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Abstract shared by two flows with a FIFO policy (cf Figurk 1). More-
over, the modelling is incomplete: for technical reasons,
Shaping is a well known solution to increase perfor- when computing the WCTT of a flow, we model only the
mances in networks, and especially worst-case perfor-shaping on the considering floR, not on the interfering
mances. In the avionic context, considering the AFDX em-onesR; (leading to the title “half-modeling of shaping”).
bedded backbone, it had been shown that modelling theThe main results of the paper consists in solving a well-
shaping introduced by the links leads to significant gain. known equation related to FIFO scheduling (presented in
This shaping have been modelled to compute local delayeq [4)) on this specific topology and one shaped flow (The-
with network calculus in previous studies. In this paper, we orem1).
try to model it for an end-to-end delay where each server
is shared by two flows with a FIFO policy. Due to techni- g
cal difficulties, only the shaping of one of the two flows is Brim B | T Bror.
modelled (giving the title “half-modeling of shaping”).

i Y iy

1 Introduction Figure 1. Tandem topology

As presented on small examples, depending on the bursts

mances in networks, and especially worst-case perfor-SizeS’ t_hi$ C.OUId Ie_ad to significant gains (cf Tale 1). .BUt
mances. In the avionic context, considering the AFDX em- on real|st.|c industrial ex?mp'e’ the mgthoc_i fully modaiin
bedded backbone, it had been shownlin [1, Table 2] thatthef shaping and neglectlng the FIFO is still the better one.
modelling the shaping introduced by the Iiékm realistic This encourages us to contmug our works and fully combine
configuration can lead to gain from 10% to 50%, depending shaping and end-to-end FIFO impact.

on the formal method used, the data flow considered, etc. After a short introduction on network calculus in Sec-

Among other methods, network calculls|[12,[13,16, 10] tion[2, related works will be presented in Sectidn 3, which
can be used to compute bounds on worst-case traversal timaill also include a detailed presentation on the model con-
of network (WCTT). Network calculus has a solid math- sidered in this paper (Sectibn B.3). The main contribution
ematical background (the (min,plus) algebra), is scalableof the paper isin Sectidd 4. Sectidn 5 gives some numerical
(useful classes of modelling have linear algorithms [9]), results on an simple example, to illustrate the gains of the
and have been used to certify the A380 AFDX backbone new method. Sectidd 6 concludes.

[15,[14].

This paper aims to model in network calculus two char-
acteristic of AFDX networks: FIFO policy and shaping in-
troduced by links. Both have been studied independently,
and the aim is to combine both. In this first work, we con- Notations R denotes the set of real numbers. The min-
sider a simple topology, a sequence of servers, each onémum (resp. maximum) operator is denotadresp. v).

def
[]* € 2z v0
lustrate the fact that the flows sharing a single link can lea ss a “group”, ; ; ;
or serialisation to highlight the fact that the frames on the link are trans- Here is a (very short) intreduction to network calculus.

mitted in sequence. From network calculus point of views tiffect is The reader should refer to [12, 13] for the first works and
taken into account by modelling the link as a shaper. [10,[16] for a complete presentation.

Shaping is a well known solution to increase perfor-

2 Network calculus

1Depending on authors, this impact of the links is catieaiping to il-



Network calculus is a theory to get deterministic up-
per bounds in networks. It is mathematically based on the
(A, +) dioid.

Network calculus mainly handles non decreasing func-
tions, null before 0 : F. They are, among others,
four common curves (parametrised by real positive values
d,R,T,rb) latencydq, rate \r, rate-latencySr r, token
buckety, p, testl ., defined by:

P L IR FLAES
47 ) o otherwise ETHY 7 0 otherwise
Yrb(t) = (1t + )1~y (t) Ar(t) = Rt

Brr =R[t—T|"

Three basic operators of are of interest, convolution
x, deconvolutiorp and the sub-additive closuyé:.

T <1 = f(x) < f(1
}-:{f:[R_)[R ng :fgxgzo(y)}
(f v g)(t) = nf (£t ) + g(u) ®
(fog)t) = ggg(f(t +u) — g(u)) 2
fr=0nfAalfsf)n(fefsf)n-  (3)

They are several well-known properties of theses opera-
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Figure 2. Common curves and delay
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Figure 3. A flow going through two network
elements in sequence

But one famous result of the network calculus is known
as “pay burst only once” (PBOO). It states that a sequence

tors and the common curves. The convolution is associativeof two serversS and.S’, with respective service of curyg

and commutative); = §y = 047, f = 0q(t) = f(t — d) if
t > d, 0 otherwise f @ d4(t) = f(t +d), Br,r = 07 * AR.

A flow is represented by its cumulative functidhe F,
whereR(t) is the total number of bits sent by this flow up
to timet. A flow R is said to have a functioa asarrival
curveiff Yt,s = 0 : R(t +s) — R(t) < a(s). It means
that, from any instant, the flow R will produce at most
a(s) new data ins time units. An equivalent condition,
expressed in théa,+) dioid is R < R#* . If ais an
arrival curve forR, also isa*. A server offers aservice
of curve g iff for all arrival flow, the relation between the
input flow R and the output flon?’, we haveR’ > R =
B. In this caseo’ a @ p is an arrival curve forR'.
The delay experimented by the flai can be bounded by
the maximal horizontal difference between curuesnd 3,
formally defined by («, 5) (a graphical interpretation af
can be found in Figurgl 2).

h(a, B) = sup (inf {r = 0|a(s) < B(s + 7)})

s=0

These first results allow to handle linear topologies, like
the one of Figurgl3. Given the arrival curvef flow R, and
the services curves, 5’ of network elements$, S’, we are
able to get a boufficon the delay irS: h(«, 8), and another
for the delay inS": h((a @ B)*, 3).

279 effectively compute these bounds, we need algorithmspoting

operations like®, -*, h(-,-). This is the aim of[[B] and its COINC [11]
implementation.

B, like the one of Figurgl3, can be seen as a single server
with service of curve3 = 8. It's interest comes from the
fact that the end-to-end delay is lesser than the sum of local
delayse. h(a, B#8") < h(a, B)+h((a@B)*,3")). And

the difference can be, in practise, significant. It's poptja
perhaps comes from the simplicity of the pﬁ)of

In case of more realistic topology, when a network el-
ement is shared by different flows (like in Figlide 4), with
some service policy (FIFO, static priority, etc.), it alsosts
results to compute bounds on each flow. The idea is to ex-
tract, from anaggregatedlow, theresidualservice offered
to each flow (also known gwer-flowservice). This extrac-
tion is, at first step, local,e. on a single server. Depend-
ing on the policy, the bounds could be tight( it exists
some configuration where the computed bound is reached),
or not, or the result being up to now unknown. The second
step consists in considering a complete topology, trying to
get an end-to-end bound better than the sum of local delays
(like the PBOO result). As for local step, depending on the
policy andthe topology, the bounds could be tight or not.

For example, with the non preemptive static priority pol-
icy, itis knowtfl that the lower priority flow has the residual

3ServerS’ offers a service of curvg means tha?” > R’ « 8'. The
sameforS: R = R«f'. ItimpliesR” > (R«() [’ i.e. by associativity,
R” = R = (B '), which is the definition of a server with servigex 3'.

4To be precise, there is a restriction on the flavor of servitgch must
bestrict. Seel[16, Def 1.3.2, Cor. 6.2.1,] for details.
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Figure 4. A single shared network element

servicel,, = [f—ap]|T, if the network element has service

curve and the high priority flow has arrival curvey. .
The common result for FIFO policy (the one focused in T

this paper) claims that, if a FIFO server (with a service of

curvep) is shared by two flows;, R, (with respective ar- Figure 5. Local residual service

rival curvesay, as), then, for eacld > 0, each flowR;

receives the residual servigg defined by

thed values on each server, the ways to combine local com-

6 _ , + ) -

Bi =8 —a;j Q0] Li>py (4) putation, to get better bounds. Some common restriction are
with {i,j} = {1,2} (see [16, Prop 6.4.1] for done on the class of functions used: arrival curves are token
details). An equivalent definition ispf(t) = bucket ¢ ) and service curves are rate-latengy; ().

[B(t) — a;(t — 0)]" L0y In [18], they are considering what they calindem

Notice that this result does not definesiagle residual topologiesj.e. a sequence of servers, with the flow of in-
service, but ainfinite setof services, one for each value of terest traversing all servers, and sharing each server with
6. They all compute true bounds, but some are better thandn interfering flow, like in Figuré]1. This is also the
others. The issue is the choice of a gdodhlue. kind of topology considered in this paper. The idea is,

Another result must be presented, so simple that nobodyat €ach nods;, to compute the residual service wif (4),
did ever present it as a result. It is used(inl[15], and claims Parametrised by a valug, to get a parametrised expres-
that, if d denotes the delay experimented by the aggregatedion of the end-to-end delay bound (to benefit of the PBOO
flow, then a FIFO server can be under-approximated by a"®Sult), and to minimise this expression. [nl[17], this ap-
variable delayl, andg, is a residual service curve for each Proach is generalised by considering sink-tree networks,

flow R;. and in [19] generic topologies (without cyclic dependeacie
in data flows).
Ba = 0n(g,01+a2) ®) Let’'s go to mathematical details of [18].
The service at each nodg has a curvép, r,, and each
3 Related works and considered model interfering flow has arrival curve,. ;. For eachy; > 0,

the residual service can be compﬁltéd uding (4).
This paper is the merging and continuation of two works. , N
On the one hand, the one of the Computer Networking Bi" = Bri1 =1 b, @06] L0,y = Bry L0, (6)
Group of the Pisa University on FIFO bounds with net-

work calculus [I3[17,19]. On the other hand, the one of With R} = R; —rj andT} = fIonle Butthis expres-
the IRT team from Toulouse University on AFDX networks sion can be seen as the convolution of a delay and a token
[15, ?,[14]. bucket

BY = Br; 1rL(=0,) = 00, * Vr., B! (7

3.1 LUB from Computer Networking Group, Pisa
University with B = R;(0; + T;) + b;, as illustrated in Figurg] 5.
The end-to-end residual service is the convolution of the

As presented in sectidd 2, to handle real case studieslocal residual serviceSg; ri1(~g,} * Bry Ty L=0,} * - - - *
with servers shared by different flows, with network calcu- Br; 1:1(-0,} = 521, 0, * (’yR;,B; Ao A 'VR;l,B;l)- It can
lus, the first step is to handle locally a service policy, and be seen as the convolution of a delay and the minimum of
the second is the handling of a complete topology. From affine functions (cf. Figurgl6). Such a curve will be called
this point of view, the work presented in |18, L7] 19], called “pseudoaffine curve”ir [17]. Computing the end-to-end de-
LUB (least upper bound), is the generalisation of equa- lay bound consists in computing the horizontal deviation
tion (4), trying to compute an end-to-end delay better than i.(v;b, oy o, * ('VR’pBi Ao A 73;73;)).
the sum of local delays. Considering more and more com-  Last step consists in minimising the previous expression,
plex topologies, they consider the possible ways to chosewhich implies to compute the following infimum, with >
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Figure 6. End-to-end residual service Figure 7. Shaped token bucket
0anda; > 1 [+
anda; = 1. /
" =Ar AYe
. . . +
mlgo {Z T; A /\ [b— aiz;] } (8) /

3.2 IRT, Toulouse University

In [15], the approach is different: only local delays are
computed, there is no attempt of modelling the PBOO prin-
ciple. The global delay of each server is computed,all
flows incoming into a server are aggregated (the aggregated
arrival curve is simply the sum of individual arrival curye) Figure 8. Sum of shaped token bucket gives
and the delay experimented by this aggregated flow is com- general CPL curve
puted. Then, the delay computed for a flow is simply the
sum of the aggregated delay of each server crossed by the
flow.

The contribution of[[15], in addition to modelling the

This approach does not consider the PBOO principle, but
AFDX network in network calculus, is to model the shaping mode_ls corregtly the shaping introduced by the links. T.h's
shaping can increase the performances of the analysis up

introduced by the links (called “grouping” in 115, 14, 1]). L
On a sender, whatever the applicative burst is, the through-tO 40%. And even when considering another theory, based

put outgoing of the server is limited by the throughput of on trajectories, modelling of shaping leads to 5%-50% gain
the link (100Mb/s in common AFDX). Another point of [A].

view, looking at trajectories of frames, is that linkeri-

alise packets. In network calculus modelling, it means that 3-3 ~ System model

an applicative token bucket. ; is shaped by the bit-rate of

the link Ay, leading to a two-slopes affine arrival curve, as This work is a direct continuation and join of the works
presented in Figuf@ 7. But in switches, we have to considerpresented in previous sectidns|3.1 and 3.2. We are consider-
the sum of flow incoming from different links, which is no  ing exactly the same kind of topology than the one_of [18],
more two-slope affine curve, as presented in Figire 8. Itillustrated in Figuréll, but with a more general class of ar-

leads to general concave piecewise linear function (CPL). rival curve: the considered flow has a CPL arrival curve,
Let's go to mathematical details. but the interfering flows still have token-bucket ;; arrival

Each incoming flowf; of a serverS has arrival curve curves.
«;, in the CPL class. The server as a service of cutye . L
The aggregated arrival curves = Y. «; is still a CPL. 4 Computing the minimal bound
The delay bound computed & = h(fs, >, ;). Be-
cause of FIFO policyi,, is a service curve for each flow (cf To begin, let us introduce some notations on the kind
eq [8))), and eaclf!, output corresponding to thg input of manipulated curves. A concave piecewise linear (CPL)
has(a; @ d45)™ as an arrival curve, which is still a CPL). function is said to be under normal form if the terms are
The delay experimented by a flow is then the sum of the sorted by decreasing slopes, and there is no useless term (cf
dg delays of all theS crossed servers. thenon-redondanproperty of pseudoaffine curves in [19]).



Ya

bs Y3

Y2
Y2

bo

1

by

T 9 T3

Figure 9. Normal form of CPL Figure 10. Horizontal deviation between CPL
and rate-latency

Definition 1 (Normal form of CPL) Let

Yribis- -+ Yrab, D€ @ set of token-bucket functions.
Let~; denotesy,, »,. The termA’"_, +; is said to beunder
normal form of minimum ofy functions iff there is no
useless constraintl(9) and the are sorted by decreasing

To make the different proofs in this paper, we manipulate
alot of Br 1~y related expressions (going from €. (4),

rate [10) cf Figure[6). Here are expressed different points of view
' on such expressions. They are of interest because of the
Vi, 3t; > 0,V5 # i y(t) <;(ts) 9) different properties on the involved operators.
i<j:>Ti>Tj (10)

Lemma 2 (Some point of view on3r, 71~ 1} expressions)
It Aicpi,n) Vro0: 1S under normal form, the sequence et R, T, D,r, b be some positive reals antie F an in-

x1,- - ,Tn41 Of intersection points, ang, - - - , y,+1 the creasing function. Then
intersection values are formally defined by:
1 =O,y1 =b f]]-{>T’} :6T’ /\f (13)
i\XTi) = Vi Xi) = fori<i<n 11 ) ifT>D
Yi(zi) = Yis1(@i) = Yk (11) Brarlipy = Br,T . (14)
Tptl = Yny1 = 0O o op *Yrr(p-1) KT <D
It should be obvious that each CPL has a normal form. = ODVT * VR.R[D-T]* (15)
To effectively compute it, an algorithmis gi\{e_n_m [8_]. 5D AYrp—rp ifb=TD
An example of such a set and related definitions is shown Op * Yrp = o A B it b <D (16)
in Figure[9. D APpp-t < .

Lemma 1 (Horizontal dev. between CPL and rate-latency)
Let A\, vr,.», be a CPL under normal form, ang, 7', two
non negative reals, with, < R. Then, the horizontal

Interest of eq[(TI3) comes from the fact that,(ir, +)
algebra, we have more results on minimum than on product.

deviation can be computed In particular,Sg,r1>7y = o1 A Br,T-
The idea behind expressidn{14) was somehow already
/\%,bl Bror)=T + = — (12) present in[[18, Eq. (12)], and generalised with the notion of

pseudoaffineurve in [17, Eq. (6)]. Equatioi_(15) is a new

with k = min {i|r; < R} - point of view that avoid some “per case” manipulations.
- 2N .

PROOF Graphically (see Figuig10), the maximal distance PROOF Expression((I3) is obvious.

must be computed at ong level. Going from the origin, To prove the expressiof ([14), just have a look on Fig-
while the rates; are greater than R, the horizontal deviation urel3, illustrated withD = 6 > T'. If D < T thel. p,
grows, up taz;,, which is, by definition, the first slope lesser term has no effect.

thanR. n To go on from[(14) up td(15), just remark that r can



D —b/r

Figure 11. Shifted ~ can be expressed as a
minimum

also be writterBr 1 = 7 * yr,0. Then, we have

Or *YR0 = O0DVT *VR,R[D—T]+
Bl B if 7' >D
R, TH{>D} 6D * /YR,R(D—T) = 5DVT * ’YR,R[D*T]"'
if T <D

Looking at Figuré 111 gives ef (IL6). Shiftingya,, func-
tion of D to the right is like, either truncating-afunction,
or ag function, depending on the valde- rD. n

Lemma 3 (Convolution of truncated beta [18]) Let
R, T,D,R',T', D' be six positive reals witl" < D and
T' < D'. Then

Brrl(~p} * Br 7 l(=pry =

dp+pr * YR,R(D-T) * VR',R/(D'-T") (7)

It can be generalised to any number of function and any

values off;, D;.
n
o) Bri, 1 1{>D,}
1=

= 52?:1 (DjvTy) * /\ YR;,R;[D; —T:]+ (18)

i=1

=0y (0,vr) A N\ Bro, Dy vty —[Di—T1+ (19)

i=1 o

Equation[(I8) comes from [18, Proof of Theorem 2], and

b * 0g

Yoo by % Oy

5 770/* O * Yo pr * (Sl’i
Y

dl
d+d

Figure 12. Convolution of two truncatd beta
functions

help of Lemmd# (which states that for wide-sense increas-
ing functionsh(f,g A h) = h(f,g) v h(f,h)).

PROOF

e Proof of (I7):. The proof of [I¥) is obvious, using
equation[(I}) (transformation into convolution of de-
lay andy function) and basic properties of convolution
(64 * 8", = Sq+ar; Cf Figurel12).

Br,rl{>p} * Br. 1 1l{>D1}

= 0D * YR,R(D-T) * Op * YR/, R/ (D'—T")

5D+D’ * /YR,R(DfT) * /YRI)RI(DliTI)

e Proof of (I8). To prove [IB), we can generalise
(I7) to the equatiori (15), and the fact that convolution
and minimum are equals on star-shaped functionis [16,
Th3.1.6].

n

'ikl ﬂRi,Til{t>Di} = 52?=1(D¢ vT;) * ‘ikl YRi,R:[D:-T;]+

n
= 52?=1(DWT1-) * /\7Ri,Ri[Di—Ti]+
1=1

e Proof of (I9). Going from [I8) to[(IP) is done using
distributivity of min over deconvolution, anf@ {1L6).

The first step uses the distributivityf = (g A h) =
(f=g) A (f = h):

expression[(19) is another point of view on the same equa-

tion.
Both expression§ (18) and (19) are of interest.

Expression[(18) clearly expresses the fact that we have a
concave function “shifted” by a delay,! , D,. Expression
(19) is interesting when trying to compute the delay, with

62?:1(DiVTi) * /\’YRmRi[Di*Ti]*' =

=1
(5zy:1(DjvTj) * ’VRi,RT;[DifTi]‘*') (20)
i=1



The second step usds116). We have to compase
Rz[Dz — TZ]Jr andrD = R; Z?:j(Dj % TJ)

3

J=1

Ty
Ri|D; = T;]*

We are in the caseD > b that is to sayop * v, =
dp A B, p_». Thatisto say:

52?:1(13]' vT;) * YR, Ri[D; =Ti]*

= Oyr_ (DyvTy) A BR.Y_ (D VD)~ [Di- (21)

Reporting[(21) into[(20) leads to:

T¢]+

52?=1 (D]‘ VTj) * /\ ’YR1R1 [D1—T1]+

i=1
n

i=1

(95,0 A Broyy (0, v -1+
=dyp v A /\ (BRi,Z;?:1<Dj vTj>—[Di—Ti]+)l
i=1

Let now present one useful lemma for computing our de-
lay.

Lemma 4 (Horizontal delay with min of functions) Let
7,9, 9" be three wide-sense increasing functions. Then,

h(f,g ~ng')=h(f,g9) v h(f.g) (22)

a

PROOF We are going to use two results: the first is the ex-
pression of(-, -) in term of deconvolution and the second is
the left distributivity of max on deconvolutiaif v ¢) @h =

(f @g) v (f @ h), and some trivial relationship on non-
decreasing functions (likég A h)™' = g~ v h=! or

(gvg)ef=I(gof)v(gef)

hf.gng)=((gAg) " of)@r)0)

g vg e o) ()

gt o f)v(g e ) @N)(0)

g o HoM) v (9 o f)@M))(0)
9) v h(f,g") "

Theorem 1 (End-to-end delay in simple FIFO topology)
Let R be a flow with a CPL function (under normal form
of Definition[1) A\, v, as arrival curve. This flow goes
thought a sequence of servefs, ..., S, with respective
service curvesg, 1,,.-.,0r, 1,. Each servers; is also
crossed by a flowR, with arrival curve% 1, as illustrated

on Figure[1 The pollcy of each server is FIFO. Then, the
end-to-end delay of flow is bounded by:

n
inf h b i Lgsg. 23
- (/i\%“b“iiklﬂ& v 13 L>0:3) (23)
(> b i Yr! — (Rl — ’I’I-)ZC;CI
) s
i=1 ( Ri i=1 Ri
. Ri—r}
If Z?:l RiT <1
e b R; — 1}
S(ne ) 3 ava (1o 3 B
i=1 ‘ p(i)<k p)<k
L otherwise
with T = RTJ# ki = min{j|r; <R —ri},
r—=(Ri—7})x)0 ' .
e; & % p : [1,n] = [1,n] a permutation

such that the sequen@ep(i)) is wide-sense increasing, and
g & min {p(i) 1> Lj_pO S

R;

PrROOF Here is a sketch of proof. By lack of space, the
full proof can be downloaded as an appendix on the author
WEB page. A previous version can also be foundin [5].

Since this work is a generalisation af [18] (it solves
1anz€[1 n]:60;=0 h(’%‘ by K z 1 ﬁR1 Ry 11{>9 })) the Organl-
sation of the proof is the same. In order to be self-suffigient
the proof will be completely done, but we try to highlight
the common part and our specific contribution.

The first step consist in restricting the value domaif.of

]

We[li’g]f:@i;oh(f, * Bri—ri i Li=0:}) =

inf (fv * ﬂRl rl T"” ]]-{>9 }) (24)
Vie[1,n]:0: >Ti + o =
It comes from the fact that, i, < T; + & then,

Br, vt T, Li=0,} = Br,—r T, , i.e. the test term has no ef-

fect. And in this case, mcreasmg theincreases the value
ofthefy, . i term. This step was done in [18].

This allows to make a variable substitutidj, = 0, +

b
Here comes the main result of the paper, the local ap-Ti + R

plication of eq.[(#) on each server, parametrised by a set of

0,...,0, values, and the expression of the least solution.

The second step uses the fact thdlf,g A ¢)
h(f,g) v h(f,g'), and some rewriting used in Lemrhh 2



to transform the convolution in minimum. It leads to term
St St1 Stir

5 (ne )+ | || || |

n n / + Figure 13. Test configuration
inf o +\/ e — Ribs (25)
vie[ln] | &5 ‘ LR - ki

0;>0 The four firsts topologies, configurations 1 up to 4, have
) ) ) been generated to see the influence of the different parame-
The proof in [18] gives the expression of the deldy, -) ters. with some “normalised” values.

by a computation of the inverse of the convolutionterm. We | ihe first configuration, all terms have value 1, except

chose a more algebraic way, to use distributivity and reducef, ihe rates, which are equals to one third, for a global load
the problem to the computation of delay between a CPL andp _2

arate-latency curve (Lemrfia 1). o In3configuration 2, burst of the interfering flot have

To solve this expression, we have to minimise an expres-peen increased o compared to configuration 1, in con-
sioninf,, >0 {Z?:l z; + Vi [bi — aixi]+} with b; > 0 figuration 3, the crossing flow burst is increased to 5. On
anda; > 1. This work has been done in [18] (with a little ~ the opposite, in configuration 4, both bursts have been de-
restriction,b; > 0). We just have to reuse the result. g creased tC%-

What can be learn from theses examples will be gener-
. alised in all the following configuration.
5 Example and comparison First learning it that our method, which is a direct gener-
alisation of the LUB method, is always better. Second, the
Since the equations are not very intuitive, we have donerelative gain decreases with the length of the path and the
some experiment to get a global idea of the weakness andabsolute gain is constant. Third, the gain of course depends
strong points of the method. The computations have beenon the burst of the crossing flow, which is not shaped in the
done with the prototypBIC- maude [7, [4,[€]. LUB method.
Let us consider the configuration presented in Figlire 1: ~ Relative performances of the new method w.r.t the lo-

a flow crossing three servers, sharing each server with a in-cal shaping depends of course of the impact of the burst
terfering flow. of the interfering flow, whose shaping is not modelled by

To simplify the interpretation, consider that all servers the new method. The new method can be worst than the
and all interfering flows have the same characteristicshEac Other one £1% worst for the configuration 1 for the delay
server has service of curvé: 1, the considered flow has N two servers). But the local shaping can not benefit from
arrival curveAr A .., and the interfering flows have ar- the PBOO principle, and the longest the path is, the better
rival curve Az A v~ We have considered 16 possible the relative performance of the new method is.

values for these parameters. For_ each configurations, we The configurations 5 to 8 are the same than configura-
have computed the delay for crossing two and three serversyjons 1 10 4, except that the system rate have been multiplied
with three methods: LUBD (presented in section 3.1), lo- by 5, leading to a global load dB%, which is more com-
cal delay with shaping (presented in section 3.2) and ourmon in embedded systems than 8% one. In this case,
end-to-end computation with half modelling of shaping. e |ong term rate of the flows becomes negligible, and the

In the LUBD experiment, the shaping introduced by the pest method is two times the local shaping one, and when
link (the A term) can not be modelled: the considered flow the new one is better, the gain is really small, and when it is
(resp. interfering flows) has arrival curye; (resp.v, ). worst, it really is & 50%).

In the local delay with shaping, the considered flow has  But a burst value equals to the rate value is not very re-
arrival curveAr A vy, and the interfering flows have arrival  ajistic situation. On a 10Mb/s system, it means that is could
CUIVESAR A Yrr by exist a burst of 10Mbj.e. 1.25Mo, i.e. more than 833

In our half modeling of shaping, the considered flow has frames of 1500 octets (maximal size of an Ethernet frame)
arrival curveAr A 7., but the interfering flows have arrival  at a single instant. Then, configurations 9 to 11 are copies
CUrvesy, p. of the configurations 1 to 4 with a burst divided by 10 (con-

Before all analyse, keep in mind that, in each server, sidering burst of 83 maximal size Ethernet frames). In this
there is an intrinsic delay df' = 1 unit. It means that, case, the new method gain is betwéefc and22%.
whatever the input traffic and computation method are, the  But configurations 9 to 12 still have a load @%%. Di-
delay for crossing two servers is at least 2, and at least 3 forviding this load by 2 gives configuration 13 to 16. In this
three servers. case, the main part of the delay comes from the intrinsic de-



Configurations

Conf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
R 1 1 1 1 5 5 5 5 1 1 1 1 1 1 1 1
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r 5 3 3 5 |03 5 s |5 | 3 5 5 5 |3 5 5 |3
b 1 1 5 5 |1 1 5 | 5 | % | 1w | 1 | % | ® | w | w | %
r 3 5 5 s |3 3 s | 5 | 3 3 3 5 | 3 5 s | 3
y 1 5 1 5|1 5 ! | s | % | % | % | % | 1 | 1 | 1 | %
p= T}T' 67% 67% 67% 67% 13% 13% 13% 13% 67% 67% 67% 67% 33% 33% 33% 33%
Delai R crossingSy; Sty
LUB 550 | 13.50 | 11.50| 2.70 | 2.61 | 4.21 347 | 212 | 235 | 3.15 | 295 | 2.07 | 232 | 3.12 2.80 | 2.06
Loc. Shap. 541 | 1050 | 9.75 | 281 | 243 | 2.62 254 | 2.09| 249 | 312 | 292 | 223 | 227 | 2.60 2.44 | 2.08
Half. Shap. 475 | 1275 | 7.75 | 255 | 241 | 4.01 247 | 2.08| 227 | 3.07 | 257 | 2.05 | 222 | 3.02 232 | 2.04
Delai R crossingSy; Syr; Srrr
LUB 7.50 | 19.50 | 13.50| 3.90 | 3.81| 6.21 467 | 3.16 | 345 | 465 | 405 | 3.09 | 3.42| 4.62 3.90 | 3.08
Loc. Shap. 8.81 | 18.50 | 15.87| 4.58 | 3.66 | 4.07 383 | 3.14| 405 | 519 | 476 | 3.63 | 3.47| 4.20 3.72 | 3.17
Half. Shap. 6.75 | 1875 | 9.75 | 3.75 | 3.61| 6.01 3.67 | 3.12| 337 | 457 | 3.67 | 3.07 | 3.32| 4.2 3.42 | 3.06
Gain on the new method fak crossingSy; Sy
vs. LUB 13.63% 5.55% |32.60% 5.55%|7.61%| 4.72% |28.65% 1.87%| 3.19% | 2.38%|12.71% 0.72% |4.13%| 3.07% |17.14% 0.93%
vs. Loc. Shap.12.30% -21.42% 20.51%, 9.46% | 0.78%) -52.81% 2.83% | 0.36%| 8.69% | 1.60% |11.96% 7.91% |2.34% -16.30% 4.91% |1.79%
Gain on the new method fa® crossingSy; Srr; Srir
vs. LUB 10.00% 3.84% |27.77% 3.84%|5.21%| 3.20% |21.299% 1.25%| 2.17% | 1.61% | 9.25% | 0.48% |2.80%| 2.07% |12.30% 0.62%
vs. Loc. Shap.23.46% -1.35% |38.58% 18.23% 1.22%) -47.64% 4.06% | 0.64%| 16.80%4 11.94% 22.83% 15.37% 4.29% -7.54% | 8.09% | 3.48%

Table 1. Comparing methods gn topology from Figure 13 []
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