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Laboratoire de Mathématiques - Analyse, Probabilités, Modélisation - Orléans, Fédération Denis
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Poisson, Université d’Orléans, CNRS/INSMI, BP. 6759,
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Growth of gas bubbles in magmas may be modelled by a system of differential equations,
accounting for radius and pressure growth, coupled with an advection-diffusion equation,

defining the gas flux ingoing the bubble from magma. This system of equations is char-

acterised by two relaxation parameters linked to the viscosity of the magma and to the
diffusivity of the dissolved gas, respectively. Here, we propose a numerical scheme which,

unlike previously published schemes, preserves the total mass of the coupled system of
equations. We also study the asymptotic behavior of the system of equations, when let-

ting the relaxation parameters vary from 0 to ∞, and show the numerical convergence

of the solutions obtained by means of the general numerical scheme to the simplified
asymptotic limits. Finally, we validate and compare our numerical results with those
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obtained in experiments.
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1. Introduction

All volcanic eruptions involve a decompression of the magma during its ascent from
the Earth’s crust to the surface. This decompression causes the volatiles dissolved
into the magma to come out of solution as gas bubbles. The way these bubbles
are growing, whether they coalesce with one another or travel faster than or with
the magma, are all conditioning the way the volcanic eruption will unfold. Bubbles
that remain trapped with the magma they originally grew from will accumulate
gas pressure until failure of the magma releases it suddenly to produce an explo-
sive eruption. Such scenario is most likely when the magma is highly viscous and
prevails bubble motion. This situation is propitious to modelling because bubbles
can be considered as immobile in the magma and the resulting spherical geometry
allows one to reduce bubble growth to a system of differential equations describing
the evolution of pressure and gas mass in a bubble coupled with an advection-
diffusion equation describing the drainage of the dissolved gas towards the bubble.
A further assumption is that bubbles are exclusively made of water vapour, which
can be justified by the fact that water is, by far, the most abundant volatile species
in such viscous magmas.

Since the seminal work done in Scriven,15 several numerical schemes
that solve such system of differential equations have been proposed (see
Ref 1, 17, 18, 3, 14). Application to gas bubble in magmas is slightly more recent
(see Ref. 13, 12, 16, 4, 11, 5). All these schemes have in common a discretization of
the advection-diffusion equation that is not strictly conservative with respect to the
diffused species. They also involve user-defined discretization parameters that have
to be empirically adjusted to ensure sufficient convergence and/or accuracy of the
scheme. Developing alternate, robust schemes would allow including the dynamics
of bubble growth into more sophisticated model that take into account, for instance,
that bubble have different sizes, or that, if magma viscosity is low enough, bubble
may rise with respect to the magma.

The present work is developed as follows. In section 2, we recall the differential
equations describing the respective evolution of bubble radius and mass, together
with the advection-diffusion equation concerning the behavior of the water concen-
tration in the magma. Following Lensky et al.,11 we write the problem in dimension-
less form, introducing two relaxation parameters ΘV and ΘD. Section 3, is devoted
to the numerical approximation of the model. The main novelty is the discretization
of the advection-diffusion equation, see 3.2, in which we explain how to compute the
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mesh and flux at each iteration. In section 4 we deal with the asymptotic of the di-
mensionless problem, when the rate between the relaxation parameters varies from
0 to ∞. Three main regimes are underlined: viscous, diffusive, and equilibrium. For
each limit, we also propose a way to discretize it. Numerical results, the convergence
of the solution towards the simplified asymptotic limits, and the comparison with
experiments are discussed in section 5. Finally, in section 6, we summarise our study
and suggest possible extensions of the modelling of bubbles growth in magma.

2. The model

We are interested in the modelling of bubble growth in a highly viscous magma.
This has two main consequences on the model. The first one is that we assume
that bubbles do not interact with each other, in particular there are no coalescence
effects. This is strongly limitative for the simulation of a magmatic conduit, but this
phenomenon can be controlled in some laboratory experiments, see section 5.2. The
other point is that, due to the high viscosity of the magma, bubbles travel along
with the same velocity, namely the one of the melt. In other words, they can be
considered as immobile with respect to the melt.

At this stage, we can consider that a bubble can be described with two parame-
ters, its volume V̂ and its gaseous mass M̂ . Taking into account that the bubble is
made only of water in gaseous form, we can write the perfect gases law inside the
bubble, in order to introduce the gas pressure P̂ , and the gas density ρ̂:

GTρ̂ = P̂Mw, (2.1)

with Mw the molar mass for water, G the perfect gas constant and T the gas
temperature, which is assumed to be constant during the process. Next, following
Lensky et al.,11 we assume that the bubble is spherical, with radius R̂, so that
V̂ = 4

3πR̂
3, and we set for future convenience M̂ = ρ̂R̂3, so that the bubble mass

is 4
3πM̂ . Thus we can choose the radius R̂ = R̂(t) and the variable M̂ = M̂(t),

proportional to the mass, to describe the evolution of the bubble, and seek for a
system of differential equations for these variables. Notice that in Lensky et al.11 an
equation on the pressure P̂ (t) is given, we choose here to write things in terms of
mass, because it leads to a better handling of the mass conservation at numerical
level. Such a model gives a description of the growth of a single bubble, or for a
population of identical, non-interacting bubbles: this is the so-called mono-disperse
case.

2.1. Basic equations

First we briefly recall the origin of the equations. Two main physical processes
drive the bubble growth, both originating from the magma decompression as it
moves towards the surface. On the one hand, the gas trapped into the bubble is
expanding; on the other hand, the water dissolved in the magma is diffusing and
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eventually is vaporized in the bubble, so that the water concentration profile in the
melt has to be considered as well.

The equations describing the time evolution for the bubble radius and pressure
and for the water concentration have been described in the literature several times.
Therefore, we shall not reproduce here this derivation and, for example, we refer
the reader to the works of Arefmanesh et al.1, L’Heureux,8 Proussevitch et al.13 and
Scriven.15 We recall briefly the origin of each equation, and their coupling.

The growth of the bubble in the magma involves the ambient pressure in the
magma P̂a(t̂), which is a given function of time, viscous effects and surface tension
effects. A convenient model for P̂a, quite simple and compatible with experimental
conditions, is a linear decrease from an initial value Pi at constant decompression
rate ∆P :

P̂a(t̂) = Pi − t̂∆P. (2.2)

From the momentum conservation of Navier-Stokes equations, neglecting the
inertial terms, and considering incompressibility of the fluid one obtains

P̂ (t̂)− P̂a(t̂) =
2σ
R̂(t̂)

+ 4
˙̂
R(t̂)
R̂(t̂)

η̂,

where σ is the surface tension, η̂ is the magma viscosity, both parameters which are
assumed constant in this paper. We rewrite this as a differential equation on the
radius R̂:

˙̂
R(t̂) =

R̂(t̂)
4η̂

(
P̂ (t̂)− P̂a(t̂)− 2σ

R̂(t̂)

)
. (2.3)

To obtain the inside pressure P̂ (t̂), or equivalently by (2.1) the gaseous water
mass M̂(t̂), we need to study the mass conservation of water. First we consider
the volatile mass balance at the bubble-magma interface, which writes in spherical
geometry

4π
3
d

dt̂

(
ρ̂R̂3

)
= 4πρ̂mFR̂(t̂), (2.4)

where FR̂(t̂) represents the water flux from the magma into the bubble at the inter-
face. It is estimated by the global water mass balance between the bubble and its
surroundings. At this stage, we introduce the concentration of water in the melt,
which is a function C = C(r̂, t̂) of the time t̂ and on the radial distance from the
boundary of the bubble, r̂ ∈ [R̂(t̂), Ŝ(t̂)]. With this notation, the flux F = F (r̂, t̂)
in equation (2.4) is given by

FR̂(t̂) = D̂R̂2 ∂C

∂r̂

∣∣∣∣
r̂=R̂(t̂)

. (2.5)

More precisely, we assume that the bubble has influence only on a finite region
surrounding it. This region is called the influence region, and it is quite natural
for a spherical bubble to assume that it is a sphere of radius Ŝ = Ŝ(t) and centre
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the bubble centre. The evolution of Ŝ is obtained under the assumption that the
volume of the influence region is constant in time (see Ref. 11), so that

Ŝ(t̂) =
(
Ŝ3

0 + R̂(t̂)3
)1/3

, (2.6)

where Ŝ0 is a constant representing the radius of the influence region when the
bubble has a null radius R̂.

The definition of the influence region implies that the total water mass inside
it, that is the sum of the water mass in the bubble and of the water dissolved in its
influence region, must remain constant in time. Assuming that for a bubble of radius
zero the water concentration in magma is a constant C0, this may be expressed in
the following form:

4πρ̂(t̂)
3

R̂3(t̂) + 4πρ̂m
∫ Ŝ(t̂)

R̂(t̂)

r̂2C(r̂, t̂) dr̂ =
4πρ̂m

3
Ŝ3

0C0, (2.7)

where ρ̂ and ρ̂m are respectively the density of the gas and the magma.
Within the the influence region, that is for radii r̂ ∈]R̂(t̂), Ŝ(t̂)[, the water con-

centration is assumed to follow an advection-diffusion equation

∂C

∂t̂
+ vm

∂C

∂r̂
=

1
r̂2

∂

∂r̂

(
r̂2D̂

∂C

∂r̂

)
,

where D̂ is the magma diffusion coefficient, assumed constant in this work, and vm
is the radial velocity in the melt. The latter is obtained by solving the continu-
ity equation in radial form and considering the incompressibility of the melt (see
Ref. 15). Therefore vm is given by

vm = ˙̂
R
R̂2

r̂2
.

The advection-diffusion finally reads

∂C

∂t̂
+ ˙̂
R
R̂2

r̂2

∂C

∂r̂
=

1
r̂2

∂

∂r̂

(
r̂2D̂

∂C

∂r̂

)
, (2.8)

and has to be complemented with boundary conditions. On the one hand, for r̂ = R̂,
that is at the bubble-melt interface, the pressure has to be in equilibrium with water
concentration, following Henry’s law

C(R̂, t̂) = KH

√
P̂ , where KH is the Henry constant. (2.9)

The other boundary condition is given at the external interface of the influence
region, and follows from the global mass balance (2.7). Indeed, stating that the
time derivative of (2.7) has to be zero, a straightforward computation taking into
account (2.8) and (2.4) shows that the water flux on the outer border of the influence
region, r̂ = Ŝ, is null:

∂C

∂r̂

∣∣∣∣
r̂=Ŝ

= 0, (2.10)



February 23, 2011 10:37 WSPC/INSTRUCTION FILE m3as-bfcjm

6 A. Burgisser, L. Forestier-Coste, F. James, S. Mancini

Finally, we are lead to the following system of differential equations

˙̂
R(t̂) = R̂(t̂)

4η̂

(
P̂ (t̂)− P̂a(t̂)− 2σ

R̂(t̂)

)
,

˙̂
M(t̂) = 3ρ̂mD̂R̂2 ∂C

∂r̂

∣∣
r̂=R̂(t̂)

,
(2.11)

where C solves the advection-diffusion equation (2.8), with boundary conditions
(2.9) and (2.10).

An important physical quantity in this context is the porosity, or void fraction,
of the magma. Porosity is actually a macroscopic notion, as far as it can be given
a meaning for a single bubble, we choose, following Lensky et al. 11, to define it as

α =
R̂(t̂)3

Ŝ(t̂)3
.

All the simulations performed in this paper tend to compute a porosity as close as
possible to 1, even if it is not realistic from a physical viewpoint: the crossover value
where a model of bubbles in a melt is no longer valid is around 0.7.

2.2. Dimensionless problem

In the model we obtained, the physical parameters involved may vary for several
orders of magnitude and in a very intricate manner. Table 1 recalls their meaning
and presents a sample of these values, which come from the experimental results
quoted below.

Table 1. Physics constants values

D diffusivity 10−12 (m2 · s−1)
η̂ viscosity 104 (Pa · s)
Mw molar mass for water 18.10−3 (kg ·mol−1)
G perfect gases constant 8.3144 (J ·mol−1 ·K−1)
T temperature 1098.15 (K)
σ surface tension 0.1 (J ·m−2)
ρm magma density 2154 (kg ·m−3)
KH Henry constant 3.44.10−6 (kg−1/2 ·m1/2)
S0 influence radius for R = 0 6.204.10−5 (m)
∆P decompression rate 105 (Pa · s−1)
Pi initial ambient pressure 108 (Pa)
C0 water concentration for R = 0 4.21 (wt.%)

The behaviour of the solutions to the model can vary drastically with these
values, from one experimental situation to another, but also during a single experi-
ment. The aim of this section is to provide a dimensionless set of equations, in order
to identify more easily several specific regimes.



February 23, 2011 10:37 WSPC/INSTRUCTION FILE m3as-bfcjm

Monodisperse bubble growth 7

To do this, we need to define a set of “characteristic dimensions” for the sys-
tem. Then a convenient scaling of the parameters and variables will lead to the
desired dimensionless equations. Following Lensky et al.,11 it turns out that a set of
five dimensions gives a physically relevant scaling, namely a bubble radius, a pres-
sure, a density, a viscosity coefficient and a diffusion coefficient. These characteristic
dimensions are chosen here as the corresponding initial values: the initial bubble
radius, Ri, the initial gas density ρi, the initial ambient pressure Pi = Pa(t = 0) and
the diffusion and viscosity coefficients, Di and ηi. Then we perform the following
scalings on variables and parameters:

η =
η̂

ηi
D =

D̂

Di
ρm =

ρ̂m
ρi

Σ =
2σ
RiPi

R =
R̂

Ri
S =

Ŝ

Ri
r =

r̂

Ri
Ṙ =

˙̂
RPi
Ri∆P

P =
P̂

Pi
Pa =

P̂a
Pi

ρ =
ρ̂

ρi
t = t̂

∆P
Pi

We note that, since the diffusion and viscosity coefficients are considered to be
constant, we have that D ≡ 1 and η ≡ 1. In the same way, equations (2.2) and (2.6)
become respectively

Pa = 1− t (2.12)

and

S3(t) = S3
0 +R3(t). (2.13)

Finally, we set M = ρR3 in the following.
Straightforward computations show that the mass conservation equation (2.7)

becomes

M + 3ρm
∫ S(t)

R(t)

r2C dr = S3
0 C0ρm, (2.14)

and the system of differential equations on mass and radius (2.11) rewrites

Ṙ =
R

ΘV

(
P − Pa −

Σ
R

)
, (2.15)

Ṁ =
3ρm
ΘD

(
r2 ∂C

∂r

)
r=R

, (2.16)

where we have introduced the relaxation parameters:

ΘV =
4ηi∆P
P 2
i

, ΘD =
R2
i∆P
DiPi

. (2.17)
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Finally, the water concentration in the melt satisfies the dimensionless advection-
diffusion equation

∂tC +
ṘR2

r2
∂rC =

1
ΘD

1
r2
∂r
(
r2∂rC

)
(2.18)

with the following boundary conditions:

C(R, t) = Ci
√
P ,

∂C

∂r

∣∣∣∣
r=S

= 0, (2.19)

where Ci is given by Ci = KH

√
Pi.

It is clear now that the parameters ΘD and ΘV defined by (2.17) are driving the
behaviour of all the equations involved, and will be referred to as the viscosity ΘV

and diffusion ΘD relaxation parameters, since they are dimensionless. Their extreme
values define several specific regimes which are analyzed in section 4 below.

At this stage, it is worth to state the initial conditions in some details. From
the above normalization process, the initial radius is R = 1, and the corresponding
initial pressure is assumed to be at equilibrium with the ambient pressure and the
surface tension:

P (0) = (Pa(0) + Σ)/ΘV .

We need also to specify the initial water concentration in the influence region, that is
C(0, r) for r ∈ [R(0), S(0)]. Usually, we choose C(0, r) = C0, where C0 is a positive
constant.

It turns out that the behaviour of the solutions drastically depends on the re-
lationships between the initial concentration and the initial bubble pressure. A
particular regime is given by

C(0, r) ≡ C0 = Ci
√
P (0), r ∈ [R(0), S(0)]. (2.20)

These “well-prepared” initial data correspond physically to some equilibrium be-
tween the inner bubble pressure and the water concentration. The solution behaves
nicely as expected: the radius increases, the inner pressure decreases. On the other
hand, when (2.20) is not satisfied, one can observe some kind of initial layer for small
times (depending on the value of ΘV ), where bubble pressure and water concentra-
tion try to reach equilibrium. If C0 > Ci

√
P (0), there is a water excess in the melt,

so that the radius may decrease or the pressure increase very fast before reaching a
smooth regime. On the contrary, the water deficit C0 < Ci

√
P (0) tends to limit or

prevent nucleation of bubbles, and the solution may exhibit almost discontinuous
behaviour, or even not exist.

3. Numerical approximation

In this section we consider the numerical approximation of the model (2.15)-(2.16)-
(2.18), on R(t) and M(t) and C(r, t), together with the boundary conditions (2.19)
and the external assumption (2.12)-(2.13). In particular, we propose a numerical
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scheme for the advection-diffusion equation conserving the water mass. This is a
delicate point of the discretisation; the flux at the bubble border has to be carefully
computed because the magnitude of the relaxation parameters ΘV and ΘD may
differs of several orders. We shall first present the straightforward discretization of
the system of differential equations (2.15)-(2.16) and follow by presenting the more
critical problem of the advection-diffusion equation, (2.18), discretization.

3.1. The differential system

We describe here the basic elements of the numerical scheme for the differential
system (2.15)-(2.16).

Let us first define, for n ∈ N, the time tn+1 and the ambient pressure Pn+1
a =

Pa(tn+1), at the iteration step n+ 1, respectively by:

tn+1 = tn + ∆tn,

Pn+1
a = 1− tn+1,

where the time step ∆tn is computed at each iteration and must satisfy some
stability conditions which will specified later on, see section 3.3. The numerical
results, see section 5, will be plotted in term of the ambient pressure Pa, which may
be considered as a time variable.

We choose a semi-implicit scheme for the discretisation of (2.15), in the sense
that the discrete bubble radius Rn = R(tn) is treated implicitly, whereas the pres-
sure Pn = P (tn) remains explicit. Thus the evolution of the discrete radius is given
by

Rn+1 =
(
Rn −∆tn

Σ
ΘV

)(
1−∆tn

(Pn − Pna )
ΘV

)−1

. (3.1)

Next we discretize the equation for the mass balance at the magma-bubble interface,
(2.16), by a semi-explicit scheme. Defining the discrete bubble mass by Mn =
M(tn), we recall that the pressure is given for all n by Pn(Rn)3 = Mn. We denote
by Fn0 = F (R, tn) the discrete flux at the interface r = R, and we set

Mn+1 = Mn + 3ρm
∆tn

ΘD
Fn+1

0 . (3.2)

Finally, the discrete radius of the influence region, Sn = S(tn) is given by Sn =(
(Rn)3 + S3

0

)1/3

.

We turn now to the definition of the discrete flux Fn+1
0 , which follows from the

discretization of the advection-diffusion equation (2.18).

3.2. The advection-diffusion discretization

The advection-diffusion equation for the water concentration C(t, r) is solved by
splitting the equation between the advection step and the diffusion step.
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The advection step consists in discretizing the following transport equation:

r2∂tC + ṘR2∂rC = 0. (3.3)

We choose to solve it by a Lagrangian method, namely, a set of mesh points at time
tn being given, rni , 0 ≤ i ≤ N , we compute a new mesh at time tn+1 by solving
explicitly the equation of characteristics

r2
i

dri
dt

= R2Ṙ, (3.4)

which integrates in

rn+1
i =

((
Rn+1

)3 − (Rn)3 + (rni )3
)1/3

. (3.5)

The above relation defines the mesh for all n ≥ 1 as soon as the initial discretization
r0
i , 0 ≤ i ≤ N , is fixed. It is clear on this formula that, provided r0

0 = R0 and
r0
N = S0, we have for all n ≥ 1 rn0 = Rn and rnN = Sn, so that any choice
R0 < r0

0 < · · · < r0
n−1 < S0 is relevant, in particular the uniform grid defined by

r0
i =

(
i
N S

3
0

)1/3. Finally, we denote by ∆rni the (non uniform) space discretization
step, ∆rni = rni+1 − rni .

The diffusion step consists in discretizing the equation

r2dtC =
1

ΘD
∂r
(
r2∂rC

)
.

Following a standard finite volume strategy, we integrate the above equation on
the mesh [tn, tn+1[×]rn+1

i , rn+1
i+1 [, looking for piecewise constant solutions Cni on the

mesh. We obtain, for i = 1, ..., N − 1:

Cn+1
i = Cni +

∆tn

ΘD

3
(
Fn+1
i+1 − F

n+1
i

)
r3
i+1 − r3

i

, (3.6)

where Fn+1
i stands for the discrete flux between cells i−1 and i for i = 1, ..., N −1.

As an approximation of r2∂rC for r = rn+1
i , we choose a centered finite difference:

Fn+1
i =

2
(
rn+1
i

)2
rn+1
i+1 − r

n+1
i−1

(
Cni − Cni−1

)
. (3.7)

The boundary conditions (2.19) become

Cn+1
0 = KH

√
Pi Pn, Fn+1

N = 0. (3.8)

We are now in position to close equation (3.2) by setting the value of the discrete
flux at the bubble-magma interface, Fn+1

0 . The trick here is to obtain a discrete
analogue of the mass preservation (2.14). Defining the discrete total water mass
Mn by

Mn = Mn + ρm

N−1∑
i=0

Cni
(
r3
i+1 − r3

i

)
, (3.9)

we have the following result.
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Proposition 3.1. Let Fn+1
0 be given by

Fn+1
0 = Fn+1

1 − ΘD

∆tn
r3
1 − r3

0

3
(Cn+1

0 − Cn0 ). (3.10)

Then the numerical scheme (3.1)-(3.10) conserves the discrete total water mass,
that is Mn =M0, ∀n ∈ N.

Proof. The total water mass at time tn+1 is equal to:

Mn+1 = Mn+1 + ρm

N−1∑
i=0

Cn+1
i

(
r3
i+1 − r3

i

)
.

Applying (3.2), splitting the sum for i = 0 and i = 1...N − 1 and replacing (3.6) in
the sum, we obtain:

Mn+1 = Mn + 3ρm
∆tn

ΘD
Fn+1

0 + ρmC
n+1
0 (r3

1 − r3
0)+

+ρm
N−1∑
i=1

Cni (r3
i+1 − r3

i ) + 3ρm
∆tn

ΘD

N−1∑
i=1

(
Fn+1
i+1 − F

n+1
i

)
.

Hence, simplifying the last sum we get:

Mn+1 = Mn + 3ρm
∆tn

ΘD
Fn+1

0 + ρmC
n+1
0 (r3

1 − r3
0)+

+ρm
N−1∑
i=1

Cni (r3
i+1 − r3

i ) + 3ρm
∆tn

ΘD
(Fn+1
N − Fn+1

1 ).

Recalling that FnN = 0 for all n, and splitting, in the definition Mn, the sum for
i = 0 and i = 1...N − 1, we must have that:

3ρm
∆tn

ΘD
Fn+1

0 + ρmC
n+1
0 (r3

1 − r3
0)− 3ρm

∆tn

ΘD
Fn+1

1 = ρmC
n+1
0 (r3

1 − r3
0),

which is verified since Fn+1
0 is defined by (3.10).

Remark 3.1. Notice that Proposition 3.1 holds true for any choice of the discrete
flux in (3.7) for 1 ≤ i ≤ N − 1.

3.3. Stability conditions

In this section, we describe how to compute for each n ≥ 1 a time step ∆tn ensuring
some stability conditions on the numerical approximations. The idea is to compute
a bound for ∆tn for each numerical approximation (radius, mass, concentration),
and then to take ∆tn the minimum of the three stability conditions.

Before dealing with equations (3.1) and (3.6), we notice that we cannot obtain a
completely satisfactory stability condition for the bubble mass approximation (3.2).
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However, a partial condition is given by asking that the discrete bubble pressure
Pn remains larger than the ambient pressure Pna at each iteration n. This leads to

∆tn < ΘV

∣∣∣∣ |(Pna − Pn)(R3)n − 3ρm(r3
1 − r3

0)Cn0 |
|3ρmFn1 |

∣∣∣∣ (3.11)

This condition permits in almost all cases to compute reasonable time steps, namely
∆tn ∼ 10−9 with respect to 10−12 when both ΘV and ΘD are small. It is not suffi-
cient to avoid oscillations in the solution, in particular when the initial conditions
are not well prepared in the sense given above, see equation (2.20). Nevertheless the
scheme is robust in the sense that these oscillations, which appear at the beginning
of the computation, tend to disappear when time increases. In some rare case, the
oscillations blow up, but this is consistent with the physical incompatibility invoked
above.

We look now for the stability conditions of (3.1) and (3.6). In particular we
search a bound of the time step ∆tn such that each solution is positive.

Proposition 3.2. Assume that for n ∈ N

∆tn < min
(
RnΘV

Σ
,

ΘV

|Pn − Pna |

)
. (3.12)

Then the solution to the numerical scheme (3.1) is positive, i.e. Rn > 0.

Proof. Let us assume that at the iteration n all the variables are positive, then at
the iteration n+ 1, using (3.1), ∆tn must be such that:(

Rn −∆tn
Σ

ΘV

)(
1−∆tn

Pn − Pna
ΘV

)−1

> 0.

We have two possibilities. The first one is when Pn − Pna ≤ 0. Then we have:

1−∆tn
Pn − Pna

ΘV
> 0.

Hence,

Rn −∆tn
Σ

ΘV
> 0

which implies,

∆tn <
ΘVR

n

Σ
.

The second one is: Pn−Pna > 0. Then ∆tn must be the positive solution of a second
order equation with a positive dominant coefficient:

Σ(Pn − Pna )
Θ2
V

.
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Hence Rn+1 is positive, if ∆tn is external to the roots:

ΘV

Pn − Pna
,

RnΘV

Σ
.

Finally, we remark that the choice (3.12) verifies both conditions.

Proposition 3.3. Assume that, for n ∈ N,

∆tn <
ΘD

6
min
i

(
(r3
i+1 − r3

i )

(
rn+1
i+1 − r

n+1
i−1

(rn+1
i )2

))
. (3.13)

Then the solution to the numerical scheme (3.6) is positive, i.e. Cni > 0 for all
i = 1, . . . , N − 1.

Proof. We first remark that the Dirichlet condition on the boundary r = R implies
that Cn0 > 0 for all n ∈ N.
Assuming that at the nth iteration Cni is positive for all i = 0...N − 1, we want ∆tn

to verify Cn+1
i > 0. Thus from (3.6), it must be, for i = 1...N − 1:

Cni +
3∆tn

ΘD(r3
i+1 − r3

i )
(
Fn+1
i+1 − F

n+1
i

)
> 0.

Recalling that Fn+1
i is given by (3.7), collecting the terms with respect to Cni−1, Cni

and Cni+1 and considering that Cni are positive for all i, we get a sufficient condition
for the positivity of Cn+1

i in the form, for i = 1...N − 2:

1− 6∆tn

ΘD(r3
i+1 − r3

i )

(
(rn+1
i+1 )2

rn+1
i+2 − r

n+1
i

+
(rn+1
i )2

rn+1
i+1 − r

n+1
i−1

)
> 0.

Since

rn+1
i+2 − r

n+1
i

(rn+1
i+1 )2

> 0,

the time step ∆tn given by (3.13) verifies the above condition.
If now i = N − 1, recalling that FnN = 0 for all n, we obtain that ∆tn must satisfy:

∆tn <
ΘD

6
(r3
N − r3

N−1)

(
rn+1
N − rn+1

N−2

(rn+1
N−1)2

)
which conclude the proof.

4. Limit cases

As mentioned in section 2, the system of equation (2.15)-(2.16)-(2.18) we are con-
sidering, has two relaxation times, ΘV and ΘD defined by (2.17), which may differ
by several order of magnitude, depending on the values of, for instance, diffusivity
or viscosity. In many experiments ΘV and/or ΘD are very small, of the order of
10−7. The time steps ∆tn depending on these values, the computational time needed
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to reach a porosity close to 1 is very large. The study of the limit cases, such as
when ΘV and ΘD tends to ∞ or to 0, is thus an attractive alternative to solving
the full system because it leads to simplified models with smaller simulation times.
In particular, we will classify the different limits in regimes of bubble growth by
considering the ratio ΘV /ΘD. Following Lensky et al.,11, we define a viscous regime
when the ratio is very small, see 4.1, an equilibrium regime when the ratio is of
order 1, see 4.2, and a diffusive regime when the ratio is large, see 4.3. At the end
of each section, we will also summarise when necessary the numerical scheme corre-
sponding to the simplified cases. As we are mainly interested in the behavior of the
bubble physical dimensions (pressure P and radius R), we shall only describe how
to compute these two quantities. In particular, we recall that, when comparing with
experiments, we consider the porosity: α = R3/S3. We list all the possible limits in
table 2, which references each simplification to compute the bubble radius R and
mass M (or pressure P ). In table 2 we also give the orders of magnitude delimiting
each regime.

Table 2. Limit cases

∞

4.1.2 4.1.1 4.2.2

(4.4), (4.2) (4.3), (4.2) (4.12), (4.2)

103

ΘD 4.1.3 4.3.1

(4.5), (4.6) (2.15), (2.16) (4.12),(4.13)

10−3

4.2.1 4.3.3 4.3.2

(4.5), (4.9) (4.9), (2.15) (4.12), (4.14)

0 10−5 101 ∞
ΘV
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4.1. Viscous regime : ΘV /ΘD << 1

We first look at the case when the viscous relaxation parameter is smaller than the
diffusion one. There are three possibilities: ΘV goes to zero and ΘD is of order 1 or
goes to infinity; and ΘV is of order 1 and ΘD goes to infinity.

4.1.1. ΘV ∼ 1 and ΘD →∞

Since ΘD is very large, equation (2.18) reads r2dtC(r, t) = 0, which yields to:∫ S(t)

R(t)

r2C(r, t) dr =
∫ S(0)

R(0)

r2C0 dr. (4.1)

Concerning the bubble mass evolution, since ΘD >> 1, equation (2.16) reads Ṁ =
0, which is equivalent to:

M = M(0), (4.2)

the water mass inside the bubble is constant. In fact, a large diffusive relaxation
parameter may be physically given by a very small value for the diffusivity in
magma; hence there will not be diffusion of water from the magma into the bubble,
and the bubble water mass will not change.
As ΘV ∼ 1, no simplification is possible for the equation giving the evolution of the
bubble radius (2.15). Still, recalling that M(0) = M = PR3 and that the ambient
pressure is given by (2.12), we can write a differential equation only depending on
R:

Ṙ =
1

ΘV

(
M(0)
R2

−R(1− t)− Σ
)
, (4.3)

or equivalently on P :

Ṗ = − 3P
ΘV

(
P − (1− t)− Σ

(
P

M(0)

)1/3
)
.

We note that we obtain the same result as in Ref. 11. Equation (4.3) can be easily
solved with an implicit scheme.

4.1.2. ΘV → 0 and ΘD →∞

When ΘD is large, the simplifications (4.1) and (4.2) are always true. In particular,
water mass in the bubble is constant: M = M(0).
Regarding equation (2.15), since ΘV is very small, multiplying by ΘV , recalling
that M(0) = PR3, and simplifying allows us to obtain a third order equation on R:

R3(1− t) + ΣR2 − P (0) = 0,

which admits an unique real solution given by the explicit relation

R =
c

6a
+

2b2

3ca
− b

3a
, (4.4)

where a = 1−t
P (0) , b = Σ

P (0) and c = (108a2 − 8b3 + 12
√

3
√

27a2 − 4b3a)1/3.
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4.1.3. ΘV → 0 and ΘD ∼ 1

If ΘD ∼ 1, the simplifications of section 4.1.1 no longer hold. There is, for instance,
no possible simplification for equations (2.16) and (2.18). Nevertheless, since ΘV <<

1, we have:

P = 1− t+
Σ
R

(4.5)

which links the bubble pressure P to the radius R. On the other hand, considering
that M = PR3 and equation (2.16), we obtain the following differential equation
for R:

Ṙ =
(

3ρm
ΘD

(
r2 ∂C

∂r

)
r=R

+R3

)(
2ΣR+ 3R2(1− t)

)−1
, (4.6)

where the water concentration is obtained solving the advection-diffusion equation
(2.18).

Numerically, we respectively compute Mn+1 and Cn+1
i using the general nu-

merical schemes for equations (3.2) and (3.6), then we apply relation M = PR3 to
compute P and finally from (4.5) we obtain R.

4.2. Equilibrium regime: ΘV /ΘD ∼ 1

In this section we deal with those regimes in which the relaxation parameters ΘV

and ΘD are of the same order of magnitude. More precisely, when both ΘV and
ΘD go to zero, or to ∞, since otherwise no simplification is possible.

4.2.1. ΘV → 0 and ΘD → 0

This is an interesting situation because on the one hand computational time is very
long and on the other hand it corresponds to the so-called equilibrium growth, which
is a common situation in natural magmas: the bubble is always at its maximum
possible radius. First notice that, since ΘV << 1, following the discussion of section
4.1.3, we have the simplification (4.5).

Next, let us consider ΘD << 1, then multiplying the water concentration equa-
tion (2.18) by ΘD and simplifying, we have:

1
r2

∂

∂r

(
r2 ∂C

∂r

)
= 0,

for which the solution, taking into account the boundary conditions (2.19), reads:

C(r, t) = C(R, t) = Ci
√
P , ∀ r ∈ [R(t), S(t)], (4.7)

Thus, we see that when ΘD tends to zero, equation (2.16) is no longer valid to
compute the water mass variation inside the bubble. Therefore, we consider the
total mass conservation equation (2.14). Replacing C by (4.7) in (2.14) and recalling
(2.13), we obtain

M = ρmS
3
0(C0 − Ci

√
P ), (4.8)
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Now since M = PR3, equation (4.8) is a second order equation in X =
√
P , which

turns out to have one positive solution, namely

P =

(
−Y +

√
Y (Y + 4R3C0/Ci)

2R3

)2

, where Y = CiρmS
3
0 . (4.9)

Hence R and P (or M) are uniquely defined by combining (4.5) with (4.9) or
(4.8) (which we have used in practice).

Notice that equation (4.8) allows to derive an expression for the porosity α =
α(t). Indeed, recall that the porosity is defined by α = R3/S3, so that we have

R3 = S3
0

α

1− α
.

Replacing M by PR3 in (4.8) gives readily

P
α

1− α
= ρm

(
C0 − Ci

√
P
)
,

which in turns leads to

α =
β

P + β
, where β = ρm

(
C0 − Ci

√
P
)
. (4.10)

Going back to dimensional quantities in (4.10), we get

αdim =
γ

MwP̂ + γ
, where γ = RTρ̂mKH

(√
P̂0 −

√
P̂

)
, (4.11)

which is equivalent to the most commonly used formula to calculate porosity in this
regime (see e.g. Ref. 10). Nevertheless, we underline that in (4.11) it is accounted
for the surface tensor term, since P̂ = P̂a + 2σ/R̂, which is instead neglected in the
usual one, in which P̂ = P̂a.

4.2.2. ΘV →∞ and ΘD →∞

In this situation, viscosity may be very large, yielding ΘV >> 1, and diffusivity very
small, implying ΘD >> 1. Hence, following experimental evidence (see Ref. 7), we
can imagine that the physical system is “fixed” or “frozen”.

On the one hand, as discussed in section 4.1.1, the water mass in the bubble
is constant, see equation (4.2). On the other hand, since ΘV >> 1, from equation
(2.15) we also obtain Ṙ = 0, that is:

R(t) = R(0) = 1. (4.12)

Since both the mass M and the radius R are constant, the pressure P is explicitly
determined by M = PR3, and no numerical scheme is needed.
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4.3. Diffusive regime : ΘV /ΘD >> 1

In this last section, we treat regimes which have the viscous ΘV relaxation parameter
larger than the diffusion one ΘD. We have to differentiate three cases: when ΘD is
small and ΘV is of order one or goes to infinity, and when ΘD is of order one and
ΘV goes to infinity.

4.3.1. ΘV →∞ and ΘD ∼ 1

As shown before, when ΘV → ∞, we obtain equation (4.12). Hence, the bubble
radius is constant in time, and recalling that M = PR3, we have Ṁ = Ṗ , hence
from (2.16) we get the following differential equation on P :

Ṗ =
3ρm
ΘD

(
r2 ∂C

∂r

)
r=R

, (4.13)

with C solution of (2.18).
Numerically, the radius R is constant, and the pressure P is computed using the

numerical scheme of section 3.

4.3.2. ΘV →∞ and ΘD → 0

Considering the discussion of sections 4.2.2 and 4.2.1, both simplifications (4.12)
and (4.9) hold. From (4.12), the bubble radius is constant, R = 1, so that the bubble
pressure is also constant, and is explicitly obtained by simplifying equation (4.9):

P =

(
−Y +

√
Y (Y + 4C0/Ci)

2

)
, Y = CiρmS

3
0 . (4.14)

4.3.3. ΘV ∼ 1 and ΘD → 0

Since ΘV ∼ 1, there is no possible simplification for equation (2.15). On the other
hand, from section 4.2.1, the bubble pressure is computed by (4.9).

In this case, the radius R must be computed using the numerical scheme of
section 3, while the pressure P is explicitly given by (4.9).

5. Numerical results

We performed some numerical tests based on the schemes described in sections 3 and
4. In this section we compare first the numerical results obtained using the general
scheme of section 3 to those obtained with the numerical approximation of the sim-
plified schemes of section 4. This is followed by a comparison between the behavior
of our numerical results and experimental data described in Burgisser et al.2

Le us first discuss the dependence of our results on the number of discretization
points N with respect to the radial variable r. As announced previously, various
numerical tests show that a small number of points is sufficient in order to well
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capture the behavior of the discrete flux Fn0 on the bubble border. The relative
errors of the curves for the bubble radius R, bubble pressure P , and porosity α

with respect to the reference ones with N = 2500, are of order 10−3 for N = 50
and of order 10−4 for N = 250, respectively. We therefore choose N = 50 in all the
following computations.

In figure 1 we show the evolution of the concentration function C(t, r) computed
solving the general scheme with ΘV = 0.000236 and ΘD = 5.28929. Bubble size
evolution is sketched as grey circles of increasing radius R. We clearly see the mesh
refinement near the bubble wall (the grey circle portion) when the concentration
function becomes stiffer.

Fig. 1. Bubble growth and gas concentration function in the influence region.

5.1. Numerical convergence

We show now through a few selected examples the numerical convergence of the
global numerical scheme defined in section 3 towards the simplified limit cases
discussed in section 4. Convergence is determined by fixing either the value of ΘV

or ΘD and varying the other one. This crossed method yields to the ΘV and ΘD

orders of magnitude for which the system changes regime. We can see in table 2 that
for ΘV < 10−5 and ΘD < 10−3 we have the so called equilibrium regime, whereas
for ΘV > 101 and for each ΘD the bubble radius is constant. These results suggest
that the simplified limit cases are sufficient for a good description of the physical
system. Their use significantly reduces computation time.

In figure 2 we show the convergence for the bubble radius towards selected
limit cases. On the left, we plot the bubble radius evolution with respect to the
ambient pressure Pa (we recall that ambient pressure linearly decreases in time as :
1− t), fixing ΘD = 0.1 and varying ΘV from 10−5 to 101, together with the radius
computed as explained in 4.1.3 or just defined as the constant 1, as justified in
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4.3.1. On the right, we plot the bubble radius evolution with respect to time, fixing
ΘV = 0.1 and varying ΘD from 10−3 to 103, together with the radius obtained
as explained in 4.1.1 and 4.3.3. In both cases we can observe the transition of the
general unsimplified regime (the middle case in table 2) from one simple growth
regime to the next.

Fig. 2. Bubble radius evolution and convergence. Left: convergence towards the limit cases 4.1.3
and 4.3.1. Right: convergence towards the limit case 4.1.1 and 4.3.3.

5.2. Experiments vs. numeric

Controlled decompression experiments on high temperature magmas are able to
produce gas bubbles. By varying the end pressure, data on bubble size and porosity
have been retrieved for different initial condition such as magma viscosity, temper-
ature, decompression rate, etc. In this work we illustrate how comparisons between
such experimental data and model outputs can be carried out. Let us first present
here the experimental framework used by Burgisser et al.2 Samples of viscous magma
are saturated in water and maintained under pressure for about 5 days for the water
to homogeneously dissolved into the magma. Then an instantaneous decompression
gives rise to bubble nucleation. After waiting for a few minutes that these initial,
small bubble reach their equilibrium sizes, a linear decompression is applied un-
til a final pressure where samples are quenched by a sudden cooling to ambient
temperature. The cold samples are then sliced and analysed to obtain bubble sizes
and porosity. One experiment quenched just after the sudden decompression that
nucleates the bubbles gives the initial conditions for our model.

The physical values used and measured during the experiments are the follow-
ing: the initial radius Ri = 17.5 · 10−6, the diffusion coefficient Di = 5.79 · 10−12,
the initial concentration C0 = 3.44 · 10−2, the initial pressure Pi = 108, the surface
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tension σ = 0.1, the viscosity ηi = 5.9 ·10−4, the magma density ρm = 2400, the gas
porosity density ρi being calculated by the perfect gas law (2.1), the temperature
T = 825, and the decompression rate ∆P= 10−5. We tested two different experi-
mental series. In the first series, bubbles growth was only due to gas expansion and
water diffusion form the magma. In the second series, bubbles growth was also due
to coalescence processes. The porosity evolution of both series is comparable but
the evolution of bubble size differ.

In figure 3 we show the evolution of the porosity α and of the radius R with
respect to the ambient pressure Pa. On the left graph are represented three nu-
merical results for different viscosity calculation and initial porosities along with
the experimental results obtained in Ref. 2 (triangles). The run represented by the
grey line had a constant viscosity η, whereas the black line and the dashed line had
variable viscosity ηeff computed applying the formula given in Ref. 9 and 11. We
remark that considering a variable viscosity ηeff instead of a constant one has an
impact on the numerical result only when the ambient pressure becomes very small
because the grey and the black curves diverge only when Pa < 0.1. The dashed
line is a numerical result computed starting from the porosity measured on the
experiment quenched just after the sudden decompression. The other two runs use
the equilibrium state in Section 4.2.1, which predicts a porosity of 0.0779 instead
of 0.056. We note that the experimental points fit better the dashed line at high
Pa and are closer to the two other curves at low Pa. This lead us to conclude that
during the first phase of the experiments the time waited between nucleation and
the beginning of the decompression was not enough to reach the equilibrium.

0
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Fig. 3. Porosity α (on the left) and radius R (on the right) with respect to ambient pressure Pa:

effect of a variable viscosity ηeff .

The right graph shows the numerical radii R as a function of the ambient pres-
sure Pa for the same three numerical runs (on the left). Experimental results are
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now represented with square points centred on the median value of the experimen-
tal radii together with a standard deviation representing the spread of measured
bubble radii. We note that the three runs are very similar, regardless of initial condi-
tions, and that the fit between experiments and numerical results is worst for radius
than porosity. The larger misalignment of experimental radii compared to that of
porosity is explained by the fact that each experimental point in figure 3 is a full
decompression run starting from Pa = 1. As a result, bubble nucleation dynamics
occurring during the initial decompression step is only approximately similar from
one experiment to the next.
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Fig. 4. Bubble radius R with respect to ambient pressure Pa: mono-disperse vs. poly-disperse.

In figure 4 we compare the experimental results obtained in Ref. 2 when bub-
ble coalescence occurs with our numerical results with variable viscosity for three
different initial porosities. The left graph, which displays the evolution of porosity
with ambient pressure, indicates that this experimental series is best reproduced
numerically by starting from a initial porosity of 0.035. This is lower than the best
fit value of the other series. A tentative explanation of this situation is a even shorter
pause between bubble nucleation and the start of the decompression. We plotted on
the right graph, which shows the evolution of R with ambient pressure, distribution
histograms of measured bubble radii. The three computed bubble radius R all fit
the experimental measurements within a standard deviation, but, considering the
large spread of bubble sizes, it is not possible to choose which numerical results has
the better fit. As discussed in Ref. 2, this layout is due to the poly-disperse nature of
bubble growth in the experiments, which was caused by bubble coalescence. Hence,
in order to produce more accurate results that resolve the spread in bubble sizes,
one should consider poly-disperse modelling of the bubbles population.
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Furthers comparisons with other experimental results is under investigation and
will be exposed in a future work. We simply underline herein that our numerical
code has a satisfactory behavior when confronted to various experimental works,
and that it is sufficiently accurate to point experimental shortcomings as long as
poly-disperse processes do not dominate bubble growth.

6. Conclusions

In the present paper, we have proposed and applied a numerical scheme for the
approximation and simulation of the solution of a non-linear system of differential
equations coupled with an advection diffusion equation, popularised in the volcanol-
ogy literature by Prussevitch et al.13 and Lensky et al.11 Our goals were twofold: give
a conservative discretization of the system and study the asymptotic limits when
the two relaxation parameters ΘV and ΘD went to 0 or ∞.

In the recent years (see for example Ref. 5 and the reference therein), the nu-
merical approach to solve the model governed by equations (2.15)-(2.16)-(2.18) is
based on the one proposed in Ref. 15: the transport term in the advection-diffusion
equation is simplified by the means of a change of variable at the continuum level,
leading to a kind of heat equation (the diffusion term is not standard). Nevertheless,
with the method proposed in Ref. 13, a large number N of discretisation points in
the radial direction is greatly reduced by the means of a variable mesh size. This size
is controlled by an empirically defined parameter that ensures the conservation of
water mass and that precisely captures the behavior of the flux on the bubble bor-
der. With our approach, a small number of points, N = 50, also guarantees precise
results, but the mesh size is automatically defined. In fact, the discrete flux on the
bubble border is defined in such a way that the numerical scheme preserves water
mass (see Proposition 3.1). There is thus no need to adjust an empirical parameter
to ensure scheme accuracy.

Concerning the asymptotic behavior of the coupled system of equations, we have
analytically deduced the different simplified models in the three regimes: viscous,
when ΘV /ΘD << 1, diffusive, when ΘV /ΘD >> 1, and in the equilibrium one,
when ΘV /ΘD ∼ 1. In particular, when both ΘV and ΘD go to 0, we retrieve the
equilibrium state of the problem. We have numerically shown the convergence of
the scheme towards the solutions of the three regimes when varying the relaxation
parameters. We also determined numerically the boundaries between the various
regimes.

Finally we compare our numerical results with data obtained from decompres-
sion experiments of natural magmas. This validation of the code gives also a feed-
back on the quality of experimental results. In particular, we show that, unlike
originally assumed by the authors, decompressions in Ref. 2 started while bubbles
were still growing, i.e. equilibrium was not reached. Finally, it appears that the
simplified mono-disperse framework is not accurate enough (see figure 4) to capture
spreading bubble size distributions such as those produced by bubble coalescence.
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We thus infer that an extension of the physical model to include a poly-disperse
description for the bubbles population is a worthy pursuit.
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