N
N

N

HAL

open science

Formal proof of a polychronous protocol for loosely

time-triggered architectures

Mickael Kerboeuf, David Nowak, Jean-Pierre Talpin

» To cite this version:

Mickael Kerboeuf, David Nowak, Jean-Pierre Talpin. Formal proof of a polychronous protocol for
loosely time-triggered architectures. 5th International Conference on Formal Engineering Methods
(ICFEM 2003), Nov 2003, Singapore, Singapore. pp.359-374, 10.1007/978-3-540-39893-6_21 . hal-
00544516

HAL Id: hal-00544516
https://hal.science/hal-00544516
Submitted on 8 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00544516
https://hal.archives-ouvertes.fr

Formal proof of a polychronous protocol for
loosely time-triggered architectures

Mickagél Kerbceuf!, David Nowak?, and Jean-Pierre Talpin?

! TRISA & INRIA Rennes ({kerboeuf,talpin}@irisa.fr)
? LSV, CNRS & ENS Cachan (nowak@lsv.ens-cachan.fr)

Abstract. The verification of safety-critical systems has become an area
of increasing importance in computer science. The notion of reactive sys-
tem has emerged to concentrate on problems related to the control of
interaction and response-time in mission-critical systems. Synchronous
languages have proved to be well-adapted to the verification of reactive
systems. It is nonetheless commonly argued that real-life systems often
do not satistfy the strong hypotheses assumed by the synchronous ap-
proach: they are not synchronous. Protocols have however been proposed
(e.g. in [1]) to provide an abstract synchronous specification on top of
real-time architectures (e.g. loosely time-triggered architectures or LT-
TA). This abstract model is designed so as to satisfy the synchronous hy-
potheses and meet the implementation architecture constraints. It makes
it possible to design, specify and verify reactive systems in the context of
the synchronous approach. In this aim, the present article formalizes the
LTTA protocol in the theorem prover Coq and proves its correctness.

1 Introduction

The synchronous approach. The verification of safety-critical systems has be-
come an area of increasing importance in computer science because of the con-
stant progression of software developments in sensitive fields like medicine, com-
munication, transportation and (nuclear) energy. The notion of reactive system
has emerged to concentrate on problems related to the control of interaction and
response-time in mission-critical systems. These strong requirements lead to the
development of specific programming languages and related verification tools for
reactive systems. The verification of a reactive system can be done by elaborat-
ing a discrete model of the system (i.e. as a finite-state machine) specified in
a dedicated language (e.g. a synchronous programming language) and then by
checking a property against the model (i.e. model checking). Model checking has
been used at an industrial scale.

The Coq proof-assistant. When a property involves parameters or non-linear
numerical terms, its verification by model checking is not straightforward and
can sometimes be tedious. Another possibility to verify a reactive system is the
use of a theorem prover such as Coq [9]. For instance, the semantics of the

synchronous language Signal [8] has been formalized in Coq and the correctness
of a steam-boiler implemented in Signal has been proved [6]. Coq [9] is a proof-
assistant for higher-order logic. It allows the development of computer programs
that are consistent with their formal specification. The logical language used
in Coq is a variety of type theory, the Calculus of Inductive Constructions [10].
Due to the high expressive capability of this logic, proofs in Coq requires human-
interaction to direct the strategy. The prover can nonetheless automate its most
tedious and mechanical parts. Indeed, decisions procedures are implemented.

Synchronous languages (e.g. Esterel [3], Lustre [5], Signal [2]) have proved
to be well adapted to the verification of reactive systems. Unfortunately, real
systems often do not satisfy the strong hypotheses assumed by the synchronous
approach: they are not synchronous.

Loosely Time-Triggered Architectures. A distributed real-time control system
has a time-triggered nature just because the physical system for control is bound
to physics. A loosely time-triggered architecture (LTTA) is one in which:

— Bus access is quasi-periodic and non-blocking
— Read and write operations are independent
— Values are sustained by the bus and periodically refreshed.

The clock rates at which data are, written to, updated by, read from the bus
are not synchronous: a LTTA is a multi-clocked control system in which clocks
are moreover bound to physical time and deviate one from each others. Here,
the term polychronous refers to this multi-clocked feature. The LTTA has been
extensively investigated in [4] and used in several major industries.

Logical clocks on top of LTTAs. That is why a protocol is proposed in [1] which
provides an abstract level on top of an LTTA. This abstract level is such that the
the synchronous hypotheses are satisfied. It is then possible to design, specify
and verify reactive systems in the context of the synchronous approach.

Outline. In Section 2, we describe the protocol. Section 3 is devoted to previous
work, especially partial proofs of the protocol by model checking. In Section 4, we
explain our formalization in Coq, and we show in section 5 how this approach can
be used as a generic formal framework to prove other implementations. Finally,
we conclude in Section 6.

2 Description of the protocol

The LTTA is composed of three devices, a writer, a bus, and a reader. Each
device d is activated by its own, approximately periodic, clock (denoted by a
function ¢9).

Writer. At the nth clock tick (time t%¥(n)), the writer generates the value x" (n)
and an alternating flag b (n) s.t.:

w, | false ifn=0
b¥(n) = { not b%(n — 1) otherwise

Both values are stored in its output buffer, denoted by y™. At any time ¢, the
writer’s output buffer ¥y contains the last value that was written into it:

yv(t) = (% (n),b"¥(n)), where n = sup{n' | t¥(n') < t} (1)

w w w w

Y Yy Yy
£ (0) l lt“’(l) t""l§2) $ o £ (n)
| | |
I~ e T !

(¥(0),0%(0)) (2™(1),0%(1)) («7(2),6%(2)) (% (n),b% (n))

Bus. At tP(n), the bus bus fetches y% to store in the input buffer of the reader,
denoted by yP. Thus, at any time ¢, the reader input buffer is defined by:

yP(t) = y™(t°(n)) , where n = sup{n’ | t*(n) <t} (2)
y®> P y® y®
tP(n) J/ th(n +1) tb(nL-l- 2) \L - tP(p)
| |

A e —— |

yv(EP(n) V(P (n+1) y(P(n+2)) Y™ (t°(p))
Reader. At t*(n), the reader loads the input buffer y® into the variables z(n)

and b(n):

y" = (2(n),b(n)) = y"(t"(n)) (3)

Then, in a similar manner as for an alternating bit protocol, the reader extracts
x(n) iff b(n) has changed. This is by the sequence m of ticks where b changes:

m(0) =0, m(n) =inf{k >m(n —1) | b(k) #b(k — 1)}
ot (k) = w(m(k)) (4)

t*(n) t*(n+1) c t*(p)

! ! !

y*(n) = y®(t*(n)) y*(n+1) = yP(t"(n+1)) y*(p) = y°(t" (p))

i ot =x

t writer reader tr

yv = (=%, b%) y* = (z,b)
bus .___ sustainyP___ . tP

Example. We illustrate the protocol by the following picture. Notice the role of
the flag b: if the writer sends the same value along % twice, the boolean flag
switch ensures that this value will be read twice on z*. On the opposite, if the
value is sent once along % and read twice along z¥, the boolean flag samples
the excess of reading.

reader ‘x ‘— ‘x
v Q
bus
bW
writer
W W

Flag switches are detected by the reader by a non predictable but bounded
delay according to physical time: perfect physical synchrony is lost.

Correctness of the protocol. We define here the expected behavior. In any exe-
cution of the protocol, the sequences % and ™ must coincide, i.e.,

Vn -zt (n) = z% (n) (5)

In order to prove the correctness of the protocol, we need to prove that, under
some hypotheses on the clocks, the property (5) is true.

3 Previous work

In [1], the following theorem is proved by hand.
Theorem 1 (sampling theorem). The LTTA protocol satisfies the proper-
ty (5) iff the following conditions hold:

w > b, and [EJZ (6)

r
b ?

where w, b and r are the respective periods of the clocks of the writer, the bus
and the reader, and where, for v € R, |x| denotes the largest integer less or
equal to x.

Since w > b then w/2b < |w/b]. Also note that, if w/b is large then |w/b] <
w/b and |w/b] ~ w/b. Hence, if b ~ 0 (i.e. the bus is fast), then the conditions
of theorem 1 reduce to:

w>>b,w>r.

In [1], it was shown using symbolic model-checking that a discrete SIGNAL mod-
el of the LTTA protocol (i.e. a finite-state approximation of the actual protocol)
satisfied the desirable requirement of ensuring a coherent distribution of clocks.
However, the assumptions ensuring correctness of the actual LTTA protocol are
quantitative in nature (tolerance bounds for the relative periods, and time vari-
ations, of the different clocks). For the protocol to be correct, the clocks must
be quasi-periodic (periods can vary within certain specified bounds), and must
relate to each other within some specified bounds.

In order to allow for standard model checking techniques to be used, two
kinds of abstractions of the protocol are necessary:

— It is clear that this protocol and the property to be verified are data-
independent w.r.t. the type X of data which is transmitted. Therefore, it
is sufficient to verify this protocol with a finite set of finite instantiations of
the type X. It is then possible to deduce the correctness of the protocol for
any instantiation of the type X, by applying theorems proved in [7]. Howev-
er,in [1], only the instantiation of X by the type of booleans is considered.
It is not proved and not evident that the correctness of the protocol for this
instantiation is sufficient to prove the correctness of the protocol for any
instantiation of X.

— Conditions (6) are abstraction by conditions on ordering between events.
The first condition, w > b, is abstracted by the predicate:

w > b < never two tV between two tP. (7)

The abstraction of the second condition, |w/b] > r/b requires the following
definition of the first instant (of the bus) 7P(n) where the bus can fetch the
nth writing:

™(n) = min{ t(p) | t°(p) > t*(n) }

The second condition is then restated as the requirement (8) that no two

successive 7P can occur between two successive t*:

w r
[—J > — ¢ never two 7P between two successive t*. (8)

b b

This verification has been done twice: with Lustre and its model checker Lesar;
and with Signal and its model checker Sigali.

4 Abstraction and formalization in Coq

We investigate the use of the theorem prover Coq as a general formal framework
for any implementation of the protocol for LTTAs. In this section we describe
our formalization in Coq. The translation of the specification is quite straight-
forward. We introduce some syntactical elements of Coq to illustrate this point.

4.1 Data, Time and Clocks

Data The type of data is seen as an abstract data type D (Data in Coq). We
do not need any relation or hypothesis on this type. It was not the case in the
proof by model checking [1] where D was supposed to be the type of booleans.

Parameter Data : Set.

Physical time. Physical time is also seen as an abstract data type i.e., a type T
(Time in Coq), a binary predicate < (time_le in Coq) and the assumption that
< is reflexive, transitive and total. We do not assume time is discrete. These are
the only hypotheses on physical time we need for our proof.

Vie T, t<t
Vi, to,t3 € T, 81 <to <tz = t1 <3
th,tzeT,tl <ty V 2 <1

In Coq, it is written

Variable Time : Type.

Variable time_le : Time->Time->Prop.

Hypothesis time_le reflexive :

(t:Time) (time_le t t).

Hypothesis time_le_transitive :

(t1,t2,t3:Time) (time_le t1 t2)->(time_le t2 t3)->(time_le t1 t3).
Hypothesis time_le_total :

(t1,t2:Time) (time_le t1 t2) (time_le t2 t1).

The keywords Variable and Hypothesis mean that it will be possible to instan-
tiate those type (for example, by the type of reals available in Coq), relation and
hypotheses in order to obtain specializations of the proved theorems. We will
then be able to prove stronger theorems depending on particular instantiations.

Clocks. A clock ¢ is modeled by two (possibly partial) functions. The first one,
t. (time in Coq), maps any natural number n in its domain to the instant ¢ € T
when nth sampling tick occurs. The only assumption on this function is that it
is strictly monotonic (monotonicity in Coq). The second function, I, (1Tick in
Coq), maps any time ¢ € 7 to the number of the occurrence of the tick which
immediately precedes the instant ¢. It is defined relationally by its characteristic
property (current_tick in Coq):

VneN - Ve eT - t(n)<z<t(n+1) & n=I(x)

This function enables to access the value carried by the writer or by the bus at
the last tick of its clock.

t.(n) J/ J/ t.(n+1)
1
T~ -

lo(xy))=n l(z2) =n

For instance, if ¢, stands for tP, then [.(z) (noted lp(x) in this case) correspond
to sup{n’ | t?(n') < x}. Thus, we have:

yP(z) = y¥(tP(n)), where n = sup{n’ | tP(n') < x}
=y" (lo(z))

A clock ¢ is defined by the functions t. and [.. In Coq the type of clock is
defined by a structure which embeds time (t.), 1Tick (l.) and two characteristic
properties of ¢, and [., namely monotonicity and current_tick.

Record Clock : Type := {
time :> nat->Time;
monotonicity : (n,n’:nat) (1t n n’)->(time_1t (time n) (time n’));
1Tick : Time->nat;
current_tick :
(n:nat; t:Time)
(time_1t (time n) t)/\(time_le t (time (S n))) <-> n=(1Tick t)
}.
The character “>” is used for the convenient mechanism of implicit coercion
provided by Coq. Suppose that c is of type Clock. c is a record and not a
function. Anyway we can apply it and Coq will instead apply the field time f
the record c. It means we can simply write ¢ n instead of time ¢ n. It improves
the readability.
Some useful results about monotonicity follow from the definition of clocks:

Ve, Vn,Vn' (t.(n) < te(n')) = (n < n')
Ye,Vn,¥n' (n < n') = (t.(n) < t.(n'))

They are stated and proved in Coq:

Lemma monotonicity_inv :

(c:Clock; n,n’:nat)

(time_1t (¢ n) (c n’))->(1t n n’).
Lemma monotonicity.le :

(c:Clock; n,n’:nat)

(le n n’)->(time_le (c n) (c n’)).

The following lemma is a fundamental property of [, (1Tick in Coq). It
follows from its characteristic property. It guarantees that at any time ¢, {.(t)
actually occurs after (or at the same time as) any tick n which itself occurs
before t: Ve,Vn, Vi, (tc(n) <t) = (t.(n) < t.(l(2))).

Lemma following ticks :
(c:Clock; n:nat;t:Time)
(time_1t (c n) t) -> (time_le (c n) (c (1Tick c t))).

4.2 Writer, bus and reader
Following strictly definitions from [1], the three devices are formalized as follows:

Variable tw : Clock.

Variable xw : nat->Data.

Fixpoint bw [n:nat] : bool :=
Cases n of

0 => false
| (5 p) => (negb (bw p))
end.

Definition ywx [t:Time] : Data := (xw (1Tick tw t)).
Definition yw.b [t:Time] : bool := (bw (1Tick tw t)).

We assume a clock tw for the writer and a sequence of values it writes xw.
bw is the sequence of alternating booleans. It is used in order to implement the
alternating bit protocol. yw_x (respectively, yw_b) maps a time ¢ € 7 to the last
written value of xw (respectively, bw) at this time ¢.

We assume a clock tb for the bus. We define yb_x (respectively, yb_b) which
maps a time ¢ € T to the last value (respectively, boolean) received by the bus
at the time t.

Variable tb : Clock.
Definition yb_x [t:Time] : Data :
Definition yb_b [t:Time] : bool :

(yw_x (tb (1Tick tb t))).
(ywb (tb (1Tick tb t))).

We assume a clock tr for the reader. We define x (respectively, y) to be the
nth received value (respectively, boolean) by the reader.

Variable tr : Clock.
Definition x [n:nat] : Data :
Definition b [n:nat] : bool :

(yb_x (tr n)).
(yb-b (tr n)).

4.3 Abstraction

Two kinds of abstractions are needed for the automatic proofs of the protocol.
The carried data are restricted to finitely enumerated types, and the quantitative
assumptions (6) are abstracted into event ordering assumptions (7 and 8). In our
approach, the first abstraction is avoided (thanks to the generic type D), but we
deliberately keep the second one. It appears to be more general than the initial
statement. Indeed, whatever the respective quasi-periods of the writer, the bus
and the reader (w, b and r) may be, it ensure all written values are actually
fetched by the bus, and then read by the reader. Moreover, we aim at defining
in Coq a kind of meta-model for data-flow encodings (like the Lustre and Signal
ones proposed in [1]).

In order to be more general, and for more legibility, we did not introduce
either the counter of bit alternations detected by the reader, nor the sequence
x® of validated values. Actually, b must be specified only for automatic proofs
of the protocol. In this case, the written values and the read values are related,
hence the necessity to implement a mechanism for values discrimination on the
reader’s side. Here, we aim at validating the protocol whatever the mechanism
b for discrimination may be. In Coq, we can relate the instants when a value
is written with the instants when a value is read. We suppose a part of the
transmitted values enables the reader to sample correctly the received values.
This is the case with b. Then, the correctness property (5) which handles values
follows.

We define a function called read_index which maps to a given reading tick
k the writing tick read_indez(k) corresponding to the instant (on the writer’s
clock) when the writer emitted the value that can be read at the instant & (on
the reader’s clock). The following figure illustrates this function:

£ (n) k) tk+1) ¥ (n+1) (k +2)

tP tP tP \Ltb

tP tP J/tb tbj/tb tP tP
|
[

read_index (k) =read_index(k+1)=n read_indez(k+2)=n+1

This function is defined as follows:

read_index : ‘N - N

ke L (P (I (t7 (K))))
The moment of the kth reading tick is ¢* (k). The last tick on the bus at this time
(In(t*(k))) occurs at t?(Ip(t*(k))). The carried value at that time corresponds
to the value sent by the writer at its previous tick: Iy (t®(Ip (t*(k)))). According
to the protocol statement, we actually have the following relation:

(@ (k),b()

y®(t* (k)

y (t (lb(tr()

(2% (L (P (Iu(t7(K))))) , O (Lw (> (In(t* (K))))))
= (z% (read index(k)), b (read_index(k)))

Vk e N,

Now, we focus on read_index, which relates the instants when a value is written
with the instants when a value is read. To prove the correctness of the protocol,
we only have to prove that read_indezx is increasing, and that it covers N (so
that all written values are actually read):

Vki, ke € N, k1 < ko = read-index(k,) < read-index (k)
Vn € N, 3k € N st. n = read-index (k)

Thus, all written values are actually read (and possibly more than once) in a
correct order. Whatever the mechanism b for discrimination may be, it is possible
to validate x(0) and each x(k+1) such that b(k+1) and b(k) are different.

VneN, Ik eN, st. 2% (n) =x(k) A ¥ (n) =0b(k)

The property (5) follows when Vi € N, bW (k+1) # bW (k). It is actually the case
with the alternating bit protocol.

4.4 Correctness of the protocol

This result holds under the specific conditions (7) and (8). We state them in
Coq with the unique following assumption:

vneN, 3k €N, st. 7°(n) < t°(k) < 7°(n+1)

It guarantees that all written values are actually fetched by the bus (7°(n)
always exists, and 7°(n+1) # 7P(n) since there is at least one instant t*(k)
which occurs in between them), and all fetched values are actually read by the
reader (7P (n) < t*(k) < 7P(n+1)). This assumption is illustrated by the following
picture:

() * (k) ™ (n+1)
t(p) l t°(p')

| | | | | | | | | |

1 1 1 1 1 1 1 1 1 1

Tb_(n) T_b(n+ 1)

j reading of the nth value H

To state this condition, we formally define 7% as follows:

(n) = t>(k)
VneN, 3k €N, st. { At¥(n) < t°(k) (9)
AVE €N, k' <k=tP(k') <t¥(n)

5 A formal framework for any implementation

Principles The Coq encoding of the protocol for LTTAs we described in the
previous section can be seen as a high level abstracted implementation. It is
founded on the smallest set of physical requirements (e.g. time is an abstract
domain which only comes with a reflexive, transitive and total relation) and
logical requirements (e.g. no two successive writing ticks can occur without a
bus tick in between them). Thus, any other implementation must provide at
least these requirements. Its correctness then follows.

We can refine this approach by adding an intermediate level between Coq
and the analyzed implementation. This interface details the expected form of
the time domain (variable 7 in Coq) and its order (time_le in Coq), and the
data domain (variable D in Coq). It must also make explicit the clocks, and the
first instant 7P (n) where the bus can fetch the nth writing. Then the hypotheses
concerning the time domain must be proved, and the assumptions concerning
the correctness must be restated. To prove the correctness of any implementation
built upon the model denoted by the intermediate level, we only have to prove
its specification implies the assumptions of its interface.

Ezamples Consider the manual proof of theorem 1 in [1]. It is built upon the
explicit periods w, b and 7 (respectively of the writer, the bus and the reader)
and the phases 1 and ¢ (respectively of the writer and the reader). The time
domain (continuous) is denoted by R. The logical statement of 7P (9) in Coq is
implied by the functional statement 7°(n) = [(n + ¢)w] + 1. In this approach,
the correctness of the protocol comes from:

w>b,and [%J > % = Vnel, JkeN, st. 7°(n) < t°(k) < 1°(n+1)
Now, in [1], another theorem is stated in order to take into account approzimately
periodic clocks. W, t? and ¥ are restated including jitter terms 6% and §* which
denote the variations within a certain bound of w and b during execution. In this
approach, the time domain and its order, the data domain and the clocks have
the same nature as in the first approach without jitter. All we have to prove is
the following property:

w(l—20")>1,and |w(l—20")]

> (14 20%)
=svnel, kel st. 7P(n) < t*(k) < 7

P(n+1)

The following picture illustrates the use of the Coq approach as a generic formal
framework to prove these two implementations:

LTTA in Coq

instantiates Time
implies hypotheses on Time
| LTTA with time : R |

instantiates Clock
implies the conditions of correctness

’ w,r, b, p H w,r, b, Y, p, 0V, 0" ‘

5.1 LTTA in Signal

We illustrate here the same principle for the Signal solution suggested in [1]. We
first define the intermediate level of any synchronous data-flow approach. Then,
we show how proving the Signal implementation matches these requirements.

To any device d of a LTTA is associated a clock which provides the sampling
instants. It is possible to access a value at any time thanks to the function
lq associated to the device d which enables to access the value carried at the
previous tick:

d(la(t)) d(la(t"))
carried values d 3 time (continuous)
ld ld I ld
|
clock t4) time (continuous)

fetched values f9 time (continuous)

|

|

|

|

|

|

T L
| |
| |
| |
| |
| |
| |

F)) FAE")

Data-flow synchronous approaches In these approaches, the time continuum is
abstracted. Only the notions of precedence and simultaneity are relevant. It is
therefore very simple to abstract the time domain using the sampling events.
In synchronous data-flow approaches, the clock t4 only defines the ordered set
of sampling instants, and the carried values d are represented by a signal syn-
chronized with ¢4. In order to make it possible to fetc}} the carried values at any
time, we introduce a signal f9 whose clock! (noted f4) is completely free. For
that purpose, we use the cell construct of Signal. It enables to memorize the last
value carried by a given signal. f9 can be simply defined as follows:

f4 = (d cell f4) when fd

The following picture illustrates this abstraction:

carried valuesd _ _ _ _ | _ _ _ __ _ _ _ __ ____l_________ . events order

clock ¢4 events order

fetched values f9 events order

free clock)

fd

This abstraction can be encoded in Coq using the translation scheme detailed
in [8].

!in a data-flow synchronous approach, by clock we mean the ordered set of instants

where a signal is present

LTTA in Signal In the last step, we prove the specification suggested in [1]
guarantees that no two successive writing ticks can occur without a bus tick in
between them, and that no two successive 7P can occur without a reading tick
in between them. This implies the condition for correctness, i.e. Yn € N, Jk €
N, st. 7P(n) < #*(k) < 7P(n+1). It can be easily proved using the Propo-
sitional Linear Temporal Logic (PLTL) also encoded in Coq [8]. This property
comes from the shift_2 process. It introduces an interleaving constraint upon the
reader and the writer clocks. The following picture illustrates this approach and
underlines the use of Coq as a general formal framework to prove de correctness:

LTTA in Coq

instantiates Time
implies hypotheses on Time

] LTTA with time : discrete \

instantiates Clock
implies the conditions of correctness

] LTTA in Signal \

6 Conclusions and future work

We gave a formal proof of the correctness of a protocol for loosely time-triggered
architectures using the Coq proof-assistant. Unlike [1], we did not have to re-
strict the model of the protocol to that of a finite-state system: we introduced a
minimal set of assumptions about physical time. Since any other implementation
of the LTTA protocol must at least guarantee these minimal requirements, our
Coq model can be used as a generic formal proof framework. We illustrated this
aspect by considering the Signal implementation of [1].

Directions of further studies comprise the specialization of our theorems by
instantiating the abstract data type for time by the type for reals provided in
Coq. Using the library of theorems and the decision procedures for reals, we
could prove the numerical property from [1]. Another direction is to consider
the verification of the synchronous data-flow implementation of the protocol. It
could be done using the formalization of Signal in Coq and its library of theorem
[8]. Finally, an attractive aspect of the use of Coq is the extraction of a reference
implementation of the protocol. The only difficulty is that this protocol involves
partial function that are difficult to deal with in Coq?2.

2 http://pauillac.inria.fr/pipermail/coq-club/2002/thread . html#569

References

1.

10.

A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-P. Talpin, and S. Tri-
pakis. A protocol for loosely time-triggered architectures. In Embedded Software
Conference (EMSOFT’2002), volume 2491 of Lecture Notes in Computer Science,
2002.

A. Benveniste and P. Le Guernic. Synchronous Programming with Events and
Relations: the SIGNAL Language and its Semantics. Science of Computer Pro-
gramming, 16(2):103-149, 1991.

G. Berry and G. Gonthier. The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming, 19:87—
152, 1992.

. P. Caspi, C. Mazuet, R. Salem, and D. Weber. Formal design of distributed control

systems with lustre. In Computer Safety, Reliability and Security, 18th Internation-
al Conference, SAFECOMP’99, Toulouse, France, September, 1999, Proceedings,
volume 1698 of Lecture Notes in Computer Science, 1999.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Dataflow
Programming Language LUSTRE. Proc. of the IEEE, 79(9):1305-1320, September
1991.

M. Kerbeeuf, D. Nowak, and J.-P. Talpin. Specification and verification of a steam-
boiler with Signal-Coq. In Proceedings of the 13th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs 2000), volume 1869 of Lecture
Notes in Computer Science, pages 356—-371. Springer-Verlag, Aug. 2000.

R. Lazi¢ and D. Nowak. A unifying approach to data-independence. In Pro-
ceedings of the 11th International Conference on Concurrency Theory (CONCUR
2000), volume 1877 of Lecture Notes in Computer Science, pages 581-595. Springer-
Verlag, Aug. 2000.

D. Nowak, J.-R. Beauvais, and J.-P. Talpin. Co-inductive axiomatization of a
synchronous language. In Proceedings of the 11th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs’98), volume 1479 of Lecture
Notes in Computer Science, pages 387-399. Springer-Verlag, Sept. 1998.

The Coq development team. The Coq proof assistant reference manual : Version
7.3.1. Technical report, INRIA, 2002.

B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Université
Paris VII, 1994.

A Model of the LTTA protocol in SIGNAL

An overview of SIGNAL In SIGNAL, a process P consists of simultaneous equa-
tions over signals. A signal z describes a possibly infinite flow of discretely-timed
values v. An equation x = fy denotes a relation between a sequence of operands
y and a sequence of results « by an operator f. Synchronous composition P |Q
consists of the simultaneous solution of the equations P and @ in time. SIGNAL
requires three primitive operators: pre references the previous value of a signal
in time (the equation x = prey or x = y$linitv initially defines = by v and
then by the previous value of y in time), when samples a signal (the equation
x = ywhen z defines & by y when z is true) and default merges two signals (the
equation x = ydefault z defines « by y when y is present and by z otherwise).

P:=x:=fy|P|Q| Pl feF D {prev|v € V}U{when, default, ...}

As an example, we consider the definition of a counter: Count. It accepts an
input event rst and delivers the integer output val. A local variable cnt, initialized
to 0, stores the previous value of val (equation cnt := val$1 init 0). When the
event rst occurs, val is reset to 0 (i.e. 0 when rst). Otherwise, cnt is incremented
(i.e. (cnt + 1)). The activity of Count is governed by the clock of its output val
which differs from that of its input rst.

process Count = (? event rst ! integer val) time | t1 to t3 ta ts te t7 ts to tio t11 t12
(| ent := val$l init O rst t 3 it
| val := (0 when rst) default (cnt + 1) val|1 012340123 0 0
|) where integer cnt end; ecnt|0 101234012 3 0

SIGNAL implementation of the LTTA The methodology used in SIGNAL to
implement the LTTA consists of the progressive and compositional refinement
of the requirement expressed by theorem 1: 2" (n) = z¥(n),¥n > 0 that preserves
the property of flow equivalence: xr and xw hold the same successive values. This
yields the process lItta.

process Itta = (? boolean xw; event cw, cb, cr ! boolean xr, i, zi)
(] (xb, bb, sbw) := bus (xw, writer(xw, cw), cb)
| (xr, br, sbb) := reader (xb, bb, cr)
| (i, zi) := prove (sbb, br, cr)
| objective (sbw, sbb, cb, cr)
|) where boolean bw, xb, bb, sbw, sbb, br;

The process Itta is decomposed into its three components reader, bus and
writer connected by one-place buffers. The writer accepts an input % and defines
the boolean flag b™ that will be carried along with it over the bus. The bus
forward its inputs % and b to the reader as the result P and b® of a one-place
buffer. The reader loads its inputs P and bP from the bus and samples z* from
zP upon a switch of b°. Each of the processes reader, bus and writer operate at
independent (input) clocks ¢V, ¢® and c*.

process writer = (? boolean xw; event cw ! boolean bw)
(] bw "= xw "= cw | bw := not (bw$1 init true) |);
process bus = (? boolean xw, bw; event cb ! boolean xb, bb, sbw)
(] (xb, bb, sbw) := buffer (xw, bw, cb) |);
process reader = (? boolean xb, bb; event cr ! boolean xr, br, sbb)
(] (yr, br, sbb) := buffer (xb, bb, cr) | xr := yr when switch (br) |)
where boolean yr;
end;

The key switch process emits an output signal c iff two successive occurrences
2b and b of the boolean flag differ (notice the importance of the initial condition:
zb must be initialized to true).

process switch = (? boolean b ! event c)
(] zb := b$1 init true | ¢ := (when b when not zb) default (when not b when zb) |)
where boolean zb;

end;

We now detail the definition of the desynchronizing one-place buffer which
simulates asynchrony. The process buffer alternates between the receipt of an
input (z,b) and the emission of an output (br,®). The alternate process makes
these operations exclusive by using a boolean flip-flop signal b (notice, again, the
importance of the initial condition: zb must be initialized to false for receive to
precede send). The process current sustains its input signals (wr, ub) and allows
to retrieve them at a given clock c.

process buffer = (? boolean x, b ; event c | boolean bx, bb, sb)
(] (sx, sb) := shift (x, b) | (bx, bb) := current (sx, sb,) |)
where boolean sx;
process alternate = (? boolean x, sx !)
(] x "= whenb | sx "= when not b | b := not (b$1 init false) |)
where boolean b; end;
process shift = (? boolean x, b ! boolean sx, sb)
(] (sx, sb) := current (x, b, “sb) | alternate (x, sx) |);

end;
process current = (? boolean wx, wb; event c ! boolean rx, rb)
(] rx := (wx cell cinit false) when c | rb := (wb cell c init true) when c |);

The process buffer introduces an unspecified delay (materialized by the input
clock ¢), hence we can synchronize it with the output of the protocol xr without
affecting the bus or the writer, and check whether they are equal.

