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Co-inductive Axiomatization of a Synchronous Language

Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-speci c programming languages (e.g. synchronous languages) and automatic veri cation tools (e.g. model checkers). Conventionally, the veri cation of a reactive system is implemented by specifying a discrete model of the system (i.e. a nite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the speci cation of in nite state systems and for the veri cation of co-inductive properties.

Introduction 1.Motivations

In recent years, the veri cation of safety critical systems has become an area of increasing importance in computer science because of the constant progression of software developments in sensitive elds like medicine, communication, transportation and (nuclear) energy. The notion of reactive system has emerged to concentrate on problems related to the control of interaction and response-time in mission-critical systems. These strong requirements lead to the development of speci c programming languages and related veri cation tools for reactive systems. The veri cation of a reactive system is done by elaborating a discrete model of the system (i.e. as a nite-state machine) speci ed in a dedicated language (e.g. a synchronous programming language) and then by checking a property (e.g. liveness, dead-lock freedom, etc) against the model (i.e. model checking). Synchronous languages (e.g. Esterel 5,[START_REF] Berry | The Constructive Semantics of Pure Esterel[END_REF], Lustre 14], Signal 7,[START_REF] Benveniste | Synchronous programming with events and relations : the Signal language and its semantics[END_REF][START_REF] Nowak | An ML-Like Module System for the Synchronous Language Signal[END_REF], and Argos 17]) have proved to be well adapted to the veri cation of safety and liveness properties of reactive systems. For instance, model checking has been used at an industrial scale to Signal programs to check properties such as liveness, invariance, reachability and attractivity in 15]. Whereas model checking e ciently decides discrete properties of nite state systems, the use of formal proof systems enables to prove hybrid properties about in nite state systems. Using a proof system, we can not only prove the safety and liveness of a reactive system but also prove its correctness and its completeness. Such a proof, of course, cannot be done automatically: it requires human-interaction to direct the strategy.

The prover can nonetheless automate its most tedious and mechanical parts. In general, formal proofs of programs are di cult and time-consuming. We show that, in the particular case of modeling a reactive system using the synchronous language Signal, this di culty is signi cantly reduced by the elegant combination between a declarative style of programming and a relational style of modeling.

Outline

We rst brie y introduce Signal and co-induction in Coq. It is not the purpose of this paper to give a complete description of these subjects but just a sight on their principles in order to make the understanding of our contribution easier. Interested readers may nd more in 1] about Coq, 11] about co-induction in Coq, and 3] about Signal. Our focus is the de nition of a trace semantics for the synchronous language Signal in Coq. We give an example of correctness proof derived from our theorem library about Signal programs.

2 Specifying Reactive Systems with Signal Synchronous languages like Esterel, Lustre, Signal, or Argos assume that computation takes no time. In reality, it means that computation duration is negligible in comparison with reaction time of the system. This synchronous hypothesis is particularly well adapted to verify safety and some forms of liveness.

Signal is a synchronous, declarative, data-ow oriented programming language. It is built around a simple paradigm: a process is a system of equations on signals; and a minimal kernel of primitives processes. A signal represents an in nite ow of data. At every instant, it can be absent or present with a value. The instants where values are present are determined by its associated clock.

The primitive processes are introduced in Fig. 1. The symbol := de nes an equality between a signal and an expression. It is not an assignment. Instantaneous relations are used to specify relations between signals that must be veri ed at each instant. Hence, the signals involved in an instantaneous relation must be synchronous i.e. at an instant, they must either be all absent or all present. The when operator is used to select some values of a signal according to a boolean condition. x when y is the down-sampling of the signal x when y is present and true. Deterministic merge of two signal is done by the default operator (with priority to the left signal). It is possible to access to the previous value (delay) of a signal x with x$ init v (v is the initial value). The equation y := x$ init v implies that x and y are synchronous. Parallel composition is the union of two systems of equations. Restriction enables to declare local signals.

The Signal compiler analyses the consistency of the system of equations. It determines whether the synchronization constraints between the signals can be satis ed or not. It determines whether the causal relations between the signals do not form a cycle (i.e. are deadlock free). The Signal compiler then automatically produces executable code in C, Fortran, Ada, or VHDL. ? ? 3 7 4 ? 13 8 ? ? . . . z := py default (0 when (event x)) 0 0 3 7 4 0 13 8 0 0 . . .

Table 1. example of traces

The Table 1 illustrates each of the primitives with a trace. The symbol ?

denotes the absence of a signal.

The rest of the language is built upon the above kernel. Derived operators are de ned from the primitive operators, providing programming comfort. E.g., synchrofx; yg constrains the signals x and y to be synchronous, i.e. their clocks to be equal. The process y := event x gives the clock of y i.e. if x is present with any value then y is present and true else y is absent. The process y := when x gives the clock y of occurrences of the boolean signal x at the value true i.e. if x is present with the value true then y is present and true else y is absent. The process z := x cell y memorizes values of x and outputs them when y is true. Delays can be made of n instants, or on windows of n past values. Arrays of signals and of processes are available as well.

Example We design a counter modulo n (This kind of counter is useful to design a watch 8]). This process 1 has a constant parameter n. It has two input signals top sortie and top incr which are respectively present when the counter value is required and when the counter value must be incremented. These two signals do not have values. We say that they are of type event which is a subtype of bool i.e. that they can only be absent or present with the value true. The process also has two output signals cpt (the value of the counter) and raz (the event which is present when the counter is reset to 0). In Signal, we write: process mod_counter = {integer n} (? event top_sortie, top_incr ! integer cpt; event raz)

The counter must be incremented when the signal top incr is present, or else it keeps its old value (called zcpt):

(| zcpt := cpt$ init 0 | cpt := (zcpt+1) mod n when top_incr default zcpt

The counter value must be computed at each tick of top sortie and top incr:

| synchro{cpt, top_sortie default top_incr}

The signal raz must be present when top incr is present and cpt is equal to 0:

| raz := when cpt=0 when top_incr |)/zcpt

The compiler automatically veri es these equations and produce executable code. This Signal speci cation is very similar to the speci cation in natural language.

Example It is not always so easy to specify a reactive system in Signal. For example, the gure 2 is a general purpose counter which is supposed to count from an initial parameter n up to in nity. The output y is the in nite sequence of integers starting at n+1. The frequency of the output y is given as an input signal x. Each time x is present (provided from the environment), the next value of the counter is instantaneously output (signal y). This speci cation cannot be directly written in Signal. It is expressed saying that x and y are synchronous signals (x^=y), and output y is the previous value of y incremented by one. How can we verify that the program Fig. 2 meets the informal speci cation \The in nite sequence of integers starting at n+1 up to in nity"? Obviously, this can not be done using model checking. This paper presents an axiomatization which enables to prove this kind of stream speci cation.

Using Co-Induction in Coq

Coq 1] is a proof assistant for higher-order logic. It allows the development of computer programs that are consistent with their formal speci cation. The logical language used in Coq is a variety of type theory, the Calculus of Inductive Constructions 23]. It has recently been extended with co-inductive types 11] to handle in nite objects and is thus well suited to represent signals.

Relation to previous work

As Signal handles in nite ows of data, we face the problem of representing and manipulating in nite objects: traces of signals. A rst solution, consists of viewing signals as in nite sequences. In this setting, a signal is represented by a function which associates any instant i (a natural number) with the value v of the signal (if it is present) or with ? (if it is absent). This solution is used in 2] to handle Lustre programs in PVS and in 12] and 13] to handle Silage programs in HOL. The declarative and equational style of Signal is similar to Lustre. However, Lustre programs always have a unique reference of logical time: they are endochronous. Signal speci cations di er from Lustre programs in that they can be exochronous (i.e they can have many references of logical time). For example, the process x:=1 | y:=2 does not constrain the clocks of x and y to be equal. Hence, had we used functions over in nite sequences to represent signals, we would have faced the burden of having to manipulate several, possibly unrelated, indexes of time i; but also the problem of having no higher-order uni cation available from Coq.

In 21], a circuit is represented as a function from the stream of inputs to the stream of outputs. By contrast, in Signal, a circuit is represented as a set of relations between the streams of inputs and the streams of outputs. We cannot de ne primitive processes as stream functions because Signal is a declarative language.

For the above reasons, we chose to view the in nite traces of signals as coinductive types 11] and Signal programs as co-inductive relations. In 10] and 9], co-inductive types are used to verify reactive systems encoded in CBS (Calculus of Broadcasting Systems) 22]. Within Coq, this model allows to develop both proofs of co-inductive properties and also proofs of inductive properties of signals, as usual. The combined use of induction and co-induction enriches the expressive power of checkable properties.

Co-Inductive De nition of Signals

A signal x is de ned as a stream of ? and values v. The dot is the constructor of streams.

x ::= (?jv):x

In the sequel of this paper, we will need to prove stream equality co-inductively. The de nitional equality of streams is not su cient. We expect that two streams di erently de ned but with the same elements are equal. As in 9], we use extensional equality. The extensional equality predicate EqSt is the largest relation verifying the following axiom:

(8s 1 )(8s 2 )hd(s 1 ) = hd(s 2 ) ^EqSt(tl(s 1 ); tl(s 2 )) ) EqSt(s 1 ; s 2 ) And we add the following extensionality axiom:

(8s 1 )(8s 2 )EqSt(s 1 ; s 2 ) ) s 1 = s 2 5 Co-Inductive De nitions of Primitive Processes Let us recall that a primitive process is not a function but only a relation between signals. This is why every primitive process is denoted by a co-inductive predicate which is the largest relation verifying a list of axioms. Practically, the di erence from an inductive de nition, is that it is possible to use in nitely many axioms from co-inductive de nitions.

The parallel composition is denoted by the logical and of the underlying logic and the restriction is denoted by an existential quanti er.

Instantaneous Relation. 

P(v 1 ; ; v n ) ) R n P (v 1 :x 1 ; ; v n :x n )
Down-Sampling. When(x; y; z) means that z down-sample x when x is present and y is present with the value true. When is the largest relation verifying the following axioms: W 1 : (8x)(8y)(8z)

When(x; y; z) ) When(?:x; ?:y; ?:z) W 2 : (8x)(8y)(8z)(8b) When(x; y; z) ) When(?:x; b:y; ?:z) W 3 : (8x)(8y)(8z)(8v) When(x; y; z) ) When(v:x; ?:y; ?:z) W 4 : (8x)(8y)(8z)(8v) When(x; y; z) ) When(v:x; false:y; ?:z) W 5 : (8x)(8y)(8z)(8v) When(x; y; z) ) When(v:x; true:y; v:z) Deterministic Merge. Default(x; y; z) means that x and y are merged in z with the priority to x. Default is the largest relation verifying:

D 1 : (8x)(8y)(8z)
Default(x; y; z) ) Default(?:x; ?:y; ?:z)

D 2 : (8x)(8y)(8z)(8v)
Default(x; y; z) ) Default(?:x; v:y; v:z)

D 3 : (8x)(8y)(8z)(8v)
Default(x; y; z) ) Default(v:x; ?:y; v:z) D 4 : (8x)(8y)(8z)(8u)(8v) Default(x; y; z) ) Default(u:x; v:y; u:z) Delay. The co-inductive predicate Pre is used to access to the previous value of a signal. Pre is the largest relation verifying:

P 1 : (8x)(8y)(8v)
Pre(v; x; y) ) Pre(v; ?:x; ?:y) P 2 : (8x)(8y)(8u)(8v) Pre(v; x; y) ) Pre(u; v:x; u:y) The table 2 shows an example of traces verifying the equation Pre(v; x; y). By de nition, x and y must be synchronous. This is why the axiom P 1 states that a ? in x correspond to a ? in y. And, informally speaking, P 2 states that if x was present at the previous instant then its value was u and the value of y was the previous stored state v.

x 5 0 ? 9 ? ? 12 . . . y v 5 ? 0 ? ? 9 . . .

example of Pre

Derived Operators. With the previous de ned denotations of primitive processes, we derive the denotations of the derived operators of Signal. Constant is used to declare a constant signal. Constant(v; x) means that at each instant, x is absent or present with the value v. Constant is de ned by: Constant(v; x) = def R 1 u:u=v (x) Id(x; y) identi es two signals x and y. At each instant, they must be both absent or both present with the same value. Id is de ned by: Id(x; y) = def R 2 u: v:u=v (x; y) Op is used to apply a binary scalar function at each instant where signals are present. As it is de ned with R 3 P , Op(o; x; y; z) implies that the signals x, y and z are present at the same instants. Op is de ned by: Op(o; x; y; z) = def R 3 u: v: w:w=o(u;v) (x; y; z) It is only a syntactic transformation from the Signal syntax to the Coq syntax that could be automated.

Clock Calculus

In order to infer the clock properties of primitive processes, we rst de ne some clock operators co-inductively.

We de ne co-inductively the function b : which extract the clock of a signal. It is the greatest xpoint of the following functor F:

F(f) = ?:x 7 ! ?:f(x) v:x 7 ! true:f(x) b : = gfp(F )
We de ne co-inductively the function :] which extract the true instants of a boolean signal. It is the greatest xpoint of the following functor F: In the sequel of this paper, every variable is implicitly universally quanti ed.

F(f) =

fairness of a signal

An important hypothesis of the synchronous programming model is that a signal is assumed to have the property of being present (with a value) within a nite deadline (a set of instants). In Signal, this property is translated into the assumption that there only exists a nite number of ? between two values of a signal (the so-called stuttering-robustness property). We formalize this property using the co-inductive predicate OnlyFiniteAbsent . This property about an innite object obviously needs a co-inductive proof and a co-inductive de nition of the predicate. To make sure that there is a nite number of ? we need to mix co-induction with induction. Hence, OnlyFiniteAbsent is the largest relation verifying this axiom:

OFA : AbsentPre x(v; x; y) ^OnlyFiniteAbsent(y) ) OnlyFiniteAbsent(x)

where AbsentPre x is inductively de ned. AbsentPre x(v; x; y) states that x is of the form ? :v:y. It is the smallest relation verifying the axioms: AP 1 : AbsentPre x(v; x; y) ) AbsentPre x(v; ?:x; y) AP 2 : AbsentPre x(v; v:x; x)

In order to prove the Proposition 3 we need to prove the following lemma. EF : AbsentPre x(v; x; x 0 )^AbsentPre x(v; y; y 0 )^EqFlot(x 0 ; y 0 ) ) EqFlot(x; y) Proposition 4. EqFlot is an equivalence relation.

  Fig. 1. Signal-kernel

  Fig. 2. A counter in Signal
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  7 ! ?:f(x) false:x 7 ! ?:f(x) true:x 7 ! true:f(x) :] = gfp(F ) We de ne co-inductively the function b which extract the common instants of two clocks. It is the greatest xpoint of the following functor F: x; ?:y) 7 ! ?:f(x; y) (?:x; true:y) 7 ! ?:f(x; y) (true:x; ?:y) 7 ! ?:f(x; y) (true:x; true:y) 7 ! true:f(x; y) b = gfp(F ) We de ne co-inductively the function b + which extract the union of the instants of two clocks. It is the greatest xpoint of the following functor F: x; ?:y) 7 ! ?:f(x; y) (?:x; true:y) 7 ! true:f(x; y) (true:x; ?:y) 7 ! true:f(x; y) (true:x; true:y) 7 ! true:f(x; y) b + = gfp(F )With these de nitions we can easily prove the following clock properties of primitive processes: Proposition 1 (Clock calculus). For all inductive predicate P, for all n Inductive Properties of Signal Speci cations

Lemma 2 .

 2 OnlyFiniteAbsent(b x) , OnlyFiniteAbsent(x) Proposition 3. OnlyFiniteAbsent(x) ^b x = b y ) OnlyFiniteAbsent(y) 7.2 Equivalence Relation Between Signals Two signals are equivalents if they provide the same values in the same order. EqFlot is the largest relation verifying this axiom:

  The relation R n P is used to specify an instantaneous relation between n signals. At each instant, these signals verify the inductive predicate P. For all inductive predicate P, for all n 2 IN, R n

	relation verifying these axioms:	P is the largest
	R 1 : (8x i ) i=1; ;n R 2 : (8x i ) i=1; ;n (8v i ) i=1; ;n	R n P (x 1 ; ; x n ) ) R n P (?:x 1 ; ; ?:x n ) R n P (x 1 ; ; x n )

In Signal, a reactive system can be designed modularly as a set of processes. The keyword process associates a name and an interface to a set of equations.
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Stream of a fair signal

It would be interesting to write a function which extract the stream of values of a signal i.e. a function which suppress the ? of a signal. Unfortunately, it is impossible to write this function in Coq. If its arguments x doesn't verify the predicate OnlyFiniteAbsent , this function will not terminate because it will have to extract an in nite number of ? to nd the next value. It could lead to an inconsistent theory. We can only de ne a predicate Stream(x; f) which verify that the stream f is the stream of values of x.

Stream is the largest relation verifying this axiom: F : AbsentPre x(v; x; y) ^Stream(y; f) ) Stream(x; v:f) From these de nitions, we can deduce some major properties of Stream and EqFlot and some relations between them (Prop. 5). A stream of value is unique (s 1 ). If a signal has a stream of values then there only exists a nite number of ? between two values (s 2 ). Two signals with the same stream of values are equivalent (s 3 ). Two equivalent signals have the same stream of values (s 4 ). Two equivalent signals with the same clock are equal (s 5 ). Finally, we prove a fundamental property of the delay (s 6 ).

Proposition 5 (Stream calculus).

Pre(v; x; y) ^Stream(x; s) ) Stream(y; v:s) (s 6 )

8 Properties of derived processes

We de ne co-inductively the function constant which compute the in nite stream of a given value. It is the greatest xpoint of the following functor F:

To make the correctness proofs of processes easier, it is useful to prove the following properties of the derived operators. The stream of a signal x de ned by Constant(v Then we study the evolution of Counter from one instant to next instant where x and y are present. To prove this lemma, we need the previous lemmas. Lemma 10. AbsentPre x(v; x; x 0 ) ^AbsentPre x(n + 1; y; y 0 ) Ĉounter(n; x; y) ) Counter(n+1; x 0 ; y 0 ) We de ne co-inductively the function from which compute the in nite stream of integers starting at a given number. It is the greatest xpoint of the following functor F:

Finally we can prove the second part of the correctness property. Theorem 11. OnlyFiniteAbsent(x) ^Counter(n; x; y) ) Stream(y; from(n + 1))

10 Implementation

The above theory has been implemented with Coq using co-inductive types. To prove the correctness of a Signal program, many propositions about primitive processes are needed. We cannot expose them entirely in this paper. Interested readers may nd a complete Coq theory with proofs in 19].

The combined use of induction and co-induction enriches the expressive power of checkable properties. In particular, the checking might be used within Coq by simply using primitives tactics: the Case tactic expands all the denitions of the signals into their di erent possible values (e.g. true, false, ? for a boolean signal) and the Auto tactic then checks the subgoals generated. To make co-inductive proofs, we used the Co x tactic which introduces the current goal as an hypothesis in the context. The goal must be a co-inductive property and the application of this co-inductive hypothesis must be guarded. We also used intensively the inversion tactics 6].

Conclusion

An axiomatization of the trace semantics of Signal within a proof assistant like Coq introduces a novel approach for the validation of reactive systems. The Coq tool being continuously updated with new general-purpose proof tactics will bene t Signal program veri cation. We chose to use co-inductive features of Coq because we found it was the most natural and simplest way to handle in nite objects. Our practice con rmed that this was also an e cient way to prove correctness properties of reactive systems speci ed in Signal.

We plan to develop a reference Signal compiler in O' Caml 16] and to prove it with Coq. It will automatically translate the Signal syntax into the Coq syntax. Using our co-inductive theorem library, it will enable the interactive proof of, for instance, some clock assumptions that cannot be proved automatically by the compiler (for instance, clocks that depend on arithmetic relations).