
HAL Id: hal-00544516
https://hal.science/hal-00544516

Submitted on 8 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal proof of a polychronous protocol for loosely
time-triggered architectures

Mickael Kerboeuf, David Nowak, Jean-Pierre Talpin

To cite this version:
Mickael Kerboeuf, David Nowak, Jean-Pierre Talpin. Formal proof of a polychronous protocol for
loosely time-triggered architectures. 5th International Conference on Formal Engineering Methods
(ICFEM 2003), Nov 2003, Singapore, Singapore. pp.359-374, �10.1007/978-3-540-39893-6_21�. �hal-
00544516�

https://hal.science/hal-00544516
https://hal.archives-ouvertes.fr

Formal proof of a polychronous protocol forloosely time-triggered architecturesMicka�el Kerb�uf1, David Nowak2, and Jean-Pierre Talpin11 IRISA & INRIA Rennes (fkerboeuf,talping@irisa.fr)2 LSV, CNRS & ENS Cachan (nowak@lsv.ens-cachan.fr)Abstract. The veri�cation of safety-critical systems has become an areaof increasing importance in computer science. The notion of reactive sys-tem has emerged to concentrate on problems related to the control ofinteraction and response-time in mission-critical systems. Synchronouslanguages have proved to be well-adapted to the veri�cation of reactivesystems. It is nonetheless commonly argued that real-life systems oftendo not satisfy the strong hypotheses assumed by the synchronous ap-proach: they are not synchronous. Protocols have however been proposed(e.g. in [1]) to provide an abstract synchronous speci�cation on top ofreal-time architectures (e.g. loosely time-triggered architectures or LT-TA). This abstract model is designed so as to satisfy the synchronous hy-potheses and meet the implementation architecture constraints. It makesit possible to design, specify and verify reactive systems in the context ofthe synchronous approach. In this aim, the present article formalizes theLTTA protocol in the theorem prover Coq and proves its correctness.1 IntroductionThe synchronous approach. The veri�cation of safety-critical systems has be-come an area of increasing importance in computer science because of the con-stant progression of software developments in sensitive �elds like medicine, com-munication, transportation and (nuclear) energy. The notion of reactive systemhas emerged to concentrate on problems related to the control of interaction andresponse-time in mission-critical systems. These strong requirements lead to thedevelopment of speci�c programming languages and related veri�cation tools forreactive systems. The veri�cation of a reactive system can be done by elaborat-ing a discrete model of the system (i.e. as a �nite-state machine) speci�ed ina dedicated language (e.g. a synchronous programming language) and then bychecking a property against the model (i.e. model checking). Model checking hasbeen used at an industrial scale.The Coq proof-assistant. When a property involves parameters or non-linearnumerical terms, its veri�cation by model checking is not straightforward andcan sometimes be tedious. Another possibility to verify a reactive system is theuse of a theorem prover such as Coq [9]. For instance, the semantics of the

synchronous language Signal [8] has been formalized in Coq and the correctnessof a steam-boiler implemented in Signal has been proved [6]. Coq [9] is a proof-assistant for higher-order logic. It allows the development of computer programsthat are consistent with their formal speci�cation. The logical language usedin Coq is a variety of type theory, the Calculus of Inductive Constructions [10].Due to the high expressive capability of this logic, proofs in Coq requires human-interaction to direct the strategy. The prover can nonetheless automate its mosttedious and mechanical parts. Indeed, decisions procedures are implemented.Synchronous languages (e.g. Esterel [3], Lustre [5], Signal [2]) have provedto be well adapted to the veri�cation of reactive systems. Unfortunately, realsystems often do not satisfy the strong hypotheses assumed by the synchronousapproach: they are not synchronous.Loosely Time-Triggered Architectures. A distributed real-time control systemhas a time-triggered nature just because the physical system for control is boundto physics. A loosely time-triggered architecture (LTTA) is one in which:{ Bus access is quasi-periodic and non-blocking{ Read and write operations are independent{ Values are sustained by the bus and periodically refreshed.The clock rates at which data are, written to, updated by, read from the busare not synchronous: a LTTA is a multi-clocked control system in which clocksare moreover bound to physical time and deviate one from each others. Here,the term polychronous refers to this multi-clocked feature. The LTTA has beenextensively investigated in [4] and used in several major industries.Logical clocks on top of LTTAs. That is why a protocol is proposed in [1] whichprovides an abstract level on top of an LTTA. This abstract level is such that thethe synchronous hypotheses are satis�ed. It is then possible to design, specifyand verify reactive systems in the context of the synchronous approach.Outline. In Section 2, we describe the protocol. Section 3 is devoted to previouswork, especially partial proofs of the protocol by model checking. In Section 4, weexplain our formalization in Coq, and we show in section 5 how this approach canbe used as a generic formal framework to prove other implementations. Finally,we conclude in Section 6.2 Description of the protocolThe LTTA is composed of three devices, a writer, a bus, and a reader. Eachdevice d is activated by its own, approximately periodic, clock (denoted by afunction td).

Writer. At the nth clock tick (time tw(n)), the writer generates the value xw(n)and an alternating
ag bw(n) s.t.:bw(n) = � false if n = 0not bw(n� 1) otherwiseBoth values are stored in its output bu�er, denoted by yw. At any time t, thewriter's output bu�er yw contains the last value that was written into it:yw(t) = (xw(n); bw(n)) , where n = supfn0 j tw(n0) < tg (1)
(xw(0); bw(0)) (xw(1); bw(1)) (xw(2); bw(2)) (xw(n); bw(n)). . .yw yw ywywtw(1) tw(2)tw(0) tw(n)
Bus. At tb(n), the bus bus fetches yw to store in the input bu�er of the reader,denoted by yb. Thus, at any time t, the reader input bu�er is de�ned by:yb(t) = yw(tb(n)) , where n = supfn0 j tb(n0) < tg (2)tb(n+ 1) tb(n+ 2)tb(n) tb(p)yw(tb(n)) yw(tb(n+ 1)) yw(tb(n+ 2)) yw(tb(p)). . .yb yb ybyb
Reader. At tr(n), the reader loads the input bu�er yb into the variables x(n)and b(n): yr = (x(n); b(n)) = yb(tr(n)) (3)Then, in a similar manner as for an alternating bit protocol, the reader extractsx(n) i� b(n) has changed. This is by the sequence m of ticks where b changes:m(0) = 0 ; m(n) = inffk > m(n� 1) j b(k) 6= b(k � 1)gxr(k) = x(m(k)) (4). . .tr(n+ 1)tr(n) tr(p)yr(n) = yb(tr(n)) yr(p) = yb(tr(p))yr(n+1) = yb(tr(n+1))

writer reader? ?? ?� sustain yb - �bus
xwtwyw = (xw; bw) xr = xtryr = (x; b)tbExample. We illustrate the protocol by the following picture. Notice the role ofthe
ag b: if the writer sends the same value along xw twice, the boolean
agswitch ensures that this value will be read twice on xr. On the opposite, if thevalue is sent once along xw and read twice along xr, the boolean
ag samplesthe excess of reading.

writerbusreader
6 6
6 6 6

xw xw
xr xr

bwxw
Flag switches are detected by the reader by a non predictable but boundeddelay according to physical time: perfect physical synchrony is lost.Correctness of the protocol. We de�ne here the expected behavior. In any exe-cution of the protocol, the sequences xw and xr must coincide, i.e.,8n � xr(n) = xw(n) (5)In order to prove the correctness of the protocol, we need to prove that, undersome hypotheses on the clocks, the property (5) is true.3 Previous workIn [1], the following theorem is proved by hand.Theorem 1 (sampling theorem). The LTTA protocol satis�es the proper-ty (5) i� the following conditions hold:w � b , and jwb k � rb ; (6)

where w, b and r are the respective periods of the clocks of the writer, the busand the reader, and where, for x 2 R, bxc denotes the largest integer less orequal to x.Since w � b then w=2b < bw=bc. Also note that, if w=b is large then bw=bc �w=b and bw=bc � w=b. Hence, if b � 0 (i.e. the bus is fast), then the conditionsof theorem 1 reduce to: w � b ; w > r:In [1], it was shown using symbolic model-checking that a discrete SIGNAL mod-el of the LTTA protocol (i.e. a �nite-state approximation of the actual protocol)satis�ed the desirable requirement of ensuring a coherent distribution of clocks.However, the assumptions ensuring correctness of the actual LTTA protocol arequantitative in nature (tolerance bounds for the relative periods, and time vari-ations, of the di�erent clocks). For the protocol to be correct, the clocks mustbe quasi-periodic (periods can vary within certain speci�ed bounds), and mustrelate to each other within some speci�ed bounds.In order to allow for standard model checking techniques to be used, twokinds of abstractions of the protocol are necessary:{ It is clear that this protocol and the property to be veri�ed are data-independent w.r.t. the type X of data which is transmitted. Therefore, itis su�cient to verify this protocol with a �nite set of �nite instantiations ofthe type X . It is then possible to deduce the correctness of the protocol forany instantiation of the type X , by applying theorems proved in [7]. Howev-er,in [1], only the instantiation of X by the type of booleans is considered.It is not proved and not evident that the correctness of the protocol for thisinstantiation is su�cient to prove the correctness of the protocol for anyinstantiation of X .{ Conditions (6) are abstraction by conditions on ordering between events.The �rst condition, w � b, is abstracted by the predicate:w � b$ never two tw between two tb. (7)The abstraction of the second condition, bw=bc � r=b requires the followingde�nition of the �rst instant (of the bus) �b(n) where the bus can fetch thenth writing: �b(n) = minf tb(p) j tb(p) > tw(n) gThe second condition is then restated as the requirement (8) that no twosuccessive �b can occur between two successive tr:jwb k � rb $ never two �b between two successive tr. (8)This veri�cation has been done twice: with Lustre and its model checker Lesar;and with Signal and its model checker Sigali.

4 Abstraction and formalization in CoqWe investigate the use of the theorem prover Coq as a general formal frameworkfor any implementation of the protocol for LTTAs. In this section we describeour formalization in Coq. The translation of the speci�cation is quite straight-forward. We introduce some syntactical elements of Coq to illustrate this point.4.1 Data, Time and ClocksData The type of data is seen as an abstract data type D (Data in Coq). Wedo not need any relation or hypothesis on this type. It was not the case in theproof by model checking [1] where D was supposed to be the type of booleans.Parameter Data : Set.Physical time. Physical time is also seen as an abstract data type i.e., a type T(Time in Coq), a binary predicate � (time le in Coq) and the assumption that� is re
exive, transitive and total. We do not assume time is discrete. These arethe only hypotheses on physical time we need for our proof.8t 2 T ; t � t8t1; t2; t3 2 T ; t1 � t2 � t3) t1 � t38t1; t2 2 T ; t1 � t2 _ t2 � t1In Coq, it is writtenVariable Time : Type.Variable time le : Time->Time->Prop.Hypothesis time le reflexive :(t:Time)(time le t t).Hypothesis time le transitive :(t1,t2,t3:Time)(time le t1 t2)->(time le t2 t3)->(time le t1 t3).Hypothesis time le total :(t1,t2:Time)(time le t1 t2)(time le t2 t1).The keywords Variable and Hypothesismean that it will be possible to instan-tiate those type (for example, by the type of reals available in Coq), relation andhypotheses in order to obtain specializations of the proved theorems. We willthen be able to prove stronger theorems depending on particular instantiations.Clocks. A clock c is modeled by two (possibly partial) functions. The �rst one,tc (time in Coq), maps any natural number n in its domain to the instant t 2 Twhen nth sampling tick occurs. The only assumption on this function is that itis strictly monotonic (monotonicity in Coq). The second function, lc (lTick inCoq), maps any time t 2 T to the number of the occurrence of the tick whichimmediately precedes the instant t. It is de�ned relationally by its characteristicproperty (current tick in Coq):8n 2 N � 8x 2 T � tc(n) < x � tc(n+ 1) , n = lc(x)

This function enables to access the value carried by the writer or by the bus atthe last tick of its clock.tc(n) tc(n+ 1)x1 x2
lc(x1) = n lc(x2) = nFor instance, if tc stands for tb, then lc(x) (noted lb(x) in this case) correspondto supfn0 j tb(n0) < xg. Thus, we have:yb(x) = yw(tb(n)) , where n = supfn0 j tb(n0) < xg= yw(lb(x))A clock c is de�ned by the functions tc and lc. In Coq the type of clock isde�ned by a structure which embeds time (tc), lTick (lc) and two characteristicproperties of tc and lc, namely monotonicity and current tick.Record Clock : Type := ftime :> nat->Time;monotonicity : (n,n':nat)(lt n n')->(time lt (time n) (time n'));lTick : Time->nat;current tick :(n:nat; t:Time)(time lt (time n) t)/n(time le t (time (S n))) <-> n=(lTick t)g.The character \>" is used for the convenient mechanism of implicit coercionprovided by Coq. Suppose that c is of type Clock. c is a record and not afunction. Anyway we can apply it and Coq will instead apply the �eld time fthe record c. It means we can simply write c n instead of time c n. It improvesthe readability.Some useful results about monotonicity follow from the de�nition of clocks:8c;8n;8n0 (tc(n) < tc(n0))) (n < n0)8c;8n;8n0 (n � n0)) (tc(n) � tc(n0))They are stated and proved in Coq:Lemma monotonicity inv :(c:Clock; n,n':nat)(time lt (c n) (c n'))->(lt n n').Lemma monotonicity le :(c:Clock; n,n':nat)(le n n')->(time le (c n) (c n')).The following lemma is a fundamental property of lc (lTick in Coq). Itfollows from its characteristic property. It guarantees that at any time t, lc(t)actually occurs after (or at the same time as) any tick n which itself occursbefore t: 8c;8n;8t; (tc(n) < t)) (tc(n) � tc(lc(t))).

Lemma following ticks :(c:Clock; n:nat;t:Time)(time lt (c n) t) -> (time le (c n) (c (lTick c t))).4.2 Writer, bus and readerFollowing strictly de�nitions from [1], the three devices are formalized as follows:Variable tw : Clock.Variable xw : nat->Data.Fixpoint bw [n:nat] : bool :=Cases n ofO => false| (S p) => (negb (bw p))end.Definition yw x [t:Time] : Data := (xw (lTick tw t)).Definition yw b [t:Time] : bool := (bw (lTick tw t)).We assume a clock tw for the writer and a sequence of values it writes xw.bw is the sequence of alternating booleans. It is used in order to implement thealternating bit protocol. yw x (respectively, yw b) maps a time t 2 T to the lastwritten value of xw (respectively, bw) at this time t.We assume a clock tb for the bus. We de�ne yb x (respectively, yb b) whichmaps a time t 2 T to the last value (respectively, boolean) received by the busat the time t.Variable tb : Clock.Definition yb x [t:Time] : Data := (yw x (tb (lTick tb t))).Definition yb b [t:Time] : bool := (yw b (tb (lTick tb t))).We assume a clock tr for the reader. We de�ne x (respectively, y) to be thenth received value (respectively, boolean) by the reader.Variable tr : Clock.Definition x [n:nat] : Data := (yb x (tr n)).Definition b [n:nat] : bool := (yb b (tr n)).4.3 AbstractionTwo kinds of abstractions are needed for the automatic proofs of the protocol.The carried data are restricted to �nitely enumerated types, and the quantitativeassumptions (6) are abstracted into event ordering assumptions (7 and 8). In ourapproach, the �rst abstraction is avoided (thanks to the generic type D), but wedeliberately keep the second one. It appears to be more general than the initialstatement. Indeed, whatever the respective quasi-periods of the writer, the busand the reader (w, b and r) may be, it ensure all written values are actuallyfetched by the bus, and then read by the reader. Moreover, we aim at de�ningin Coq a kind of meta-model for data-
ow encodings (like the Lustre and Signalones proposed in [1]).

In order to be more general, and for more legibility, we did not introduceeither the counter of bit alternations detected by the reader, nor the sequencexr of validated values. Actually, b must be speci�ed only for automatic proofsof the protocol. In this case, the written values and the read values are related,hence the necessity to implement a mechanism for values discrimination on thereader's side. Here, we aim at validating the protocol whatever the mechanismb for discrimination may be. In Coq, we can relate the instants when a valueis written with the instants when a value is read. We suppose a part of thetransmitted values enables the reader to sample correctly the received values.This is the case with b. Then, the correctness property (5) which handles valuesfollows.We de�ne a function called read index which maps to a given reading tickk the writing tick read index(k) corresponding to the instant (on the writer'sclock) when the writer emitted the value that can be read at the instant k (onthe reader's clock). The following �gure illustrates this function:tw(n) tw(n+1)tb tb tb tb tb tb tb tb tb tb tbtr(k) tr(k + 1) tr(k + 2)
read index(k)=read index(k+1)=n read index(k+2)=n+1This function is de�ned as follows:read index : ����N ! Nk 7! lw(tb(lb(tr(k))))The moment of the kth reading tick is tr(k). The last tick on the bus at this time(lb(tr(k))) occurs at tb(lb(tr(k))). The carried value at that time correspondsto the value sent by the writer at its previous tick: lw(tb(lb(tr(k)))). Accordingto the protocol statement, we actually have the following relation:8k 2 N; (x(k); b(k))= yb(tr(k))= yw(tb(lb(tr(k))))= � xw(lw(tb(lb(tr(k))))) ; bw(lw(tb(lb(tr(k))))) �= (xw(read index(k)); bw(read index(k)))Now, we focus on read index, which relates the instants when a value is writtenwith the instants when a value is read. To prove the correctness of the protocol,we only have to prove that read index is increasing, and that it covers N (sothat all written values are actually read):8k1; k2 2 N; k1 < k2) read index(k1) � read index(k2)8n 2 N; 9k 2 N st: n = read index(k)

Thus, all written values are actually read (and possibly more than once) in acorrect order. Whatever the mechanism b for discrimination may be, it is possibleto validate x(0) and each x(k+1) such that b(k+1) and b(k) are di�erent.8n 2 N; 9k 2 N; st: xw(n) = x(k) ^ bw(n) = b(k)The property (5) follows when 8k 2 N, bw(k+1) 6= bw(k). It is actually the casewith the alternating bit protocol.4.4 Correctness of the protocolThis result holds under the speci�c conditions (7) and (8). We state them inCoq with the unique following assumption:8n 2 N; 9k 2 N; st: �b(n) < tr(k) � �b(n+1)It guarantees that all written values are actually fetched by the bus (�b(n)always exists, and �b(n+1) 6= �b(n) since there is at least one instant tr(k)which occurs in between them), and all fetched values are actually read by thereader (�b(n) < tr(k) � �b(n+1)). This assumption is illustrated by the followingpicture:tw(n) tw(n+1)tb(p)�b(n) reading of the nth value tb(p0)�b(n+1)tr(k)
To state this condition, we formally de�ne �b as follows:8n 2 N; 9k 2 N; st: 8<: �b(n) = tb(k)^ tw(n) < tb(k)^ 8k0 2 N; k0 < k) tb(k0) � tw(n) (9)5 A formal framework for any implementationPrinciples The Coq encoding of the protocol for LTTAs we described in theprevious section can be seen as a high level abstracted implementation. It isfounded on the smallest set of physical requirements (e.g. time is an abstractdomain which only comes with a re
exive, transitive and total relation) andlogical requirements (e.g. no two successive writing ticks can occur without abus tick in between them). Thus, any other implementation must provide atleast these requirements. Its correctness then follows.

We can re�ne this approach by adding an intermediate level between Coqand the analyzed implementation. This interface details the expected form ofthe time domain (variable T in Coq) and its order (time le in Coq), and thedata domain (variable D in Coq). It must also make explicit the clocks, and the�rst instant �b(n) where the bus can fetch the nth writing. Then the hypothesesconcerning the time domain must be proved, and the assumptions concerningthe correctness must be restated. To prove the correctness of any implementationbuilt upon the model denoted by the intermediate level, we only have to proveits speci�cation implies the assumptions of its interface.Examples Consider the manual proof of theorem 1 in [1]. It is built upon theexplicit periods w, b and r (respectively of the writer, the bus and the reader)and the phases and ' (respectively of the writer and the reader). The timedomain (continuous) is denoted by R. The logical statement of �b (9) in Coq isimplied by the functional statement �b(n) = b(n+)wc + 1. In this approach,the correctness of the protocol comes from:w � b , and jwb k � rb) 8n 2 N; 9k 2 N; st: �b(n) < tr(k) � �b(n+1)Now, in [1], another theorem is stated in order to take into account approximatelyperiodic clocks. tw, tb and tr are restated including jitter terms �w and �r whichdenote the variations within a certain bound of w and b during execution. In thisapproach, the time domain and its order, the data domain and the clocks havethe same nature as in the �rst approach without jitter. All we have to prove isthe following property:w(1� 2�w) � 1 , and bw(1� 2�w)c � r(1 + 2�r)) 8n 2 N; 9k 2 N; st: �b(n) < tr(k) � �b(n+1)The following picture illustrates the use of the Coq approach as a generic formalframework to prove these two implementations:
LTTA with time : Rw; r; b; ; '; �w; �rw; r; b; ; '

LTTA in Coq
implies the conditions of correctnessinstantiates Clockimplies hypotheses on Timeinstantiates Time

5.1 LTTA in SignalWe illustrate here the same principle for the Signal solution suggested in [1]. We�rst de�ne the intermediate level of any synchronous data-
ow approach. Then,we show how proving the Signal implementation matches these requirements.

To any device d of a LTTA is associated a clock which provides the samplinginstants. It is possible to access a value at any time thanks to the functionld associated to the device d which enables to access the value carried at theprevious tick: time (continuous)time (continuous)time (continuous)fd(t) fd(t0) fd(t00)
d(ld(t)) d(ld(t00))ld ld ldfetched values fdclock tdcarried values d

Data-
ow synchronous approaches In these approaches, the time continuum isabstracted. Only the notions of precedence and simultaneity are relevant. It istherefore very simple to abstract the time domain using the sampling events.In synchronous data-
ow approaches, the clock td only de�nes the ordered setof sampling instants, and the carried values d are represented by a signal syn-chronized with td. In order to make it possible to fetch the carried values at anytime, we introduce a signal fd whose clock1 (noted f̂d) is completely free. Forthat purpose, we use the cell construct of Signal. It enables to memorize the lastvalue carried by a given signal. fd can be simply de�ned as follows:fd := (d cell f̂d) when f̂dThe following picture illustrates this abstraction:
fd fd fdfetched values fdclock tdcarried values d events orderevents orderevents order(free clock) cell cell celldd

This abstraction can be encoded in Coq using the translation scheme detailedin [8].1 in a data-
ow synchronous approach, by clock we mean the ordered set of instantswhere a signal is present

LTTA in Signal In the last step, we prove the speci�cation suggested in [1]guarantees that no two successive writing ticks can occur without a bus tick inbetween them, and that no two successive �b can occur without a reading tickin between them. This implies the condition for correctness, i.e. 8n 2 N; 9k 2N; st: �b(n) < tr(k) � �b(n+1). It can be easily proved using the Propo-sitional Linear Temporal Logic (PLTL) also encoded in Coq [8]. This propertycomes from the shift 2 process. It introduces an interleaving constraint upon thereader and the writer clocks. The following picture illustrates this approach andunderlines the use of Coq as a general formal framework to prove de correctness:instantiates Timeimplies hypotheses on Timeinstantiates Clockimplies the conditions of correctness
LTTA in CoqLTTA with time : discreteLTTA in Signal6 Conclusions and future workWe gave a formal proof of the correctness of a protocol for loosely time-triggeredarchitectures using the Coq proof-assistant. Unlike [1], we did not have to re-strict the model of the protocol to that of a �nite-state system: we introduced aminimal set of assumptions about physical time. Since any other implementationof the LTTA protocol must at least guarantee these minimal requirements, ourCoq model can be used as a generic formal proof framework. We illustrated thisaspect by considering the Signal implementation of [1].Directions of further studies comprise the specialization of our theorems byinstantiating the abstract data type for time by the type for reals provided inCoq. Using the library of theorems and the decision procedures for reals, wecould prove the numerical property from [1]. Another direction is to considerthe veri�cation of the synchronous data-
ow implementation of the protocol. Itcould be done using the formalization of Signal in Coq and its library of theorem[8]. Finally, an attractive aspect of the use of Coq is the extraction of a referenceimplementation of the protocol. The only di�culty is that this protocol involvespartial function that are di�cult to deal with in Coq2.

2 http://pauillac.inria.fr/pipermail/coq-club/2002/thread.html#569

References1. A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-P. Talpin, and S. Tri-pakis. A protocol for loosely time-triggered architectures. In Embedded SoftwareConference (EMSOFT'2002), volume 2491 of Lecture Notes in Computer Science,2002.2. A. Benveniste and P. Le Guernic. Synchronous Programming with Events andRelations: the Signal Language and its Semantics. Science of Computer Pro-gramming, 16(2):103{149, 1991.3. G. Berry and G. Gonthier. The Esterel Synchronous Programming Language:Design, Semantics, Implementation. Science of Computer Programming, 19:87{152, 1992.4. P. Caspi, C. Mazuet, R. Salem, and D. Weber. Formal design of distributed controlsystems with lustre. In Computer Safety, Reliability and Security, 18th Internation-al Conference, SAFECOMP'99, Toulouse, France, September, 1999, Proceedings,volume 1698 of Lecture Notes in Computer Science, 1999.5. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data
owProgramming Language Lustre. Proc. of the IEEE, 79(9):1305{1320, September1991.6. M. Kerb�uf, D. Nowak, and J.-P. Talpin. Speci�cation and veri�cation of a steam-boiler with Signal-Coq. In Proceedings of the 13th International Conference onTheorem Proving in Higher Order Logics (TPHOLs 2000), volume 1869 of LectureNotes in Computer Science, pages 356{371. Springer-Verlag, Aug. 2000.7. R. Lazi�c and D. Nowak. A unifying approach to data-independence. In Pro-ceedings of the 11th International Conference on Concurrency Theory (CONCUR2000), volume 1877 of Lecture Notes in Computer Science, pages 581{595. Springer-Verlag, Aug. 2000.8. D. Nowak, J.-R. Beauvais, and J.-P. Talpin. Co-inductive axiomatization of asynchronous language. In Proceedings of the 11th International Conference onTheorem Proving in Higher Order Logics (TPHOLs'98), volume 1479 of LectureNotes in Computer Science, pages 387{399. Springer-Verlag, Sept. 1998.9. The Coq development team. The Coq proof assistant reference manual : Version7.3.1. Technical report, INRIA, 2002.10. B. Werner. Une Th�eorie des Constructions Inductives. PhD thesis, Universit�eParis VII, 1994.

A Model of the LTTA protocol in SIGNALAn overview of SIGNAL In SIGNAL, a process P consists of simultaneous equa-tions over signals. A signal x describes a possibly in�nite
ow of discretely-timedvalues v. An equation x = fy denotes a relation between a sequence of operandsy and a sequence of results x by an operator f . Synchronous composition P jjQconsists of the simultaneous solution of the equations P and Q in time. SIGNALrequires three primitive operators: pre references the previous value of a signalin time (the equation x = pre y or x = y$1 initv initially de�nes x by v andthen by the previous value of y in time), when samples a signal (the equationx = ywhen z de�nes x by y when z is true) and default merges two signals (theequation x = y default z de�nes x by y when y is present and by z otherwise).P ::= x := f y j P jjQ j P=x f 2 F � fprev j v 2 V g [fwhen; default; : : :gAs an example, we consider the de�nition of a counter: Count. It accepts aninput event rst and delivers the integer output val. A local variable cnt, initializedto 0, stores the previous value of val (equation cnt := val$1 init 0). When theevent rst occurs, val is reset to 0 (i.e. 0 when rst). Otherwise, cnt is incremented(i.e. (cnt + 1)). The activity of Count is governed by the clock of its output valwhich di�ers from that of its input rst.process Count = (? event rst ! integer val)(j cnt := val$1 init 0j val := (0 when rst) default (cnt + 1)j) where integer cnt end; time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12rst tt tt tt ttval 1 0 1 2 3 4 0 1 2 3 0 0cnt 0 1 0 1 2 3 4 0 1 2 3 0SIGNAL implementation of the LTTA The methodology used in SIGNAL toimplement the LTTA consists of the progressive and compositional re�nementof the requirement expressed by theorem 1: xr(n) = xw(n);8n � 0 that preservesthe property of
ow equivalence: xr and xw hold the same successive values. Thisyields the process ltta.process ltta = (? boolean xw; event cw, cb, cr ! boolean xr, i, zi)(jj (xb, bb, sbw) := bus (xw, writer(xw, cw), cb)jj (xr, br, sbb) := reader (xb, bb, cr)jj (i, zi) := prove (sbb, br, cr)jj objective (sbw, sbb, cb, cr)jj) where boolean bw, xb, bb, sbw, sbb, br;The process ltta is decomposed into its three components reader, bus andwriter connected by one-place bu�ers. The writer accepts an input xw and de�nesthe boolean
ag bw that will be carried along with it over the bus. The busforward its inputs xw and bw to the reader as the result xb and bb of a one-placebu�er. The reader loads its inputs xb and bb from the bus and samples xr fromxb upon a switch of bb. Each of the processes reader, bus and writer operate atindependent (input) clocks cw, cb and cr.

process writer = (? boolean xw; event cw ! boolean bw)(jj bw ^= xw ^= cw jj bw := not (bw$1 init true) jj);process bus = (? boolean xw, bw; event cb ! boolean xb, bb, sbw)(jj (xb, bb, sbw) := bu�er (xw, bw, cb) jj);process reader = (? boolean xb, bb; event cr ! boolean xr, br, sbb)(jj (yr, br, sbb) := bu�er (xb, bb, cr) jj xr := yr when switch (br) jj)where boolean yr;end;The key switch process emits an output signal c i� two successive occurrenceszb and b of the boolean
ag di�er (notice the importance of the initial condition:zb must be initialized to true).process switch = (? boolean b ! event c)(jj zb := b$1 init true jj c := (when b when not zb) default (when not b when zb) jj)where boolean zb;end;We now detail the de�nition of the desynchronizing one-place bu�er whichsimulates asynchrony. The process bu�er alternates between the receipt of aninput (x; b) and the emission of an output (bx; bb). The alternate process makesthese operations exclusive by using a boolean
ip-
op signal b (notice, again, theimportance of the initial condition: zb must be initialized to false for receive toprecede send). The process current sustains its input signals (wx;wb) and allowsto retrieve them at a given clock c.process bu�er = (? boolean x, b ; event c ! boolean bx, bb, sb)(jj (sx, sb) := shift (x, b) jj (bx, bb) := current (sx, sb, c) jj)where boolean sx;process alternate = (? boolean x, sx !)(jj x ^= when b jj sx ^= when not b jj b := not (b$1 init false) jj)where boolean b; end;process shift = (? boolean x, b ! boolean sx, sb)(jj (sx, sb) := current (x, b, ^sb) jj alternate (x, sx) jj);end;process current = (? boolean wx, wb; event c ! boolean rx, rb)(jj rx := (wx cell c init false) when c jj rb := (wb cell c init true) when c jj);The process bu�er introduces an unspeci�ed delay (materialized by the inputclock c), hence we can synchronize it with the output of the protocol xr withouta�ecting the bus or the writer, and check whether they are equal.

