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A monodisperse model for water bubbles

growth in magmas

A. Burgisser∗, L. Forestier-Coste†, F. James†, S. Mancini∗,†

Abstract

Growth of gas bubbles in magmas may be modelled by a system
of differential equations coupled with an advection-diffusion equation,
see [10], and characterised by two relaxation times linked to the vis-
cosity of the magma and to the diffusivity of the dissolved gas, respec-
tively. Here, we propose a numerical scheme which, unlike previously
published schemes, preserves the total mass of the coupled system of
equations. We also study the asymptotic behavior of the system of
equations, when letting the relaxation times vary from 0 to ∞, and
show the numerical convergence of the solutions obtained by means
of the general numerical scheme to the simplified asymptotic limits.
Finally, we validate and compare our numerical results with those
obtained in experiments.

1 Introduction

All volcanic eruptions involve a decompression of the magma during its as-
cent from the Earth’s crust to the surface. This decompression causes the
volatiles dissolved into the magma to come out of solution as gas bubbles.
The way these bubbles are growing, whether they coalesce with one another
or travel faster than or with the magma, are all conditioning the way the
volcanic eruption will unfold. Bubbles that remain trapped with the magma
they originally grew from will accumulate gas pressure until failure of the
magma releases it suddenly to produce an explosive eruption. Such scenario
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is most likely when the magma is highly viscous and prevails bubble motion.
This situation is propitious to modelling because bubble can be considered
as immobile in the magma and the resulting spherical geometry allows one to
reduce bubble growth to a 1D system of differential equations describing the
evolution of pressure and gas mass in a bubble coupled with an advection-
diffusion equation describing the drainage of the dissolved gas towards the
bubble. A further assumption is that bubbles are exclusively made of water
vapour, which can be justified by the fact that water is, by far, the most
abundant volatile species in such viscous magmas.

Since the seminal work done in [14], several numerical scheme that solve
such system of differential equations have been proposed (see [1, 16, 17,
3, 13]). Application to gas bubble in magmas is slightly more recent (see
[12, 11, 15, 4, 10, 5]). All these schemes have in common a discretization of
the advection-diffusion equation that is not strictly conservative with respect
to the diffused species. They also involve user-defined discretization param-
eters that have to be empirically adjusted to ensure sufficient convergence
and/or accuracy of the scheme. Developing alternate, robust schemes would
allow including the dynamics of bubble growth into more sophisticated model
that take into account, for instance, that bubble have different sizes, or that,
if magma viscosity is low enough, bubble may rise with respect to the magma.

The present work is developed as follows. In section 2, we recall the dif-
ferential equations describing the respective evolution of bubble radius and
mass, together with the advection-diffusion equation concerning the behav-
ior of the water concentration in the magma. Following [10], we write the
problem in dimensionless form, introducing the relaxation times ΘV and ΘD.
Section 3, is devoted to the numerical approximation of the model. The main
novelty is the discretization of the advection-diffusion equation, see 3.2, in
which we explain how to compute the mesh and flux at each iteration. In
section 4 we deal with the asymptotic of the dimensionless problem, when the
rate between the relaxation times tends to 0 or ∞. Three main regimes are
underlined: viscous, diffusive, and equilibrium. For each limit, we also give
the way we shall discretize it. The numerical results, the convergence of the
solution towards the simplified asymptotic limits, and the comparison with
experiments are discussed in section 5. Finally, in section 6, we summarise
our study and suggest possible extensions of the modelling of bubbles growth
in magma.
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2 The model

We are interested in the modelling of bubbles growth in magma, which are
mainly composed of water vapour. Two main physical processes are at the
origin of their growth. Magma is moving towards the surface and therefore
it undergoes decompression. This causes, on one hand, expansion of the
gas trapped into the bubble, and, on the other hand, diffusion of the water
dissolved in the magma into the bubbles. Our study is based on a recent
work (see [10]), in which the authors consider spherical bubbles and describe
each bubble in terms of its radius R and pressure P , proposing a model for
the growth of a monodisperse set of bubbles, i.e. the radius and pressure of
all the bubbles contained in a small parcel of magma evolve in the same way.
In their paper, Lensky et al., also propose a dimensionless formulation of the
equations, yielding to the introduction of two relaxation times ΘV and ΘD.
We recall in the following sections the physical model and its dimensionless
version.

2.1 Physics modelling

Let assume that bubbles are spherical, with a radius R̂ = R̂(t) and a pressure
P̂ = P̂ (t). Let us consider that each bubble is surrounded by a bigger sphere
of radius Ŝ = Ŝ(t), which we call the influence region. This region represents
the volume of magma interacting with the bubble, i.e. the water contained
in the magma in this region will diffuse into the bubble. It is thus natural to
consider water mass conservation in the water exchange bubble-magma: the
total mass, M, given by the sum of the water mass in a bubble and of the
water contained in its influence region must be equal to the water mass at
initial time, for example when no bubbles are present in the magma. This
may be expressed in the following form:

4πρ̂

3
R̂3 + 4πρ̂m

∫ Ŝ(t̂)

R̂(t̂)

r̂2C dr̂ =
4πρ̂m

3
Ŝ3

0C0. (1)

In (1) ρ̂ and ρ̂m are respectively the density of the gas and the magma, the
function C = C(r̂, t̂) represents the concentration of water in the magma,
and depends on time t̂ and on the space/radial variable r̂ ∈ [R̂(t̂), Ŝ(t̂)], i.e.
the radial distance from the boundary of the bubble, Ŝ0 is the radius of the
influence region assuming that the bubble has zero radius R̂, and C0 is the
concentration of water assuming that the radius R̂ is zero.
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Remark 2.1 With the above definition for the influence region, the magma
porosity, here denoted by α = α(t̂), is given by:

α =
R̂(t̂)3

Ŝ(t̂)3
.

�

Following [10], we describe the set of equations governing bubble growth.
We begin by describing the equations governing the evolution of the bubble
radius R̂ and pressure P̂ ; after we consider the evolution of the water concen-
tration C in the influence region; finally we describe the assumptions on the
behavior of the influence region radius Ŝ and on the ambient pressure (the
magma pressure) P̂a = P̂a(t). We refer the reader to table 1 for a description
of the physical parameters of this modelling.

We assume that the bubbles are non-interacting and mono-disperse, there-
fore the evolution of a single bubble describes that of the set of bubbles. From
the conservation of the first moment of Navier-Stokes equations, we have that
the variation of the pressure, the surface tension and the viscosity terms must
satisfy the following:

P̂ = P̂a +
2σ

R̂
+ 4

˙̂
R

R̂
η̂, (2)

where P̂a is the ambient pressure, σ is the surface tension and η̂ is the magma
viscosity, which will be assumed constant in this paper.
We note that, inside the bubble, water is in gaseous form and may be con-
sidered as a perfect gas, hence from the perfect gas law:

GTρ̂ = P̂Mm, (3)

with Mm the molar mass for water, G the perfect gas constant and T the gas
temperature.

The pressure inside a bubble depends on the bubble radius, as shown by
(2), but also on the water mass inside the bubble. Mass may vary because of
the diffusion of water from the surrounding magma into the bubble. Hence,
we have the following balance equation:

4π

3

d

dt̂

(

ρ̂R̂3
)

= 4πρ̂m (F )r̂=R̂ , (4)
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where F represents the water flux from the magma into the bubble and it
will be described later on, see (7).

We now model what happens in the influence region by giving the equa-
tion governing the evolution of the water concentration in this region. This
leads also to an explicit formulation for the flux F . Water in the magma
diffuses; hence, in the influence region, we can model the concentration of
water C = C(r̂, t̂), depending on time t̂ and on the distance r̂ ∈ [R̂(t̂), Ŝ(t̂)],
by means of the following advection-diffusion equation expressed in radial
co-ordinate:

dC

dt̂
=

1

r̂2

∂

∂r̂

(

r̂2D̂
∂C

∂r̂

)

, (5)

where D̂ is the magma diffusion coefficient, assumed constant in this work,
and dC/dt̂, is the total derivative, representing the time variation and the
advection term. Taking into account the displacement of the bubble border

with radial velocity
˙̂
RR̂2/r̂2, the total time derivative dC/dt̂ in (5) is given

by:
dC

dt̂
=

∂C

∂t̂
+

˙̂
R

R̂2

r̂2

∂C

∂r̂
. (6)

It follows that the flux F = F (r̂, t̂) in equation (4) is given by:

F = r̂2D̂
∂C

∂r̂
(7)

To complete the modelling of the behavior of the water concentration C in
the influence region, we consider the following boundary conditions:

C(R̂, t̂) = KH

√

P̂ , (8)

determining the water concentration on the bubble border, r̂ = R̂, in terms
of the solubility equation, and where we denote by KH the Henry constant;

∂C

∂r̂

∣

∣

∣

∣

r̂=Ŝ

= 0, (9)

asserting that the flux of water concentration on the outer border, r̂ = Ŝ, of
the influence region is null.

Finally, we have to describe the behavior of the ambient pressure P̂a and
of the influence region radius Ŝ. Since one of the goals of the present study
is to compare our numerical results with those obtained in experiments, we
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assume that, after the bubbles nucleation, pressure is linearly decreased from
an initial value Pi and with a constant decompression rate ∆P . Hence the
ambient pressure P̂a is governed by the following equation:

P̂a(t̂) = Pi − t̂∆P. (10)

Concerning the time evolution of the radius of the influence regionŜ, and
from the assumption that the volume of the influence region is constant in
time (see [10]), we have:

Ŝ(t̂) =
(

Ŝ3
0 + R̂(t̂)3

)1/3

, (11)

where Ŝ0 is a constant representing the initial radius of the influence region,
for example when the bubble has a null radius R̂.

We resume, in table 1, the meanings, physical values and order of mag-
nitude of the constants and parameters considered in our model and compu-
tations.

Table 1: Constants

D Diffusivity 10−12 (m2 · s−1)
η Viscosity 104 (Pa · s)
M Molar Mass for Water 18.10−3 (kg · mol−1)
G Perfect Gas Constant 8.3144 (J · mol−1 · K−1)
T Temperature 1098.15 (K)
σ Surface Tension 0.1 (J · m−2)
ρm Magma density 2154 (kg · m−3)

KH Henry Constant 3.44.10−6 (kg−1/2 · m1/2)
S0 Influence Radius for R = 0 6.204.10−5 (m)
∆P Decompression Rate 105 (Pa · s−1)
Pi Initial Ambient Pressure 108 (Pa)
C0 Water Concentration for R = 0 4.21 (wt.%)

2.2 Dimensionless problem

This section is dedicated to the dimensionless model. As we will see, we will
be led to define a viscous and a diffusion relaxation time, respectively ΘV

and ΘD, which may physically vary for several order of magnitude. Their
influence on the behavior of the solutions will be discussed later on, see
section 4.
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As done in [10], we consider the following reference values: the initial
bubble radius, Ri, the initial gas density ρi, the initial ambient pressure
Pi = Pa(t = 0) and the diffusion and viscosity coefficients, Di and ηi. We
then perform the following change of variables and parameters:

η =
η̂

ηi

D =
D̂

Di

ρm =
ρ̂m

ρi

Σ =
2σ

RiPi

R =
R̂

Ri

S =
Ŝ

Ri

r =
r̂

Ri

Ṙ =
˙̂
RPi

Ri∆P

P =
P̂

Pi

Pa =
P̂a

Pi

ρ =
ρ̂

ρi

t = t̂
∆P

Pi

where the new dimensionless variables and constants are denoted without
the superscript. We note that, since the diffusion and viscosity coefficients
are considered to be constant, we have that D = 1 and η = 1. Moreover,
from the above definitions we obtain the following viscosity and diffusion
relaxation times:

ΘV =
4ηi∆P

P 2
i

, ΘD =
R2

i ∆P

DiPi

. (12)

Performing the change of variables, we end up with the following dimen-
sionless total water mass conservation:

M + 3ρm

∫ S(t)

R(t)

r2C dr = S3
0 C0ρm (13)

and the dimensionless system of differential equations in R and M :

Ṙ =
R

ΘV

(

P − Pa −
Σ

R

)

(14)

Ṁ =
3ρm

ΘD

(

r2∂C

∂r

)

r=R

(15)

where, we have denoted by Ẋ the time derivative of the variable X.
Moreover, the water concentration C = C(r, t) must satisfy the following
dimensionless advection-diffusion equation:

∂tC +
ṘR2

r2
∂rC =

1

ΘD

1

r2
∂r

(

r2∂rC
)

(16)
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with the Dirichlet boundary condition on the bubble border:

C(R, t) = Ci

√

P̂ (17)

where Ci is given by:
Ci = KH

√

Pi,

and the Neumann boundary condition:

∂C

∂r

∣

∣

∣

∣

r=S

= 0 (18)

on the outer border of the influence region.
Finally, equations (10) and (11) become, respectively:

Pa = 1 − t (19)

and
S3(t) = S3

0 + R3(t). (20)

Remark 2.2 We note that (14) and (15) are coupled by means of the dimen-
sionless definition of the bubble mass: M = PR3, deduced from the perfect
gas law. We also note that equation (15) is the differential form of the total
water mass conservation (13). In fact, deriving with respect to time equation
(13), and taking into account (20), we get:

Ṁ = − d

dt

(

3ρm

∫ S(t)

R(t)

r2C dr

)

= −3ρm

(

∫ S(t)

R(t)

r2∂tC dr + S2dS

dt
C(S, t) − R2dR

dt
C(R, t)

)

= −3ρm

∫ S(t)

R(t)

(

r2∂tC +
dR3

dt
∂rC

)

dr.

Considering now (16) and (18), we end up with:

Ṁ =
−3ρm

ΘD

∫ S(t)

R(t)

∂r

(

r2∂rC
)

dr =
3ρm

ΘD

(

r2∂rC
)

r=R
,

which is precisely equation (15). In other words, the system of equations we
are considering is mass preserving. �
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We end this section by summarising the equations we shall discretize. We
will consider the coupling of the following system of differential equations on
R and P :























Ṙ =
R

ΘV

(

P − Pa −
Σ

R

)

Ṁ =
3ρm

ΘD

(

r2∂rC
)

r=R

(21)

with the advection-diffusion equation for the water concentration C:

∂tC +
ṘR2

r2
∂rC =

1

ΘD

1

r2
∂r

(

r2∂rC
)

, (22)

endowed by the boundary conditions (17) and (18) and the external assump-
tion on Pa and S given by (19) and (20), respectively.

3 Numerical approximation

In this section we consider the numerical approximation of the model (21)-
(22), on R(t) and M(t) and C(r, t), together with the boundary conditions
(17)-(18) and the external assumption (19)-(20). In particular, we propose a
numerical scheme for the advection-diffusion equation conserving the water
mass. This is a delicate point of the discretisation; the flux at the bubble
border has to be carefully computed because the magnitude of the relax-
ation times ΘV and ΘD may differs of several orders. We shall first present
the straightforward discretization of the system of differential equations (21)
and follow by presenting the more critical problem of the advection-diffusion
equation, (22), discretization.

3.1 The differential system

We describe here the basic elements of the numerical scheme for the differ-
ential system (21).

Let us first define, for n ∈ N, the time tn+1 and the ambient pressure
P n+1

a = Pa(t
n+1), at the iteration step n + 1, respectively by:

tn+1 = tn + ∆tn,

P n+1
a = 1 − tn+1,

where the time step ∆tn is computed at each iteration and must satisfy some
stability conditions which will specified later on, see section 3.3. The numer-
ical results, see section 5, will be plotted in term of the ambient pressure Pa,
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which may be considered as a time variable.

We choose a semi-implicit scheme for the discretisation of (14), i.e. the
discrete bubble radius Rn = R(tn) is implicitly treated, whereas the discrete
bubble and ambient pressures, P n = P (tn) and P n

a = Pa(t
n), are treated

explicitly:

Rn+1 =

(

Rn − ∆tn
Σ

ΘV

)(

1 − ∆tn
(P n − P n

a )

ΘV

)

−1

(23)

We discretize the equation for the mass balance at the magma-bubble inter-
face, (15), by a semi-explicit scheme. Defining the discrete bubble mass by
Mn = M(tn), and the discrete flux in r = R by F n

0 = F (R, tn), we consider:

Mn+1 = Mn + 3ρm
∆tn

ΘD

F n+1
0 , (24)

where F n+1
0 given by (34). We note that this formulation allows us to com-

pute the bubble pressure by the means of:

P n+1 =
Mn+1

(Rn+1)3 ,

which is physically relevant.
Finally, we define the discrete radius of the influence region, Sn = S(tn),

and the discrete porosity, αn = α(tn), respectively by:

Sn =
(

(Rn)3 + S3
0

)1/3
, αn =

(

Rn

Sn

)3

.

3.2 The advection-diffusion discretization

We discretize the advection-diffusion equation for the water concentration
C(t, r) splitting it into the transport and the diffusion steps. First from the
advection equation, at each time iteration tn+1 we compute the advected
mesh and a prediction of the concentration C

n+1/2
i on the new mesh. Next,

we use this new value to solve the diffusion part defining the flux F n+1
0 in

such a way that the total mass M is conserved.

3.2.1 Advection step

The advection step consists in the discretization of the following transport
equation:

r2∂tC + ṘR2∂rC = 0. (25)
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The goal here is to build a variable space mesh in such a way that the
concentration function C(tn, rn

i ) is conserved during the advection, without
excessive refinement, and to build a conservative scheme. Previous attempts,
see for example the one in [11], considered a non-conservative scheme with
respect to the advection-diffusion equation, in which discretization parame-
ters have to be adjusted to ensure its convergence and accuracy. This fact
yields to a large number of discretization points, in contrast with the present
scheme, where, as shown in section 5, the number of discretization points
can be small and the scheme is conservative by construction.

Let us consider the continuous in time problem and define the mesh points
ri = ri(t), for i = 0...N , as follows: take any sequence K0, ..., KN , with
K0 = 0 and KN = S3, and define:

ri =
(

(R(t))3 + Ki

)1/3
. (26)

Note that the Ki − s are independent on time and that the choice of K0 and
KN gives r0(t) = R(t) and rN(t) = S(t). In particular, the choice Ki = i

N
S3

0

satisfies both requirements, but what follows holds for any choice of Ki.

Lemma 3.1 For i = 0...N − 1 define the mesh ri by (26), then the water
mass concentration Ci(t), on the cell [ri, ri+1], is conserved at all time.

Proof: First we note that the characteristic curves associated to the trans-
port equation (25) are given by, for all i = 0...N :

ṙ2
i

dri

dt
= RR2. (27)

Then, considering the time derivative of the integral over one discretization
cell of r2C(r, t) we have that, for i = 0...N − 1:

d

dt

∫ ri+1

ri

r2Cdr =

∫ ri+1

ri

r2∂C

∂t
dr + r2

i+1

dri+1

dt
C(ri+1, t) − r2

i

dri

dt
C(ri, t).

This proves that choosing ri in such a way that (27) holds, the water mass
is conserved:

d

dt

∫ ri+1

ri

r2Cdr = 0. (28)

Finally, we remark that (27) is equivalent to:

dR3

dt
=

dr3
i

dt
=

dr3
i+1

dt
,

integrating it with respect to time gives (26), which ends the proof. �
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We proceed now to the complete discretization of (25). We first give a
recursive computation of the mesh points rn

i which will be used from now
on. Writing (26) at times n and n + 1, for i = 0, ..., N − 1, we first get:

(rn
i )3 = (Rn)3 + Ki, (rn+1

i )3 = (Rn+1)3 + Ki,

and then by subtraction we obtain the desired formula:

rn+1
i =

(

(

Rn+1
)3 − (Rn)3 + (rn

i )3
)1/3

. (29)

We remark that (29) is independent of the initial distribution of points r0
i ,

and so any choice of distribution points r0
i is convenient. In the computations

we will present later on, we have chosen a uniform distribution for the r0
i .

Finally, we denote by ∆rn
i the (non uniform) space discretization step, ∆rn

i =
rn
i+1 − rn

i .
We assume that C(r, t) = Cn

i for (t, r) ∈ [tn, tn+1[×]ri, ri+1[, and we define

the prediction C
n+1/2
i on the advected mesh at tn+1 from the discrete version

of (28), which writes

∫ rn

i+1

rn

i

r2C(tn, r) dr =

∫ rn+1

i+1

rn+1

i

r2C(tn+1, r) dr.

Since in each mesh ]rn
i , rn

i+1[, C(tn, r) = Cn
i , the above integrals are explicitly

computed, yielding to:

(rn
i+1)

3 − (rn
i )3

3
Cn

i =
(rn+1

i+1 )3 − (rn+1
i )3

3
C

n+1/2
i

Moreover, from the definition of the mesh discretization, it follows that
(rn

i+1)
3 − (rn

i )3 is independent with respect to time (but not with respect

to the position), so that the prediction C
n+1/2
i is defined by:

C
n+1/2
i = Cn

i . (30)

3.2.2 Diffusion step

We now discretize the diffusion equation:

r2dtC =
1

ΘD

∂r

(

r2∂rC
)

.

Integrating the above equation on the interval [tn, tn+1[×]ri, ri+1[, considering
that dtC is constant on each mesh, and recalling (30), we obtain, for i =
1...N − 1:

Cn+1
i = Cn

i +
∆tn

ΘD

3
(

F n+1
i+1 − F n+1

i

)

r3
i+1 − r3

i

. (31)
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where F n+1
i represents the discrete flux between the cells i− 1 and i and, for

i = 1...N − 1, it is defined by:

F n+1
i =

2
(

rn+1
i

)2

rn+1
i+1 − rn+1

i−1

(

Cn
i − Cn

i−1

)

. (32)

The discrete flux, F n+1
N , at the external boundary of the influence region

rN = S, is given by the null flux condition on S:

F n+1
N = 0 (33)

and the Dirichlet boundary condition on the bubble-magma interface for
C(R, t), defines:

Cn+1
0 = KH

√

Pi P n.

Concerning the discrete flux at the bubble-magma interface, F n+1
0 , we need to

do some more work. As said, we want our numerical scheme to be preserving,
i.e. to conserve the total water mass, since this fact is a direct derivation of
the physical model. Let us then define, the discrete flux F n+1

0 by:

F n+1
0 = F n+1

1 − ΘD

∆tn
r3
1 − r3

0

3
(Cn+1

0 − Cn
0 ) (34)

and the discrete total water mass Mn by:

Mn = Mn + ρm

N−1
∑

i=0

Cn
i

(

r3
i+1 − r3

i

)

. (35)

Then we have:

Lemma 3.2 The numerical scheme (23)-(34) conserves the discrete total
water mass:

Mn = M0, ∀n ∈ N.

Proof: The total water mass at time tn+1 is equal to:

Mn+1 = Mn+1 + ρm

N−1
∑

i=0

Cn+1
i

(

r3
i+1 − r3

i

)

.

Applying (24), splitting the sum for i = 0 and i = 1...N − 1 and replacing
(31) in the sum, we obtain:

Mn+1 = Mn + 3ρm
∆tn

ΘD

F n+1
0 + ρmCn+1

0 (r3
1 − r3

0)+
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+ρm

N−1
∑

i=1

Cn
i (r3

i+1 − r3
i ) + 3ρm

∆tn

ΘD

N−1
∑

i=1

(

F n+1
i+1 − F n+1

i

)

.

Hence, simplifying the last sum we get:

Mn+1 = Mn + 3ρm
∆tn

ΘD

F n+1
0 + ρmCn+1

0 (r3
1 − r3

0)+

+ρm

N−1
∑

i=1

Cn
i (r3

i+1 − r3
i ) + 3ρm

∆tn

ΘD

(F n+1
N − F n+1

1 ).

Recalling that F n
N = 0 for all n, and splitting, in the definition Mn, the sum

for i = 0 and i = 1...N − 1, we must have that:

3ρm
∆tn

ΘD

F n+1
0 + ρmCn+1

0 (r3
1 − r3

0) − 3ρm
∆tn

ΘD

F n+1
1 = ρmCn+1

0 (r3
1 − r3

0),

which is verified since F n+1
0 is defined by (34). Hence, we have proved that

for all n: Mn+1 = Mn, so that the discrete total water mass is conserved. �

Remark 3.1 We note that the total water mass conservation is independent
on the definition of the discrete flux inside the grid, F n

i , for i = 1...N−1. We
recall that definition (34), together with (29), are the crucial points enabling
us to write a conservative numerical scheme. �

Before turning to the stability conditions for this scheme, we summarise
here the main formula of the numerical approximation:

Rn+1 =

(

Rn − ∆tn
Σ

ΘV

)(

1 − ∆tn
(P n − P n

a )

ΘV

)

−1

Mn+1 = Mn + 3ρm
∆tn

ΘD

F n+1
0

F n+1
0 = F n+1

1 − ΘD

∆tn
r3
1 − r3

0

3
(Cn+1

0 − Cn
0 )

F n+1
i =

2
(

rn+1
i

)2

rn+1
i+1 − rn+1

i−1

(

Cn
i − Cn

i−1

)

Cn+1
i = Cn

i +
∆tn

ΘD

3
(

F n+1
i+1 − F n+1

i

)

r3
i+1 − r3

i

rn+1
i =

(

(

Rn+1
)3 − (Rn)3 + (rn

i )3
)1/3

14



3.3 Stability conditions

In this section, we describe the stability conditions on the time step for our
scheme. First, we compute the bounds for ∆tn for each numerical approxi-
mations, and then we take ∆tn the minimum of the three stability condition.
Before dealing with equations (23) and (31), we note that we do not have a
stability condition for the bubble mass approximation (24), but we ask that
the discrete bubble pressure P n remains larger than the ambient pressure P n

a

at each iteration n, which leads to:

∆tn < ΘV

∣

∣

∣

∣

|(P n
a − P n)(R3)n − 3ρm(r3

1 − r3
0)C

n
0 |

|3ρmF n
1 |

∣

∣

∣

∣

(36)

Nevertheless, this condition is not sufficient to avoid oscillations in the so-
lution, in some rare case, but permits in almost all cases to take reasonable
time steps, i.e. ∆tn ∼ 10−9.

We look now for the stability conditions of (23) and (31). In particular
we search a bound of the time step ∆tn such that each solution is positive.

Proposition 3.1 Let n ∈ N, if:

∆tn < min

(

RnΘV

Σ
,

ΘV

|P n − P n
a |

)

(37)

the solution to the numerical scheme (23) is positive, i.e. Rn > 0.

Proof: Let us assume that at the iteration n all the variables are positive,
then at the iteration n + 1, using (23), ∆tn must be such that:

(

Rn − ∆tn
Σ

ΘV

)(

1 − ∆tn
P n − P n

a

ΘV

)

−1

> 0.

We have two possibilities. The first one is when P n−P n
a ≤ 0. Then we have:

1 − ∆tn
P n − P n

a

ΘV

> 0.

Hence,

Rn − ∆tn
Σ

ΘV

> 0

which implies,

∆tn <
ΘV Rn

Σ
.
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The second one is: P n − P n
a > 0. Then ∆tn must be the positive solution of

a second order equation. The dominant coefficient:

Σ(P n − P n
a )

Θ2
V

is positive, hence Rn+1 is positive, if ∆tn is external to the roots:

ΘV

P n − P n
a

,
RnΘV

Σ
.

Finally, we remark that the choice (37) verifies both conditions. �

Proposition 3.2 Let n ∈ N, if:

∆tn <
ΘD

6
min

i

(

(r3
i+1 − r3

i )

(

rn+1
i+1 − rn+1

i−1

(rn+1
i )2

))

(38)

then the solution to the numerical scheme (31) is positive, i.e. Cn
i > 0 for

all i = 1...N − 1.

Proof: We first remark that the Dirichlet condition on the boundary r = R
implies that Cn

0 > 0 for all n ∈ N.
Assuming that at the nth iteration Cn

i is positive for all i = 0...N − 1, we
want ∆tn to verify Cn+1

i > 0. Thus from (31), it must be, for i = 1...N − 1:

Cn
i +

3∆tn

ΘD(r3
i+1 − r3

i )

(

F n+1
i+1 − F n+1

i

)

> 0.

Recalling that F n+1
i is given by (32), collecting the terms with respect to

Cn
i−1, Cn

i and Cn
i+1 and considering that Cn

i are positive for all i, we get a
sufficient condition for the positivity of Cn+1

i in the form, for i = 1...N − 2:

1 − 6∆tn

ΘD(r3
i+1 − r3

i )

(

(rn+1
i+1 )2

rn+1
i+2 − rn+1

i

+
(rn+1

i )2

rn+1
i+1 − rn+1

i−1

)

> 0.

Since
rn+1
i+2 − rn+1

i

(rn+1
i+1 )2

> 0,

the time step ∆tn given by (38) verifies the above condition.
If now i = N − 1, recalling that F n

N = 0 for all n, we obtain that ∆tn must
satisfy:

∆tn <
ΘD

6
(r3

N − r3
N−1)

(

rn+1
N − rn+1

N−2

(rn+1
N−1)

2

)

which conclude the proof. �
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4 Limit cases

As mentioned in section 2, the system of equation (21)-(22) we are considering
has two relaxation times, ΘV and ΘD defined by (12), which may differ
by several order of magnitude, depending on the values of, for instance,
diffusivity or viscosity. In many experiments ΘV and/or ΘD are very small,
on the order of 10−7. The time steps ∆tn depending on these values, the
computational time needed to reach a porosity close to 1 is very large. The
study of the limit cases, such as when ΘV and ΘD tends to ∞ or to 0,
is thus an attractive alternative to solving the full system because it leads
to simplified models with smaller simulation times. In particular, we will
classify the different limits in regimes of bubble growth by considering the
ratio ΘV /ΘD. Following [10], we define a viscous regime when the ratio is
very small, see 4.1, an equilibrium regime when the ratio is of order 1, see
4.2, and a diffusive regime when the ratio is large, see 4.3. At the end of
each section, we will also summarise when necessary the numerical scheme
corresponding to the simplified cases. As we are mainly interested in the
behavior of the bubble physical dimensions (pressure P and radius R), we
shall only describe how to compute these two quantities. In particular, we
recall that, when comparing with experiments, we consider the porosity:
α = R3/S3. We list all the possible limits in table 2, which references each
simplification to compute the bubble radius R and mass M (or pressure P ).
In table 2 we also give the orders of magnitude delimiting each regime.
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Table 2: Limit cases

∞

4.1.2 4.1.1 4.2.2

(42), (40) (41), (40) (49), (40)

103

ΘD 4.1.3 4.3.1

(43), (44) (14), (15) (49),(50)

10−3

4.2.1 4.3.3 4.3.2

(43), (48) (48), (14) (49), (51)

0 10−5 101 ∞
ΘV

4.1 Viscous regime : ΘV /ΘD << 1

We first look at the case when the viscous relaxation time is smaller than
the diffusion one. There are three possibilities: ΘV goes to zero and ΘD is
of order 1 or goes to infinity; and ΘV is of order 1 and ΘD goes to infinity.

4.1.1 ΘV ∼ 1 and ΘD → ∞
Since ΘD is very large, equation (16) reads r2dtC(r, t) = 0, which yields to:

∫ S(t)

R(t)

r2C(r, t) dr =

∫ S(0)

R(0)

r2C0 dr. (39)

Concerning the bubble mass evolution, since ΘD >> 1, equation (15) reads
Ṁ = 0, which is equivalent to:

M = M(0), (40)

the water mass inside the bubble is constant. In fact, a large diffusive relax-
ation time may be physically given by a very small value for the diffusivity
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in magma; hence there will not be diffusion of water from the magma into
the bubble, and the bubble water mass will not change.
As ΘV ∼ 1, no simplification is possible for the equation giving the evolution
of the bubble radius (14). Still, recalling that M(0) = M = PR3 and that
the ambient pressure is given by (19), we can write a differential equation
only depending on R:

Ṙ =
1

ΘV

(

M(0)

R2
− R(1 − t) − Σ

)

, (41)

or equivalently on P :

Ṗ = − 3P

ΘV

(

P − (1 − t) − Σ

(

P

M(0)

)1/3
)

.

We note that we obtain the same result as in [10].
Numerically, since the mass M = PR3 is constant, we simply solve equa-

tion (41) with an implicit scheme.

4.1.2 ΘV → 0 and ΘD → ∞
When ΘD is large, the simplifications (39) and (40) are always true. In
particular, water mass in the bubble is constant: M = M(0).
Regarding equation (14), since ΘV is very small, multiplying by ΘV , recalling
that M(0) = PR3, and simplifying allows us to obtain a third order equation
on R:

R3(1 − t) + ΣR2 − P (0) = 0,

which admits an unique real solution given by:

R =
c

6a
+

2b2

3ca
− b

3a
, (42)

where we have defined:

a =
1 − t

P (0)
, b =

Σ

P (0)

and

c =
(

108a2 − 8b3 + 12
√

3
√

27a2 − 4b3a
)1/3

.

In this case, since the mass M is constant, and the radius R is explicitly
given by (42), no numerical scheme is needed.
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4.1.3 ΘV → 0 and ΘD ∼ 1

If ΘD ∼ 1, the simplifications of section 4.1.1 no longer hold. There is, for
instance, no possible simplification for equations (15) and (16). Nevertheless,
since ΘV << 1, we have:

P = 1 − t +
Σ

R
(43)

which links the bubble pressure P to the radius R. On the other hand, consid-
ering that M = PR3 and equation (15), we obtain the following differential
equation for R:

Ṙ =

(

3ρm

ΘD

(

r2∂C

∂r

)

r=R

+ R3

)

(

2ΣR + 3R2(1 − t)
)

−1
, (44)

where the water concentration is obtained solving the advection-diffusion
equation (16).

Numerically, we respectively compute Mn+1 and Cn+1
i using the general

numerical schemes for equations (24) and (31), then we apply relation M =
PR3 to compute P and finally from (43) we obtain R.

4.2 Equilibrium regime: ΘV /ΘD ∼ 1

In this section we deal with those regimes in which the relaxation times ΘV

and ΘD are of the same order of magnitude. More precisely, when both ΘV

and ΘD go to zero, or to ∞, since otherwise no simplification is possible.

4.2.1 ΘV → 0 and ΘD → 0

This is an interesting situation because in this case computational time are
very long and it corresponds to the equilibrium growth, which is a com-
mon situation in natural magmas (i.e. the bubble is always at its maximum
possible radius).

Let us consider ΘD << 1, then multiplying the water concentration equa-
tion (16) by ΘD and simplifying, we have:

1

r2

∂

∂r

(

r2∂C

∂r

)

= 0,

for which the solution, taking into account the boundary conditions (17) and
(18), reads:

C(r, t) = C(R, t) = Ci

√
P , ∀ r ∈ [R(t), S(t)], (45)
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Thus, we see that when ΘD tends to zero, equation (15) is not valid any-
more to compute the water mass variation inside the bubble. Therefore, we
consider the total mass conservation equation (13). Replacing C by (45) in
(13), and recalling, (20), we obtain:

M = ρmS3
0(C0 − Ci

√
P ), (46)

Now since M = PR3, equation (46) is a second order equation in X =
√

P ,
with positive solution:

X =
−Y +

√

Y (Y + 4R3C0/Ci)

2R3

where we have posed:
Y = CiρmS3

0 . (47)

This yields to the expression of P , as a function of R:

P =

(

−Y +
√

Y (Y + 4R3C0/Ci)

2R3

)2

, (48)

with Y defined by (47).
On the other hand, since ΘV << 1, following the discussion of section

4.1.3, we have the simplification (43). Hence R and P are uniquely defined
by (43) and (48).

Numerically, in order to avoid problems with the computation of the
square root, we solve (43) and (46).

Remark 4.1 We note that (48) may be expressed in terms of the porosity
α. In fact, recalling that the porosity by α(t) = R3/S3, we have:

S3
0(R

3)−1 =
1 − α(t)

α(t)
,

and thus:

P =

(

−Z +
√

Z(Z + 4C0/Ci)

2

)2

,

with

Z = Ciρm
1 − α

α
.

�
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Remark 4.2 From the above simplification we get the following formula for
the ambient pressure, Pa, as a function of R :

Pa = −Σ

R
+

W

2

(

C2
i W + 2C0 − Ci

√

W (C2
i W + 4C0)

)

,

with:
W = ρmS3

0R
−3.

�

4.2.2 ΘV → ∞ and ΘD → ∞
In this situation, viscosity may be very large, yielding ΘV >> 1, and diffusiv-
ity very small, implying ΘD >> 1. Hence, following experimental evidence
(see [7]), we can imagine that the physical system is ”fixed” or ”frozen”.

On one hand, as discussed in section 4.1.1, the water mass in the bubble
is constant, see equation (40). On the other hand, since ΘV >> 1, from
equation (14) we also obtain Ṙ = 0, that is:

R(t) = R(0) = 1. (49)

Since both the mass M and the radius R are constant, the pressure P is
explicitly determined by M = PR3, and no numerical scheme is needed.

4.3 Diffusive regime : ΘV /ΘD >> 1

In this last section, we treat regimes which have the viscous ΘV relaxation
time larger than the diffusion one ΘD. We have to differentiate three cases:
when ΘD is small and ΘV is of order one or goes to infinity, and when ΘD is
of order one and ΘV goes to infinity.

4.3.1 ΘV → ∞ and ΘD ∼ 1

As shown before, when ΘV → ∞, we obtain equation (49). Hence, the bubble
radius is constant in time, and recalling that M = PR3, we have Ṁ = Ṗ ,
hence from (15) we get the following differential equation on P :

Ṗ =
3ρm

ΘD

(

r2∂C

∂r

)

r=R

, (50)

with C solution of (16).
Numerically, the radius R is constant, and the pressure P is computed

using the numerical scheme of section 3.
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4.3.2 ΘV → ∞ and ΘD → 0

Considering the discussion of sections 4.2.2 and 4.2.1, we have that the sim-
plifications (49) and (48) hold. From (49), the bubble radius is constant,
R = 1, then because of (48), the bubble pressure is also constant in time and
is given by:

P =

(

−Y +
√

Y (Y + 4C0/Ci)

2

)

, (51)

with Y given by (47).
Once again, the radius R is constant while the pressure P is explicitly

given by the formula (51).

4.3.3 ΘV ∼ 1 and ΘD → 0

Since ΘV ∼ 1, there is no possible simplification for equation (14). On the
other hand, from section 4.2.1, the bubble pressure is computed by (48).

In this case, the radius R must be computed using the numerical scheme
of section 3, while the pressure P is explicitly given by (48).

5 Numerical results

We performed some numerical tests based on the schemes described in sec-
tions 3 and 4. In this section we compare first the numerical results obtained
using the general scheme of section 3 to those obtained with the numerical
approximation of the simplified schemes of section 4. This is followed by a
comparison between the behavior of our numerical results and experimental
data described in [2].

Le us first discuss the dependence of our results on the number of dis-
cretization points N with respect to the radial variable r. As announced
previously, various numerical tests show that a small number of points is
sufficient in order to well capture the behavior of the discrete flux F n

0 on the
bubble border. The relative errors of the curves for the bubble radius R,
bubble pressure P , and porosity α with respect to the reference ones with
N = 2500, are of order 10−3 for N = 50 and of order 10−4 for N = 250,
respectively. We therefore choose N = 50 in all the following computations.
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Figure 1: Bubble growth and gas concentration function in the influence
region.

In figure 1 we show the evolution of the concentration function C(t, r)
computed solving the general scheme with ΘV = 0.000236 and ΘD = 5.28929.
Bubble size evolution is sketched as grey circles of increasing radius R. We
clearly see the mesh refinement near the bubble wall (the grey circle portion)
when the concentration function becomes stiffer.

5.1 Numerical convergence

We show now through a few selected examples the numerical convergence of
the global numerical scheme defined in section 3 towards the simplified limit
cases discussed in section 4. Convergence is determined by fixing either the
value of ΘV or ΘD and varying the other one. This crossed method yields
the ΘV and ΘD orders of magnitude for which the system changes regime.
We can see in table 2 that for ΘV < 10−5 and ΘD < 10−3 we have the
so called equilibrium regime, whereas for ΘV > 102 and for each ΘD the
bubble radius must be constant. These results suggest that the simplified
limit cases are sufficient for a good description of the physical system. Their
use significantly reduces computation time.
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Figure 2: Bubble radius evolution and convergence. Left: convergence to-
wards the limit cases 4.1.3 and 4.3.1. Right: convergence towards the limit
case 4.1.1 and 4.3.3.

In figure 2 we show the convergence for the bubble radius towards selected
limit cases. On the left, we plot the bubble radius evolution with respect to
the ambient pressure Pa (we recall that ambient pressure linearly decreases
in time as : 1−t), fixing ΘD = 0.1 and varying ΘV from 10−5 to 101, together
with the radius computed as explained in 4.1.3 or just defined as the constant
1, as justified in 4.3.1. On the right, we plot the bubble radius evolution with
respect to time, fixing ΘV = 0.1 and varying ΘD from 10−3 to 103, together
with the radius obtained as explained in 4.1.1 and 4.3.3. In both cases we
can observe the transition of the general unsimplified regime (the middle case
in table 2) from one simple growth regime to the next.

5.2 Experiments vs. numeric

Controlled decompression experiments on high temperature magmas are able
to produce gas bubbles. By varying the end pressure, data on bubble size
and porosity have been retrieved for different initial condition such as magma
viscosity, temperature, decompression rate, etc. In this work we illustrate
how comparisons between such experimental data and model outputs can
be carried out. Let us first present here the experimental framework used
by [2]. Samples of viscous magma are saturated in water and maintained
under pressure for about 5 days for the water to homogeneously dissolved
into the magma. Then an instantaneous decompression gives rise to bubble
nucleation. After waiting for a few minutes that these initial, small bubble
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reach their equilibrium sizes, a linear decompression is applied until a final
pressure where samples are quenched by a sudden cooling to ambient temper-
ature. The cold samples are then sliced and analysed to obtain bubble sizes
and porosity. One experiment quenched just after the sudden decompression
that nucleates the bubbles gives the initial conditions for our model.

The physical values used and measured during the experiments are the
following: the initial radius Ri = 17.5 · 10−6, the diffusion coefficient Di =
5.79 · 10−12, the initial concentration C0 = 3.44 · 10−2, the initial pressure
Pi = 108, the surface tension σ = 0.1, the viscosity ηi = 5.9 · 10−4, the
magma density ρm = 2400, the gas porosity density ρi being calculated by
the perfect gas law (3), the temperature T = 825, and the decompression
rate ∆P= 10−5. We tested two different experimental series. In the first
series, bubbles growth was only due to gas expansion and water diffusion
form the magma. In the second series, bubbles growth was also due to
coalescence processes. The porosity evolution of both series is comparable
but the evolution of bubble size differ.
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Figure 3: Porosity α (on the left) and radius R (on the right) with respect
to ambient pressure Pa: effect of a variable viscosity ηeff .

In figure 3 we show the evolution of the porosity α and of the radius R with
respect to the ambient pressure Pa. On the left graph are represented three
numerical results for different viscosity calculation and initial porosities along
with the experimental results obtained in [2] (triangles). The run represented
by the grey line had a constant viscosity η, whereas the black line and the
dashed line had variable viscosity ηeff computed applying the formula given
in [8, 10]. We remark that considering a variable viscosity ηeff instead of a
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constant one has an impact on the numerical result only when the ambient
pressure becomes very small because the grey and the black curves diverge
only when Pa < 0.1. The dashed line is a numerical result computed starting
from the porosity measured on the experiment quenched just after the sudden
decompression. The two other runs use the equilibrium state (see Remark
4.1 below), which predicts a porosity of 0.0779 instead of 0.056. We note that
the experimental points fit better the dashed line at high Pa and are closer
to the two other curves at low Pa. This lead us to conclude that during the
first phase of the experiments the time waited between nucleation and the
beginning of the decompression was not enough to reach the equilibrium.
The right graph shows the numerical radii R as a function of the ambient
pressure Pa for the same three numerical runs (on the left). Experimental
results are now represented with square points centred on the median value
of the experimental radii together with a standard deviation representing the
spread of measured bubble radii. We note that the three runs are very similar,
regardless of initial conditions, and that the fit between experiments and
numerical results is worst for radius than porosity. The larger misalignment
of experimental radii compared to that of porosity is explained by the fact
that each experimental point in figure 3 is a full decompression run starting
from Pa = 1. As a result, bubble nucleation dynamics occurring during the
initial decompression step is only approximately similar from one experiment
to the next.

Remark 5.1 As discussed in section 4.2.1, we have an equilibrium state
when ΘV and ΘD are small. The most commonly used formula to calculate
porosity is (e.g., [9]):

αeq =
β

1 + β
(52)

where:
β = KH(

√

P0 −
√

Pa)

with P0 is the ambient pressure when all bubbles have radius R = 0.
We note that, from the simplification of section 4.2.1, we can derive a formula
for the porosity α, similar to the previous one (52):

α =
K

P + K
,

where:
K = ρm

(

C0 − Ci

√
P
)

and now the pressure P takes into account also the surface tension term:
P = Pa + Σ/R.
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Finally, the porosity at equilibrium computed with our formula exactly repro-
duces the one given by experiments, see (52). �
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Figure 4: Bubble radius R with respect to ambient pressure Pa: mono-
disperse vs. poly-disperse.

In figure 4 we compare the experimental results obtained in [2] when bub-
ble coalescence occurs with our numerical results with variable viscosity for
three different initial porosities. The left graph, which displays the evolution
of porosity with ambient pressure, indicates that this experimental series is
best reproduced numerically by starting from a initial porosity of 0.035. This
is lower than the best fit value of the other series. A tentative explanation
of this situation is a even shorter pause between bubble nucleation and the
start of the decompression. We plotted on the right graph, which shows the
evolution of R with ambient pressure, distribution histograms of measured
bubble radii. The three computed bubble radius R all fit the experimental
measurements within a standard deviation, but, considering the large spread
of bubble sizes, it is not possible to choose which numerical results has the
better fit. As discussed in [2], this layout is due to the poly-disperse nature of
bubble growth in the experiments, which was caused by bubble coalescence.
Hence, in order to produce more accurate results that resolve the spread
in bubble sizes, one should consider poly-disperse modelling of the bubbles
population.

Furthers comparisons with other experimental results is under investiga-
tion and will be exposed in a future work. We simply underline herein that
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our numerical code has a satisfactory behavior when confronted to various
experimental works, and that it is sufficiently accurate to point experimen-
tal shortcomings as long as poly-disperse processes do not dominate bubble
growth.

6 Conclusions

In the present paper, we have proposed and applied a numerical scheme for
the approximation and simulation of the solution of a non-linear system of
differential equations coupled with an advection diffusion equation, popu-
larised in the volcanology literature by [12] and [10]. Our goals were twofold:
give a conservative discretization of the system and study the asymptotic
limits when the two relaxation times ΘV and ΘD went to 0 or ∞.
In the recent years (see for example [5] and the reference therein), the nu-
merical approach to solve the model governed by equations (21)-(22) is based
on the one proposed in [14]: the transport term in the advection-diffusion
equation is simplified by the means of a change of variable at the continuum
level, leading to a kind of heat equation (the diffusion term is not standard).
Nevertheless, with the method proposed in [12], a large number N of dis-
cretisation points in the radial direction is greatly reduced by the means of a
variable mesh size. This size is controlled by an empirically defined parame-
ter that ensures the conservation of water mass and that precisely captures
the behavior of the flux on the bubble border. With our approach, a small
number of points, N = 50, also guarantees precise results, but the mesh size
is automatically defined. In fact, the discrete flux on the bubble border is
defined in such a way that the numerical scheme preserves water mass (see
Lemma 3.2). There is thus no need to adjust an empirical parameter to en-
sure scheme accuracy.
Concerning the asymptotic behavior of the coupled system of equations, we
have analytically deduced the different simplified models in the three regimes:
viscous, when ΘV /ΘD << 1, diffusive, when ΘV /ΘD >> 1, and in the equi-
librium one, when ΘV /ΘD ∼ 1. In particular, when both ΘV and ΘD go
to 0, we retrieve the equilibrium state of the problem. We have numeri-
cally shown the convergence of the scheme towards the solutions of the three
regimes when varying the relaxation times. We also determined numerically
the boundaries between the various regimes.
We finally compare our numerical results with data obtained from decom-
pression experiments of natural magmas. This validation of the code gives
also a feedback on the quality of experimental results. In particular, we show
that, unlike originally assumed by the authors, decompressions in [2] started
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while bubbles were still growing, i.e. equilibrium was not reached. Finally, it
appears that the simplified mono-disperse framework is not accurate enough
(see figure 4) to capture spreading bubble size distributions such as those pro-
duced by bubble coalescence. We thus infer that an extension of the physical
model to include a poly-disperse description for the bubbles population is a
worthy pursuit.
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