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Abstract

Shaping is a well known solution to increase perfor-
mances in networks, and especially worst-case perfor-
mances. In the avionic context, considering the AFDX em-
bedded backbone, it had been shown that modelling the
shaping introduced by the links leads to significant gain.
This shaping have been modelled to compute local delay
with network calculus in previous studies. In this paper, we
try to model it for an end-to-end delay where each server
is shared by two flows with a FIFO policy. Due to techni-
cal difficulties, only the shaping of one of the two flows is
modelled (giving the title “half-modeling of shaping”).

1 Introduction

Shaping is a well known solution to increase perfor-
mances in networks, and especially worst-case perfor-
mances. In the avionic context, considering the AFDX em-
bedded backbone, it had been shown in [1, Table 2] that
modelling the shaping introduced by the links1 on realistic
configuration can lead to gain from 10% to 50%, depending
on the formal method used, the data flow considered, etc.

Among other methods, network calculus [12, 13, 16, 10]
can be used to compute bounds on worst-case traversal time
of network (WCTT). Network calculus has a solid math-
ematical background (the (min,plus) algebra), is scalable
(useful classes of modelling have linear algorithms [9]),
and have been used to certify the A380 AFDX backbone
[15, 14].

This paper aims to model in network calculus two char-
acteristic of AFDX networks: FIFO policy and shaping in-
troduced by links. Both have been studied independently,
and the aim is to combine both. In this first work, we con-
sider a simple topology, a sequence of servers, each one

1Depending on authors, this impact of the links is calledgrouping, to il-
lustrate the fact that the flows sharing a single link can be seen as a “group”,
or serialisation, to highlight the fact that the frames on the link are trans-
mitted in sequence. From network calculus point of view, this effect is
taken into account by modelling the link as a shaper.

shared by two flows with a FIFO policy (cf Figure 1). More-
over, the modelling is incomplete: for technical reasons,
when computing the WCTT of a flow, we model only the
shaping on the considering flowR, not on the interfering
onesR1

i (leading to the title “half-modeling of shaping”).
The main results of the paper consists in solving a well-
known equation related to FIFO scheduling (presented in
eq (4)) on this specific topology and one shaped flow (The-
orem 1).

βR1,T1
βR2,T2

βRn,Tn

R

R1
1 R1

2 R1
n

Figure 1. Tandem topology

As presented on small examples, depending on the bursts
sizes, this could lead to significant gains (cf Table 1). But
on realistic industrial example, the method fully modelling
the shaping and neglecting the FIFO is still the better one.
This encourages us to continue our works and fully combine
shaping and end-to-end FIFO impact.

After a short introduction on network calculus in Sec-
tion 2, related works will be presented in Section 3, which
will also include a detailed presentation on the model con-
sidered in this paper (Section 3.3). The main contribution
of the paper is in Section 4. Section 5 gives some numerical
results on an simple example, to illustrate the gains of the
new method. Section 6 concludes.

2 Network calculus

Notations R denotes the set of real numbers. The min-
imum (resp. maximum) operator is denoted^ (resp. _).rxs� def� x_ 0

Here is a (very short) introduction to network calculus.
The reader should refer to [12, 13] for the first works and
[10, 16] for a complete presentation.
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Network calculus is a theory to get deterministic up-
per bounds in networks. It is mathematically based on thep^,�q dioid.

Network calculus mainly handles non decreasing func-
tions, null before 0 : F . They are, among others,
four common curves (parametrised by real positive values
d,R, T, r, b) latencyδd, rateλR, rate-latencyβR,T , token
bucketγr,b, test1t¡Tu defined by:

δdptq � #0 if t ¤ d8 otherwise
1t¡Tuptq � #1 if t ¡ 1

0 otherwise

γr,bptq � prt� bq1t¡0uptq λRptq � Rt

βR,T � Rrt� T s�
Three basic operators onF are of interest, convolution�, deconvolutionm and the sub-additive closuref�.

F � "f : RÑ R x   y ùñ fpxq ¤ fpyq
x   0 ùñ fpxq � 0

*pf � gqptq � inf
0¤u¤t

pfpt� uq � gpuqq (1)pf m gqptq � sup
0¤u

pfpt� uq � gpuqq (2)

f� � δ0 ^ f ^ pf � fq ^ pf � f � fq ^ � � � (3)

They are several well-known properties of theses opera-
tors and the common curves. The convolution is associative
and commutative,δt � δt1 � δt�t1 , f � δdptq � fpt � dq if
t ¥ d, 0 otherwise,f m δdptq � fpt� dq, βR,T � δT � λR.

A flow is represented by its cumulative functionR P F ,
whereRptq is the total number of bits sent by this flow up
to time t. A flow R is said to have a functionα asarrival
curve iff �t, s ¥ 0 : Rpt � sq � Rptq ¤ αpsq. It means
that, from any instantt, the flowR will produce at most
αpsq new data ins time units. An equivalent condition,
expressed in thep^,�q dioid is R ¤ R � α. If α is an
arrival curve forR, also isα�. A server offers aservice
of curveβ iff for all arrival flow, the relation between the
input flow R and the output flowR1, we haveR1 ¥ R �
β. In this case,α1 � α m β is an arrival curve forR1.
The delay experimented by the flowR can be bounded by
the maximal horizontal difference between curvesα andβ,
formally defined byhpα, βq (a graphical interpretation ofh
can be found in Figure 2).

hpα, βq � sup
s¥0

pinf tτ ¥ 0 αpsq ¤ βps� τquq
These first results allow to handle linear topologies, like

the one of Figure 3. Given the arrival curveα of flowR, and
the services curvesβ, β1 of network elementsS, S1, we are
able to get a bound2 on the delay inS: hpα, βq, and another
for the delay inS1: hppα m βq�, β1q.

2To effectively compute these bounds, we need algorithms computing
operations likem, ��, hp�, �q. This is the aim of [3] and its COINC [11]
implementation.

t

b

r

γr,b

T

R

βR,T

hpγr,b, βR,T q
d

δd

D

1t¡Du
Figure 2. Common curves and delay

R R1 R2
S S1

Figure 3. A flow going through two network
elements in sequence

But one famous result of the network calculus is known
as “pay burst only once” (PBOO). It states that a sequence
of two servers,S andS1, with respective service of curveβ,
β1, like the one of Figure 3, can be seen as a single server
with service of curveβ � β1. It’s interest comes from the
fact that the end-to-end delay is lesser than the sum of local
delays (i.e. hpα, β �β1q ¤ hpα, βq�hppα m βq�, β1q). And
the difference can be, in practise, significant. It’s popularity
perhaps comes from the simplicity of the proof3.

In case of more realistic topology, when a network el-
ement is shared by different flows (like in Figure 4), with
some service policy (FIFO, static priority, etc.), it also exists
results to compute bounds on each flow. The idea is to ex-
tract, from anaggregatedflow, theresidualservice offered
to each flow (also known asper-flowservice). This extrac-
tion is, at first step, local,i.e. on a single server. Depend-
ing on the policy, the bounds could be tight (i.e. it exists
some configuration where the computed bound is reached),
or not, or the result being up to now unknown. The second
step consists in considering a complete topology, trying to
get an end-to-end bound better than the sum of local delays
(like the PBOO result). As for local step, depending on the
policy and the topology, the bounds could be tight or not.

For example, with the non preemptive static priority pol-
icy, it is known4 that the lower priority flow has the residual

3ServerS1 offers a service of curveβ means thatR2 ¥ R1 � β1. The
same forS: R1 ¥ R�β1. It impliesR2 ¥ pR�βq�β1 i.e. by associativity,
R2 ¥ R� pβ �β1), which is the definition of a server with serviceβ �β1.

4To be precise, there is a restriction on the flavor of service,which must
bestrict. See [16, Def 1.3.2, Cor. 6.2.1,] for details.
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Figure 4. A single shared network element

serviceβL � rβ�αHs�, if the network element has service
curveβ and the high priority flow has arrival curveαH .

The common result for FIFO policy (the one focused in
this paper) claims that, if a FIFO server (with a service of
curveβ) is shared by two flowsR1, R2 (with respective ar-
rival curvesα1, α2), then, for eachθ ¥ 0, each flowRi

receives the residual serviceβθ
i defined by

βθ
i � rβ � αj m δθs� 1t¡θu (4)

with ti, ju � t1, 2u (see [16, Prop 6.4.1] for
details). An equivalent definition isβθ

i ptq �rβptq � αjpt� θqs� 1t¡θu.
Notice that this result does not define asingle residual

service, but aninfinite setof services, one for each value of
θ. They all compute true bounds, but some are better than
others. The issue is the choice of a goodθ value.

Another result must be presented, so simple that nobody
did ever present it as a result. It is used in [15], and claims
that, if d denotes the delay experimented by the aggregated
flow, then a FIFO server can be under-approximated by a
variable delayd, andβd is a residual service curve for each
flow Ri.

βd � δhpβ,α1�α2q (5)

3 Related works and considered model

This paper is the merging and continuation of two works.
On the one hand, the one of the Computer Networking
Group of the Pisa University on FIFO bounds with net-
work calculus [18, 17, 19]. On the other hand, the one of
the IRT team from Toulouse University on AFDX networks
[15, ?, 14].

3.1 LUB from Computer Networking Group, Pisa
University

As presented in section 2, to handle real case studies,
with servers shared by different flows, with network calcu-
lus, the first step is to handle locally a service policy, and
the second is the handling of a complete topology. From
this point of view, the work presented in [18, 17, 19], called
LUB (least upper bound), is the generalisation of equa-
tion (4), trying to compute an end-to-end delay better than
the sum of local delays. Considering more and more com-
plex topologies, they consider the possible ways to chose

R1
T 1 θ

B1
Figure 5. Local residual service

theθ values on each server, the ways to combine local com-
putation, to get better bounds. Some common restriction are
done on the class of functions used: arrival curves are token
bucket (γr,b) and service curves are rate-latency (βR,T ).

In [18], they are considering what they calltandem
topologies,i.e. a sequence of servers, with the flow of in-
terest traversing all servers, and sharing each server with
an interfering flow, like in Figure 1. This is also the
kind of topology considered in this paper. The idea is,
at each nodeSi, to compute the residual service with (4),
parametrised by a valueθi, to get a parametrised expres-
sion of the end-to-end delay bound (to benefit of the PBOO
result), and to minimise this expression. In [17], this ap-
proach is generalised by considering sink-tree networks,
and in [19] generic topologies (without cyclic dependencies
in data flows).

Let’s go to mathematical details of [18].

The service at each nodeSi has a curveβRi,Ti
, and each

interfering flow has arrival curveγr1
i
,b1

i
. For eachθi ¥ 0,

the residual service can be computed using (4).

βθi
i � rβRi,Ti

� γr1i,b1i m δθs�1t¡θiu � βR1
i,T

1
i
1t¡θiu (6)

with R1
i � Ri� r1i andT 1

i � RiTi�bi�riθi
Ri�r1

i
. But this expres-

sion can be seen as the convolution of a delay and a token
bucket

βθi
i � βR1

i,T
1
i
1t¡θiu � δθi � γR1

i,B
1
i

(7)

with B1
i � Ripθi � Tiq � b1i, as illustrated in Figure 5.

The end-to-end residual service is the convolution of the
local residual servicesβR1

1
,T 1

1
1t¡θ1u � βR1

2
,T 1

2
1t¡θ2u � . . . �

βR1
n,T

1
n
1t¡θnu � δ°

i
θi � �γR1

1
,B1

1
^ . . .^ γR1

n,B
1
n

�
. It can

be seen as the convolution of a delay and the minimum of
affine functions (cf. Figure 6). Such a curve will be called
“pseudoaffine curve” in [17]. Computing the end-to-end de-
lay bound consists in computing the horizontal deviation
hpγr,b, δ°

i
θi � �γR1

1
,B1

1
^ . . .^ γR1

n,B
1
n

�q.
Last step consists in minimising the previous expression,

which implies to compute the following infimum, withbi ¥
3



°
i θi

Figure 6. End-to-end residual service

0 andai ¥ 1.

inf
xi¥0

#
i̧

xi ^©
i

rb� aixis�+ (8)

3.2 IRT, Toulouse University

In [15], the approach is different: only local delays are
computed, there is no attempt of modelling the PBOO prin-
ciple. The global delay of each server is computed,i.e. all
flows incoming into a server are aggregated (the aggregated
arrival curve is simply the sum of individual arrival curve),
and the delay experimented by this aggregated flow is com-
puted. Then, the delay computed for a flow is simply the
sum of the aggregated delay of each server crossed by the
flow.

The contribution of [15], in addition to modelling the
AFDX network in network calculus, is to model the shaping
introduced by the links (called “grouping” in [15, 14, 1]).
On a sender, whatever the applicative burst is, the through-
put outgoing of the server is limited by the throughput of
the link (100Mb/s in common AFDX). Another point of
view, looking at trajectories of frames, is that linksseri-
alisepackets. In network calculus modelling, it means that
an applicative token bucketγr,b is shaped by the bit-rate of
the linkλR, leading to a two-slopes affine arrival curve, as
presented in Figure 7. But in switches, we have to consider
the sum of flow incoming from different links, which is no
more two-slope affine curve, as presented in Figure 8. It
leads to general concave piecewise linear function (CPL).

Let’s go to mathematical details.

Each incoming flowfi of a serverS has arrival curve
αi, in the CPL class. The server as a service of curveβS .
The aggregated arrival curveαS � °

i αi is still a CPL.
The delay bound computed isdS � hpβS ,

°
i αiq. Be-

cause of FIFO policy,δdS
is a service curve for each flow (cf

eq (5))), and eachf 1i , output corresponding to thefi input
haspαi m δdS

q� as an arrival curve, which is still a CPL).
The delay experimented by a flow is then the sum of the

dS delays of all theS crossed servers.

γr,b

λR

Figure 7. Shaped token bucket

f � λR ^ γr,b

f 1 � λR ^ γr1,b1f � f 1
Figure 8. Sum of shaped token bucket gives
general CPL curve

This approach does not consider the PBOO principle, but
models correctly the shaping introduced by the links. This
shaping can increase the performances of the analysis up
to 40%. And even when considering another theory, based
on trajectories, modelling of shaping leads to 5%–50% gain
[1].

3.3 System model

This work is a direct continuation and join of the works
presented in previous sections 3.1 and 3.2. We are consider-
ing exactly the same kind of topology than the one of [18],
illustrated in Figure 1, but with a more general class of ar-
rival curve: the considered flow has a CPL arrival curve,
but the interfering flows still have token-bucketγr1

i
,b1

i
arrival

curves.

4 Computing the minimal bound

To begin, let us introduce some notations on the kind
of manipulated curves. A concave piecewise linear (CPL)
function is said to be under normal form if the terms are
sorted by decreasing slopes, and there is no useless term (cf
thenon-redondantproperty of pseudoaffine curves in [19]).
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replacements γ1
γ2

γ3

b1

b2

b3

x1 x2 x3

y2

y3

Figure 9. Normal form of CPL

Definition 1 (Normal form of CPL) Let
γr1,b1 , . . . , γrn,bn be a set of token-bucket functions.
Let γi denotesγri,bi . The term

�n
i�1

γi is said to beunder
normal form of minimum ofγ functions, iff there is no
useless constraint (9) and theγi are sorted by decreasing
rate (10).�i, Dti ¡ 0,�j � i : γiptiq   γjptiq (9)

i   j ñ ri ¡ rj (10)

If
�

iPr1,ns γri,bi is under normal form, the sequence
x1, � � � , xn�1 of intersection points, andy1, � � � , yn�1 the
intersection values are formally defined by:$'&'%x1 � 0, y1 � b1

γipxiq � γi�1pxiq � yk for 1 ¤ i ¤ n

xn�1 � yn�1 � 8 (11)

2

It should be obvious that each CPL has a normal form.
To effectively compute it, an algorithm is given in [8].

An example of such a set and related definitions is shown
in Figure 9.

Lemma 1 (Horizontal dev. between CPL and rate-latency)
Let
�

i γri,bi be a CPL under normal form, andR, T , two
non negative reals, withrn ¤ R. Then, the horizontal
deviation can be computed

hp©
i

γri,bi , βR,T q � T � yk

R
� xk (12)

with k � min ti ri ¤ Ru. 2

PROOF Graphically (see Figure 10), the maximal distance
must be computed at oneyi level. Going from the origin,
while the ratesri are greater than R, the horizontal deviation
grows, up toxk, which is, by definition, the first slope lesser
thanR. �

x1

x3 x4

y1

y2

y3

y4

T

βR,T

Figure 10. Horizontal deviation between CPL
and rate-latency

To make the different proofs in this paper, we manipulate
a lot ofβR,T 1t¡T 1u related expressions (going from eq. (4),
cf Figure 6). Here are expressed different points of view
on such expressions. They are of interest because of the
different properties on the involved operators.

Lemma 2 (Some point of view onβR,T 1t¡T 1u expressions)
Let R, T,D, r, b be some positive reals andf P F an in-
creasing function. Then

f1t¡T 1u � δT 1 ^ f (13)

βR,T1t¡Du � #βR,T if T ¥ D

δD � γR,RpD�T q if T   D
(14)� δD_T � γR,RrD�T s� (15)

δD � γr,b � #δD ^ γr,b�rD if b ¥ rD

δD ^ βr,D� b
r

if b ¤ rD
(16)

2

Interest of eq (13) comes from the fact that, inp^,�q
algebra, we have more results on minimum than on product.
In particular,βR,T1t¡T 1u � δT 1 ^ βR,T .

The idea behind expression (14) was somehow already
present in [18, Eq. (12)], and generalised with the notion of
pseudoaffinecurve in [17, Eq. (6)]. Equation (15) is a new
point of view that avoid some “per case” manipulations.

PROOF Expression (13) is obvious.

To prove the expression (14), just have a look on Fig-
ure 5, illustrated withD � θ ¡ T . If D ¤ T : the1t¡Du
term has no effect.

To go on from (14) up to (15), just remark thatβR,T can

5



D

b

r

r1
b� rD

b� r1D
D � b{r1

Figure 11. Shifted γ can be expressed as a
minimum

also be writtenβR,T � δT � γR,0. Then, we have

βR,T1t¡Du � $''&''% δT � γR,0 � δD_T � γR,RrD�T s�
if T ¥ D

δD � γR,RpD�T q � δD_T � γR,RrD�T s�
if T   D

Looking at Figure 11 gives eq (16). Shifting aγr,b func-
tion of D to the right is like, either truncating aγ function,
or aβ function, depending on the valueb� rD. �

Lemma 3 (Convolution of truncated beta [18]) Let
R, T,D,R1, T 1, D1 be six positive reals withT   D and
T 1   D1. Then

βR,T1t¡Du � βR1,T 11t¡D1u �
δD�D1 � γR,RpD�T q � γR1,R1pD1�T 1q (17)

It can be generalised to any number of function and any
values ofTi, Di.

n�
i�1

βRi,Ti
1t¡Diu� δ°n

j�1
pDj_Tjq � n©

i�1

γRi,RirDi�Tis� (18)� δ°n
j�1

pDj_Tjq ^ n©
i�1

βRi,p°n
j�1

Dj_Tjq�rDi�Tis� (19)

2

Equation (18) comes from [18, Proof of Theorem 2], and
expression (19) is another point of view on the same equa-
tion.

Both expressions (18) and (19) are of interest.
Expression (18) clearly expresses the fact that we have a

concave function “shifted” by a delay
°n

i�1
Di. Expression

(19) is interesting when trying to compute the delay, with

b’

b

d

d1
d� d1

γr,b � δd
γr1,b1 � δ1d
γr,b � δd � γr1,b1 � δ1d

Figure 12. Convolution of two truncatd beta
functions

help of Lemma 4 (which states that for wide-sense increas-
ing functionshpf, g ^ hq � hpf, gq _ hpf, hq).
PROOF

• Proof of (17): The proof of (17) is obvious, using
equation (14) (transformation into convolution of de-
lay andγ function) and basic properties of convolution
(δd � δ1d � δd�d1 ; cf Figure 12).

βR,T1t¡Du � βR1,T 11t¡D1u� δD � γR,RpD�T q � δ1D � γR1,R1pD1�T 1q� δD�D1 � γR,RpD�T q � γR1,R1pD1�T 1q
• Proof of (18): To prove (18), we can generalise

(17) to the equation (15), and the fact that convolution
and minimum are equals on star-shaped functions [16,
Th 3.1.6].

n�
i�1

βRi,Ti
1tt¡Diu � δ°n

i�1
pDi_Tiq � n�

i�1

γRi,RirDi�Tis�� δ°n
i�1

pDi_Tiq � n©
i�1

γRi,RirDi�Tis�
• Proof of (19): Going from (18) to (19) is done using

distributivity of min over deconvolution, and (16).

The first step uses the distributivity:f � pg ^ hq �pf � gq ^ pf � hq:
δ°n

i�1
pDi_Tiq � n©

i�1

γRi,RirDi�Tis� �
n©

i�1

�
δ°n

j�1
pDj_Tjq � γRi,RirDi�Tis�	 (20)
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The second step uses (16). We have to compareb �
RirDi � Tis� andrD � Ri

°n

i�jpDj _ Tjq.
ņ

j�1

pDj _ Tjq ¥ ņ

j�1

Dj ¥ Di ¥ rDi � Tis�ñ Ri

ņ

j�1

pDj _ Tjq ¥ RirDi � Tis�
We are in the caserD ¥ b that is to sayδD � γr,b �
δD ^ βr,D� b

r
. That is to say:

δ°n
j�1

pDj_Tjq � γRi,RirDi�Tis�� δ°n
j�1

pDj_Tjq ^ βRi,
°

n
j�1

pDj_Tjq�rDi�Tis� (21)

Reporting (21) into (20) leads to:

δ°n
j�1

pDj_Tjq � n©
i�1

γRi,RirDi�Tis�� n©
i�1

�
δ°n

j�1
pDj_Tjq ^ βRi,

°
n
j�1

pDj_Tjq�rDi�Tis�	� δ°n
i�j

pDj_Tjq ^ n©
i�1

�
βRi,

°
n
j�1

pDj_Tjq�rDi�Tis�	�
Let now present one useful lemma for computing our de-

lay.

Lemma 4 (Horizontal delay with min of functions) Let
f, g, g1 be three wide-sense increasing functions. Then,

hpf, g ^ g1q � hpf, gq _ hpf, g1q (22)

2

PROOF We are going to use two results: the first is the ex-
pression ofhp�, �q in term of deconvolution and the second is
the left distributivity of max on deconvolutionpf_gqmh �pf m gq _ pf m hq, and some trivial relationship on non-
decreasing functions (likepg ^ hq�1 � g�1 _ h�1 orpg _ g1q � f � pg � fq _ pg1 � fq).
hpf, g ^ g1q � pppg ^ g1q�1 � fq m λ1qp0q� pppg�1 _ g1�1q � fq m λ1qp0q� pppg�1 � fq _ pg1�1 � fqq m λ1qp0q� pppg�1 � fq m λ1q _ ppg1�1 � fq m λ1qqp0q� hpf, gq _ hpf, g1q �

Here comes the main result of the paper, the local ap-
plication of eq. (4) on each server, parametrised by a set of
θ1, . . . , θn values, and the expression of the least solution.

Theorem 1 (End-to-end delay in simple FIFO topology)
Let R be a flow with a CPL function (under normal form
of Definition 1)

�
i γri,bi as arrival curve. This flow goes

thought a sequence of serversS1, . . . , Sn with respective
service curveβR1,T1

, . . . , βRn,Tn
. Each serverSi is also

crossed by a flowR1
i with arrival curveγr1

i
,b1

i
, as illustrated

on Figure 1 The policy of each server is FIFO. Then, the
end-to-end delay of flowR is bounded by:

inf�iPr1,ns:θi¥0

hp©
i

γri,bi ,
n�

i�1

βRi�r1
i
,T i

θi

1t¡θiuq (23)

� $'''''''''&'''''''''%
ņ

i�1

�
Ti � b1i

Ri


� ņ

i�1

yk1
i
� pRi � r1iqxk1

i

Ri

if
°n

i�1

Ri�r1i
Ri

¤ 1

ņ

i�1

�
Ti � b1i

Ri


� ¸
ppiq¤k

ei � eq

��1� ¸
ppiq¤k

Ri � r1i
Ri

�

otherwise

with T i
θi

� RiTi�b1i�r1iθi
Ri�r1

i

, k1i � min tj rj ¤ Ri � r1iu,
ei

def� yk1
i
�pRi�r1iqxk1

i

Ri�r1
i

, p : r1, ns ÞÑ r1, ns a permutation

such that the sequence
�
eppiq� is wide-sense increasing, and

q
def� min

!
ppiq 1 ¥°n�ppiq�1

j�1

Ri�r1i
Ri

)
. 2

PROOF Here is a sketch of proof. By lack of space, the
full proof can be downloaded as an appendix on the author
WEB page. A previous version can also be found in [5].

Since this work is a generalisation of [18] (it solves
inf�iPr1,ns:θi¥0 hpγr,b,�n

i�1
βRi�r1i,T i

θi

1t¡θiuq) the organi-

sation of the proof is the same. In order to be self-sufficient,
the proof will be completely done, but we try to highlight
the common part and our specific contribution.

The first step consist in restricting the value domain ofθ.

inf�iPr1,ns:θi¥0

hpf, n�
i�1

βRi�r1
i
,T i

θi

1t¡θiuq �
inf�iPr1,ns:θi¥Ti� b1

i
Ri

hpf, n�
i�1

βRi�r1
i
,T i

θi

1t¡θiuq (24)

It comes from the fact that, ifθi   Ti � b1i
Ri

, then,
βRi�r1

i
,T i

θi

1t¡θiu � βRi�r1
i
,T i

θi

, i.e. the test term has no ef-

fect. And, in this case, increasing theθi increases the value
of theβRi�r1

i
,T i

θi

term. This step was done in [18].

This allows to make a variable substitution,θ1i � θi �
Ti � b1i

Ri
.

The second step uses the fact thathpf, g ^ g1q �
hpf, gq _ hpf, g1q, and some rewriting used in Lemma 2
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to transform the convolution in minimum. It leads to term

ņ

i�1

�
Ti � b1i

Ri


�
inf�iPr1,ns
θ1i¥0

#
ņ

i�0

θ1i � nª
i�1

�
yk1

i
� Riθ

1
i

Ri � r1i � xk1
i

��+
(25)

The proof in [18] gives the expression of the delayhp�, �q
by a computation of the inverse of the convolution term. We
chose a more algebraic way, to use distributivity and reduce
the problem to the computation of delay between a CPL and
a rate-latency curve (Lemma 1).

To solve this expression, we have to minimise an expres-

sion infxi¥0

!°n
i�1

xi ��n
i�1

rbi � aixis�) with bi ¥ 0

andai ¥ 1. This work has been done in [18] (with a little
restriction,bi ¡ 0). We just have to reuse the result. �

5 Example and comparison

Since the equations are not very intuitive, we have done
some experiment to get a global idea of the weakness and
strong points of the method. The computations have been
done with the prototypeNC-maude [7, 4, 6].

Let us consider the configuration presented in Figure 1:
a flow crossing three servers, sharing each server with a in-
terfering flow.

To simplify the interpretation, consider that all servers
and all interfering flows have the same characteristics. Each
server has service of curveβR,T , the considered flow has
arrival curveλR ^ γr,b and the interfering flows have ar-
rival curveλR ^ γr1,b1 . We have considered 16 possible
values for these parameters. For each configurations, we
have computed the delay for crossing two and three servers,
with three methods: LUBD (presented in section 3.1), lo-
cal delay with shaping (presented in section 3.2) and our
end-to-end computation with half modelling of shaping.

In the LUBD experiment, the shaping introduced by the
link (theλR term) can not be modelled: the considered flow
(resp. interfering flows) has arrival curveγr,b (resp.γr1,b1).

In the local delay with shaping, the considered flow has
arrival curveλR^γr,b and the interfering flows have arrival
curvesλR ^ γr1,b1 .

In our half modeling of shaping, the considered flow has
arrival curveλR^ γr,b but the interfering flows have arrival
curvesγr1,b1 .

Before all analyse, keep in mind that, in each server,
there is an intrinsic delay ofT � 1 unit. It means that,
whatever the input traffic and computation method are, the
delay for crossing two servers is at least 2, and at least 3 for
three servers.

SI SII SIII1
Figure 13. Test configuration

The four firsts topologies, configurations 1 up to 4, have
been generated to see the influence of the different parame-
ters, with some “normalised” values.

In the first configuration, all terms have value 1, except
for the rates, which are equals to one third, for a global load
ρ � 2

3
.

In configuration 2, burst of the interfering flowb1 have
been increased to5 compared to configuration 1, in con-
figuration 3, the crossing flow burst is increased to 5. On
the opposite, in configuration 4, both bursts have been de-
creased to1

5
.

What can be learn from theses examples will be gener-
alised in all the following configuration.

First learning it that our method, which is a direct gener-
alisation of the LUB method, is always better. Second, the
relative gain decreases with the length of the path and the
absolute gain is constant. Third, the gain of course depends
on the burst of the crossing flow, which is not shaped in the
LUB method.

Relative performances of the new method w.r.t the lo-
cal shaping depends of course of the impact of the burst
of the interfering flow, whose shaping is not modelled by
the new method. The new method can be worst than the
other one (21% worst for the configuration 1 for the delay
on two servers). But the local shaping can not benefit from
the PBOO principle, and the longest the path is, the better
the relative performance of the new method is.

The configurations 5 to 8 are the same than configura-
tions 1 to 4, except that the system rate have been multiplied
by 5, leading to a global load of13%, which is more com-
mon in embedded systems than the67% one. In this case,
the long term rate of the flows becomes negligible, and the
best method is two times the local shaping one, and when
the new one is better, the gain is really small, and when it is
worst, it really is (� 50%).

But a burst value equals to the rate value is not very re-
alistic situation. On a 10Mb/s system, it means that is could
exist a burst of 10Mb,i.e. 1.25Mo, i.e. more than 833
frames of 1500 octets (maximal size of an Ethernet frame)
at a single instant. Then, configurations 9 to 11 are copies
of the configurations 1 to 4 with a burst divided by 10 (con-
sidering burst of 83 maximal size Ethernet frames). In this
case, the new method gain is between12% and22%.

But configurations 9 to 12 still have a load of67%. Di-
viding this load by 2 gives configuration 13 to 16. In this
case, the main part of the delay comes from the intrinsic de-
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Configurations

Conf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R 1 1 1 1 5 5 5 5 1 1 1 1 1 1 1 1

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r 1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

6

1

6

1

6

1

6

b 1 1 5 1

5
1 1 5 1

5

1

10

1

10

5

10

1

50

1

10

1

10

5

10

1

50

r1 1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

6

1

6

1

6

1

6

b1 1 5 1 1

5
1 5 1 1

5

1

10

5

10

1

10

1

50

1

10

5

10

1

10

1

50

ρ � r�r1

R
67% 67% 67% 67% 13% 13% 13% 13% 67% 67% 67% 67% 33% 33% 33% 33%

DelaiR crossingSI ;SII

LUB 5.50 13.50 11.50 2.70 2.61 4.21 3.47 2.12 2.35 3.15 2.95 2.07 2.32 3.12 2.80 2.06

Loc. Shap. 5.41 10.50 9.75 2.81 2.43 2.62 2.54 2.09 2.49 3.12 2.92 2.23 2.27 2.60 2.44 2.08

Half. Shap. 4.75 12.75 7.75 2.55 2.41 4.01 2.47 2.08 2.27 3.07 2.57 2.05 2.22 3.02 2.32 2.04

DelaiR crossingSI ;SII ;SIII

LUB 7.50 19.50 13.50 3.90 3.81 6.21 4.67 3.16 3.45 4.65 4.05 3.09 3.42 4.62 3.90 3.08

Loc. Shap. 8.81 18.50 15.87 4.58 3.66 4.07 3.83 3.14 4.05 5.19 4.76 3.63 3.47 4.20 3.72 3.17

Half. Shap. 6.75 18.75 9.75 3.75 3.61 6.01 3.67 3.12 3.37 4.57 3.67 3.07 3.32 4.52 3.42 3.06

Gain on the new method forR crossingSI ;SII

vs. LUB 13.63% 5.55% 32.60% 5.55% 7.61% 4.72% 28.65% 1.87% 3.19% 2.38% 12.71% 0.72% 4.13% 3.07% 17.14% 0.93%

vs. Loc. Shap.12.30% -21.42% 20.51% 9.46% 0.78% -52.81% 2.83% 0.36% 8.69% 1.60% 11.96% 7.91% 2.34% -16.30% 4.91% 1.79%

Gain on the new method forR crossingSI ;SII ;SIII

vs. LUB 10.00% 3.84% 27.77% 3.84% 5.21% 3.20% 21.29% 1.25% 2.17% 1.61% 9.25% 0.48% 2.80% 2.07% 12.30% 0.62%

vs. Loc. Shap.23.46% -1.35% 38.58% 18.23% 1.22% -47.64% 4.06% 0.64% 16.80% 11.94% 22.83% 15.37% 4.29% -7.54% 8.09% 3.48%
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lay, and methods difference are small, but the local shaping
method is always better when the burst of the interfering
flow is big.

6 Conclusion

Looking for worst case performance is an hard task, es-
pecially in distributed real-time system where the worst case
is hard to determine5. Therefor, we are dealing with meth-
ods making pessimistic approximations, and trying to re-
duce this pessimism.

Going from basics works of [12, 13] handling only
token-bucket (γr,b) traffic, two extensions have been made
to reduce this pessimism: [15] handles on each server the
shaping introduced by physical links, and [18] models an
end-to-end FIFO service to get the benefit of the PBOO re-
sult. This works tried to join the two works and have the
benefit of both. But for technical reasons, it only handles
shaping on the considered flow, not on the interfering one.
Then, the new method is always better than the one of [18]
(it is a direct generalisation), but performances w.r.t. the
local shaping depends on the burst size of the interfering
flows.

This of course incites us to study the general case, with
shaping on considered and interfering flow. We are cur-
rently working on the subject, but it seems really harder.
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