ̺T/n

1− ̺T/n
(ψ|(1− e−(T/n)L)ψ).

Proof. Set ψ̺(x) = E
x[̺τ ]. By the definition of τ we can see that

(5.16) ψ̺(x) = 1, x ∈ G,

since τ = 0 in the case Xs starts from the inside of G. We can directly see that

e−sLψ̺(x) = E
x[EXs [̺τ ]] = E

x[̺τ◦θs ]

by the Markov property, where θs is the shift on X defined by (θsω)(t) = ω(t+ s)
for ω ∈ X . Note that (τ ◦ θT/n)(ω) = τ(ω) − T/n ≥ 0, when x = X0(ω) 6∈ G.
Hence

(5.17) ̺T/ne−(T/n)Lψ̺(x) = ψ̺(x), x ∈ Gc.

Clearly
∫
dµp(x)(E

x[̺τ ])2 = (ψ̺|ψ̺) ≤ (ψ̺|ψ̺) +
̺T/n

1− ̺T/n
(ψ̺|(1− e−(T/n)L)ψ̺).

By (5.17) the right-hand side above equals

(5.18) (1Gψ̺|1Gψ̺) +
̺T/n

1− ̺T/n
(1Gψ̺|(1− e−(T/n)L)ψ̺).

Next

(1Gψ̺|(1− e−(T/n)L)ψ̺) = (1Gψ̺|(1− e−(T/n)L)1Gψ̺) + (1Gψ̺|(1− e−(T/n)L)1Gcψ̺)

= (1Gψ̺|(1− e−(T/n)L)1Gψ̺)− (1Gψ̺|e−(T/n)L1Gcψ̺)

≤ (1Gψ̺|(1− e−(T/n)L)1Gψ̺),

since e−sL has a positive kernel. Hence

(5.19)

∫
dµp(x)(E

x[̺τ ])2 ≤ (ψ̺1G|ψ̺1G)+
̺T/n

1− ̺T/n
(ψ̺1G|(1−e−(T/n)L)ψ̺1G).

Note that ψ̺(x)1G(x) ≤ ψ(x) for all x ∈ R
3. Then

(ψ̺1G|ψ̺1G) +
̺T/n

1− ̺T/n
(ψ̺1G|(1− e−(T/n)L)ψ̺1G)(5.20)

≤ (ψ|ψ) + ̺T/n

1− ̺T/n
(ψ|(1 − e−(T/n)L)ψ).

Then combining (5.19) and (5.20) we prove the lemma. 2

Proposition 5.7. Let Λ > 0 and f ∈ C(R3) ∩D(L1/2). Then

(5.21) P

(
sup

0≤s≤T
|f(Xs)| ≥ Λ

)
≤ e

Λ

√
(f |f) + T (L1/2f |L1/2f).
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Proof. The proof is a modification of [KV, Lemma 1.4 and Theorem 1.12]. We
fix T > 0 and n ∈ N and define the stopping time τ as in (5.15) for the closed set
G := {x ∈ R

3 | |f(x)| ≥ Λ}. It follows that

P

(
sup

j=0,...,n
|f(XTj )| ≥ Λ

)
= P(τ ≤ T ).

Let 0 < ̺ < 1 which will be chosen later. Clearly

(5.22) P(τ ≤ T ) ≤
∫
̺τ−TdP ≤ ̺−T

∫
̺τdP ≤ ̺−T

(∫
dµp(x)(E

x[̺τ ])2
)1/2

.

Let ψ ∈ Hp be any function such that ψ ≥ 0 and ψ(x) ≥ 1 on G. Then applying
Lemma 5.6 we get

(5.23)

∫
dµp(x)(E

x[̺τ ])2 ≤ (ψ|ψ) + ̺T/n

1− ̺T/n
(ψ|(1− e−(T/n)L)ψ).

Since |f(x)| ≥ Λ on G we can put ψ = |f(x)|/Λ in (5.23) and get

(5.24)

∫
dµp(x)(E

x[̺τ ])2 ≤ 1

Λ2
(f |f) + ̺T/n

1− ̺T/n

1

Λ2
(|f ||(1− e−(T/n)L)|f |).

Since (|f ||(1− e−(T/n)L)|f |). ≤ (f |(1− e−(T/n)L)f), we have

(5.25)

∫
dµp(x)(E

x[̺τ ])2 ≤ 1

Λ2
(f |f) + ̺T/n

1− ̺T/n

1

Λ2
(f |(1− e−(T/n)L)f).

Then by (5.22),

P

(
sup

j=0,...,n
|f(XTj )| ≥ Λ

)
≤ ̺−T

Λ

(
(f |f) + ̺T/n

1− ̺T/n
(f |(1− e−(T/n)L)f)

) 1
2

.

Set ̺ = e−1/T . Then since ̺T/n

1−̺T/n ≤ n

(5.26) P

(
sup

j=0,...,n
|f(XTj )| ≥ Λ

)
≤ e

Λ

(
(f |f) + n(f |(1− e−(T/n)L)f)

) 1
2

follows. Since (f |(1− e−(T/n)L)f) ≤ (T/n)(L1/2f |L1/2f), we finally get

(5.27) P

(
sup

j=0,...,n
|f(XTj )| ≥ Λ

)
≤ e

Λ

√
(f |f) + T (L1/2f |L1/2f)

follows. We take the limit n→ ∞ in the left hand side of (5.27). By the Lebesgue
dominated convergence theorem,

lim
n→∞

P

(
sup

j=0,...,n
|f(XTj )| ≥ Λ

)
= P

(
lim
n→∞

sup
j=0,...,n

|f(XTj )| ≥ Λ

)
.

Since f(Xt) is continuous in t, limn→∞ supj=0,...,n |f(XTj )| = sup0≤s≤T |f(Xs)|
follows. This completes the proof of the proposition. 2

Proof of Lemma 5.5.
Let f ∈ C∞(R3) such that

f(x) =






|x|, |x| ≥ T λ,
≤ T λ, T λ − 1 < |x| < T λ,
0, |x| ≤ T λ − 1.

Since {x | f(x) ≥ T λ} = {x | |x| ≥ T λ} ] we see that

(5.28)

∫ 1Ac
T
dP = P

(
sup
|s|≤T

|Xs| > T λ

)
= P

(
sup
|s|≤T

|f(Xs)| > T λ

)
.
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By Proposition 5.7 we have

(5.29) P

(
sup
|s|≤T

|f(Xs)| > T λ

)
≤ 2e

T λ

√
(f, f) + T (L1/2f |L1/2f).

We have

(L
1
2 f |L 1

2 f) = q0(fψp, fψp) + (fψp|V fψp)

≤ C(∇fψp|∇fψp) + (fψp|V fψp)

≤ C′‖f∇ψp‖2 + C′′‖∇f · ψp‖2 + ‖V 1
2 fψp‖2.

Using the fact that supp f ⊂ {|x| ≥ T λ − 1}, ∇f ∈ O(T λ) and Lemma 3.11, we
obtain

(f |f) + (L
1
2 f |L 1

2 f) ≤ Ce−δTλ(δ+1)

.

This completes the proof of the lemma. 2

Appendix A. Proof of Proposition 3.12

In order to prove Proposition 3.12 we need several steps. Let B(R3) denotes the
Borel σ-field. For 0 ≤ t0 ≤ · · · ≤ tn let the set function νt0,...,tn :

∏n
j=0 B(R3) → R

be given by

(A.30) νt0,...,tn

(
n∏

i=0

Ai

)
= (1A0 |e−(t1−t0)L1A1 · · · e−(tn−tn−1)L1An)

and for 0 ≤ t, νt : B(R3) → R by

(A.31) νt (A) = (1|e−tL1A) = (1|1A).

(Step 1) The family of set functions {νξ}ξ⊂R,#ξ<∞ given by (A.30) and (A.31)
satisfies the consistency condition:

νt0,...,tn+m

(
n∏

i=0

Ai ×
n+m∏

i=n+1

R
3

)
= νt0,...,tn

(
n∏

i=0

Ai

)

and by the Kolmogorov extension theorem [KS, Theorem 2.2] there exists a prob-
ability measure ν∞ on ((R3)[0,∞), B((R3)[0,∞))) such that

νt (A) = Eν∞ [1A(Yt)] ,(A.32)

νt0,...,tn

(
n∏

i=0

Ai

)
= Eν∞




n∏

j=0

1Aj (Ytj )


 , n ≥ 1,(A.33)

where B((R3)[0,∞)) denotes the σ-field generated by cylinder sets, and Yt(ω) = ω(t),
ω ∈ (R3)[0,∞), is the coordinate mapping process. Then the process Y = (Yt)t≥0

on the probability space ((R3)[0,∞), B((R3)[0,∞)), ν∞) satisfies that

(f0|e−(t1−t0)Lf1 · · · e−(tn−tn−1)Lfn) = Eν∞




n∏

j=0

fj(Ytj )


 ,(A.34)

(1|f) = (1|e−tLf) = Eν∞ [f(Yt)] = Eν∞ [f(Y0)](A.35)

for fj ∈ L∞(R3), j = 0, 1, ..., n.
(Step 2) We now see that the process Y has a continuous version.

Lemma A.1. The process Y on ((R3)[0,∞), B((R3)[0,∞)), ν∞) has a continuous
version.
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Proof. We note that by (A.34), (A.35) and Proposition 3.7, Eν∞ [|Yt − Ys|2n] can
be expressed in terms of the diffusion process Xx = (Xx

t )t≥0, being the solution of
the stochastic differential equation:

(A.36) Xx,j
t −Xx,j

s =

∫ t

s

bj(X
x
r )dr +

3∑

k=1

∫ t

s

σj,k(X
x
r ) · dBk

r . j = 1, 2, 3.

Since

Eν∞ [|Yt − Ys|2n] =
3∑

j=1

2n∑

k=0

[
2n
k

]
(−1)kEν∞

[
(Y j

t )
2n−k(Y j

s )
k
]
,

the left hand side above can be express in terms of e−tL as

Eν∞ [|Yt − Ys|2n]

=

3∑

j=1

2n∑

k=0

[
2n
k

]
(−1)k

(
(xj)2n−kψp|e−(t−s)K(xj)kψp

)

L2
e(t−s) inf σ(L).

Furthermore by Feynman-Kac formula, i.e., Proposition 3.7, the right-hand side
above can be expressed in terms of Xx = (Xx

t )t≥0 as

Eν∞ [|Yt − Ys|2n]

=
∫
dµp(x)EW

[
|Xx

t−s −Xx
0 |2nψp(X

x
0 )ψp(X

x
t−s)e

−
∫

t−s
0

V (Xx
r )dr

]
e(t−s) inf σ(L).

Since V ≥ 0,

Eν∞ [|Yt − Ys|2n] ≤ ‖ψp‖2∞e(t−s) inf σ(L)

∫
dµp(x)EW

[
|Xx

t−s −Xx
0 |2n

]
.

We next estimate EW
[
|Xx

t −Xx
s |2n

]
. Since Xx,j

t is the solution to the stochastic
differential equation (A.36), we have

EW
[
|Xx,j

t −Xx,j
s |2n

]
≤ 22n−1

EW

[
|t− s|2n

22n
‖bj‖2n∞ +

3∑

k=1

∣∣∣∣
∫ t

s

σjk(X
x
r )dB

k
r

∣∣∣∣
2n
]
.

By the Burkholder-Davies-Gundy inequality [KS, Theorem 3.28], we have

EW

[∣∣∣∣
∫ t

s

σjk(X
x
r )dB

k
r

∣∣∣∣
2n
]
≤ (n(2n− 1))n|t− s|n‖σjk‖2n∞ .

Then EW
[
|Xx

t −Xx
s |2n

]
≤ C|t− s|n with some constant C independent of s and t,

and

(A.37) Eν∞

[
|Yt − Ys|2n

]
≤ C|t− s|n

follows. Thus Y = (Yt)t≥0 has a continuous version by Kolmogorov-Čentov conti-
nuity theorem [KS, Theorem 2.8]. 2

Let Y = (Y t)t≥0 be the continuous version of Y on ((R3)[0,∞), B((R3)[0,∞)), ν∞).

The image measure of ν∞ on (X+, B(X+)) with respect to Y is denoted by Q, i.e.,

Q = ν∞ ◦ Y −1
, and Ỹt(ω) = ω(t) for ω ∈ X+ is the coordinate mapping process.

Then we constructed a stochastic process Ỹ = (Ỹt)t≥0 on (X+, B(X+),Q) such

that Ȳ
d
= Ỹ . Then (A.34) and (A.35) can be expressed in terms of Ỹ as

(f0|e−(t1−t0)Lf1 · · · e−(tn−tn−1)Lfn) = EQ




n∏

j=0

fj(Ỹtj )


 ,

(1|f) = (1|e−tLf) = EQ

[
f(Ỹt)

]
= EQ

[
f(Ỹ0)

]
.
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(Step 3) Define the regular conditional probability measure on X+ by

(A.38) Qx(·) = Q(·|Ỹ0 = x)

for each x ∈ R
3. It is well defined, since X+ is a Polish space (completely separable

metrizable space). See e.g., [KS, Theorems 3.18. and 3.19]. Since the distribution

of Ỹ0 equals to dµp(x), note that Q(A) =
∫
dµp(x)EQx [1A]. Then the stochastic

process Ỹ = (Ỹt)t≥0 on (X+, B(X+),Q
x) satisfies

(f0|e−(t1−t0)Lf1 · · · e−(tn−tn−1)Lfn) =

∫
dµp(x)EQx




n∏

j=0

fj(Ỹtj )



 ,(A.39)

(1|e−tLf) = (1|f) = ∫ dxψ2
p(x)EQx

[
f(Ỹ0)

]
=

∫
dµp(x)f(x).(A.40)

Lemma A.2. Ỹ is a Markov process on (X+, B(X+),Q
x) with respect to the

natural filtration Ms = σ(Ỹr, 0 ≤ r ≤ s).

Proof. Let

(A.41) pt(x, A) =
(
e−tL1A

)
(x), A ∈ B(R3), t ≥ 0.

Notice that pt(x, A) = EW [1A(X
x
t )]. Then the finite dimensional distribution of Ỹ

is

(A.42) EQx




n∏

j=1

1Aj (Ỹtj )


 =

∫ n∏

j=1

1Aj (xj)

n∏

j=1

ptj−tj−1(xj−1, dxj)

with t0 = 0 and x0 = x by (A.39). We show that pt(x, A) is a probability transition
kernel, i.e., (1) pt(x, ·) is a probability measure on B(R3), (2) pt(·, A) is Borel
measurable with respect to x, (3) the Chapman-Kolmogorov equality

(A.43)

∫
ps(y, A)pt(x, dy) = ps+t(x, A)

is satisfied. Note that e−tL is positivity improving. Then 0 ≤ e−tLf ≤ 1 for all
function f such that 0 ≤ f ≤ 1, and e−tL1 = 1 follows. Then pt(x, ·) is the prob-
ability measure on R

3 with pt(x,R
3) = 1, and (1) follows. (2) is trivial. From the

semi-group property e−sLe−tL1A = e−(s+t)L1A, the Chapman-Kolmogorov equal-
ity (A.43) follows. Hence pt(x, A) is a probability transition kernel. We write

E for EQx for notational simplicity. From the identity E[1A(Ỹt)E[f(Ỹr)|σ(Ỹt)]] =
E[1A(Ỹt)f(Ỹr)] for r > t, it follows that

∫ 1A(y)E[f(Ỹr)|Ỹt = y]Pt(dy) =

∫
Pt(dy)1A(y)

∫
f(y′)pr−t(y, dy

′),

where Pt(dy) denotes the distribution of Ỹt on R
3. Thus

E[f(Ỹr)|Ỹt = y] =

∫
f(y′)pr−t(y, dy

′)

follows a.e. y with respect to Pt(dy). Then E[f(Ỹr)|σ(Ỹt)] =
∫
f(y)pr−t(Ỹt, dy) and

(A.44) E[1A(Ỹr)|σ(Ỹt)] = pr−t(Ỹt, A)

follow. By using (A.44), (A.42) and the Chapman-Kolmogorov equality (A.43), we
can show that

E



1A(Ỹt+s)

n∏

j=0

1Aj (Ỹtj )



 = E



E
[1A(Ỹt)|σ(Ỹs)

] n∏

j=0

1Aj (Ỹtj )
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for t0 ≤ · · · ≤ tn ≤ s. This implies that E[1A(Ỹt+s)|Ms] = E[1A(Ỹt)|σ(Ỹs)]. Then

Ỹ is Markov with respect to the natural filtration under the measure Qx. 2

(Step 4) We extend Ỹ = (Ỹt)t≥0 to a process on the whole real line R. Set

X̃+ = X+ × X+, M̃ = B(X+)× B(X+) and Q̃x = Qx × Qx. Let (X̃t)t∈R be the

stochastic process on the product space (X̃+, M̃ , Q̃x), defined by for ω = (ω1, ω2) ∈
X̃+,

(A.45) X̃t(ω) =

{
Ỹt(ω1), t ≥ 0,

Ỹ−t(ω2), t < 0.

Note that X̃0 = x almost surely with respect to Q̃x and X̃t is continuous in t
almost surely. It is trivial to see that X̃t, t ≥ 0, and X̃s, s ≤ 0, are independent,

and X̃t
d
= X̃−t.

(Step 5) Proof of Theorem 3.12:

The image measure of Q̃x on (X , B(X )) with respect to X̃ is denoted by Px, i.e.,

(A.46) Px = Q̃x ◦ X̃−1.

Let Xt(ω) = ω(t), t ∈ R, ω ∈ X , be the coordinate mapping process. Then we can
see that

(A.47) Xt
d
= Ỹt (t ≥ 0), Xt

d
= Ỹ−t (t ≤ 0).

Since by (Step 3), (Ỹt)t≥0 and (Ỹ−t)t≤0 are Markov processes with respect to the

natural filtration σ(Ỹs, 0 ≤ s ≤ t) and σ(Ỹs,−t ≤ s ≤ 0), respectively, (Xt)t≥0

and (Xt)t≤0 are also Markov processes with respect to (F+
t )t≥0 and (F−

t )t≤0, re-
spectively. Thus the Markov property (4) follows. We also see that (Xs)s≤0 and

(Xt)t≥0 are independent and X−t
d
= Xt by (A.47) and (Step 4). Thus reflection

symmetry (3) follows.

Lemma A.3. Let −∞ < t0 ≤ t1 ≤ · · · ≤ tn. Then

(A.48)

∫
dµp(x)EPx [f0(Xt0) · · · fn(Xtn)] = (f0, e

−(t1−t0)Lf1 · · · e−(tn−tn−1)Lfn).

Proof. Let t0 ≤ · · · ≤ tn ≤ 0 ≤ tn+1 ≤ · · · tn+m. Then we have by the indepen-
dence of (Xs)s≤0 and (Xt)t≥0,

∫
dµp(x)EPx

[
f0(Xt0) · · · fn+m(Xtn+m)

]

=
∫
dµp(x)EPx [f0(Xt0) · · · fn(Xtn)]EPx

[
fn+1(Xtn+1) · · · fn+m(Xtn+m)

]
.

Since we have

EPx

[
fn+1(Xtn+1) · · · fn+m(Xtn+m)

]
(A.49)

=
(
e−tn+1Lfn+1e

−(tn+2−tn+1)Lfn+2 · · · e−(tn+m−tn+m−1)Lfn+m

)
(x)

and

EPx [f0(Xt0) · · · fn(Xtn)](A.50)

= EPx

[
f0(Ỹ−t0) · · · fn(Ỹ−tn)

]

=
(
e+tnLfne

−(tn−tn−1)Lfn−1 · · · e−(t1−t0)Lf1

)
(x),
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by (A.49) and (A.50) we obtain that
∫
dµp(x)EPx

[
f0(Xt0) · · · fn+m(Xtn+m)

]

= (e+tnLfn · · · e−(t1−t0)Lf1, e
−tn+1Lfn+1 · · · e−(tn+m−tn+m−1)Lfn+m)

= (f1, e
−(t1−t0)Lf2 · · · e−(tn+m−tn+m−1)Lfn+m).

Hence (A.48) follows. 2

From Lemma A.3 it follows that for any s ∈ R,

∫
dµp(x)EPx




n∏

j=0

fj(Xtj )


 =

∫
dµp(x)EPx




n∏

j=0

fj(Xtj+s)


 .

Hence shift invariance (5) is obtained. 2
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