
HAL Id: hal-00544493
https://hal.science/hal-00544493v1

Submitted on 8 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polyhedral Analysis for Synchronous Languages
Frédéric Besson, Thomas Jensen, Jean-Pierre Talpin

To cite this version:
Frédéric Besson, Thomas Jensen, Jean-Pierre Talpin. Polyhedral Analysis for Synchronous Languages.
6th International Symposium on Static Analysis (SAS’99), Sep 1999, Venice, Italy. pp.51-68. �hal-
00544493�

https://hal.science/hal-00544493v1
https://hal.archives-ouvertes.fr

Polyhedral Analysis for Synchronous LanguagesFr�ed�eric Besson, Thomas Jensen, and Jean-Pierre TalpinIrisa/Cnrs/InriaCampus de Beaulieu, F-35042 Rennes Cedex, Franceffbesson,jensen,talping@irisa.frAbstract. We de�ne an operational semantics for the Signal languageand design an analysis which allows to verify properties pertaining to therelation between values of the numeric and boolean variables of a reactivesystem. A distinguished feature of the analysis is that it is expressedand proved correct with respect to the source program rather than onan intermediate representation of the program. The analysis calculates asafe approximation to the set of reachable states by a symbolic �xed pointcomputation in the domain of convex polyhedra using a novel wideningoperator based on the convex hull representation of polyhedra.1 IntroductionSynchronous languages [11] such as Signal [2], Lustre [6] and Esterel [4]have been designed to facilitate the development of reactive systems. They enablea high-level speci�cation and a modular design of complex reactive systems bystructurally decomposing them into elementary processes. In this paper we showthat semantics-based program analysis techniques originally developed for theimperative language paradigm can be applied to Signal programs, facilitatingthe design of static analyses for reactive systems.The veri�cation of a reactive system written in a synchronous language istraditionally done by elaborating a �nite model of the system (often as a �nite-state machine) and then checking a property (e.g. liveness, dead-lock freedom,etc) against this model (i.e. model checking). For instance, model checking hasbeen used at an industrial scale to Signal programs to check properties suchas liveness, invariance and reachability [5]. Whereas model checking e�cientlydecides properties of �nite state systems, the use of techniques from static anal-ysis enables to prove properties about in�nite state systems such as propertieson the linear relations between numerical quantities in the system.In this paper we design an analysis for the Signal programming languagethat allows to verify properties pertaining to the relation between values ofthe numeric and boolean variables in a Signal program. The interest of theapproach is that we analyse programs at the source language level, rather thandoing the veri�cation on some intermediate representation (often in the form ofan automaton) of the program. In particular, it allows a proof of correctness ofthe analysis with respect to the operational semantics of the source language.

The paper is structured as follows. In Sect. 2 and Sect. 3 we de�ne the syn-tax and the operational semantics of Signal. The analysis itself has three parts.First, a Signal program is abstracted into a collection of constraint sets overthe variables of the program. In Sect. 4 we present a syntax-directed programanalysis that extracts these sets of constraints. A solution to one of these con-straint sets describes a possible behaviour of the program. An approximation tothe set of reachable states of the program is obtained by a symbolic �xed pointcomputation (Sect. 5) whose result is invariant for all the behaviours describedby the constraint sets. This iterative calculation is done in the in�nite domain ofconvex polyhedra. In order to ensure its convergence a novel widening techniquethat is described in Sect. 6 is used in the iterations. Section 7 discusses relatedwork and Sect. 8 concludes.2 The SIGNAL Core LanguageWe use a reduced version of the synchronous language Signal which we detailin this section. In Signal, a process p is either an equation or the synchronouscomposition p k p0 of processes. Parallel composition p k p0 synchronises theevents produced by p and p0. The core language has the syntax de�ned below.We assume given a set of integer and boolean constants, ranged over by c, and aset, MonoOp, of basic operators such as addition and equality, ranged over by f .Syntax of Core SIGNALpgm ! (eqn k : : : k eqn) init memeqn ! x := e j synchro e1 e2e ! x j zx j c j f(e1 : : : en) j e1 when e2 j e1 default e2mem ! zx = c j mem ; memwhere mem gives an initial value to all delay variables. Within a Signal pro-gram, three kinds of operators can be distinguished.{ Basic \monochrone" operators such as +,=,� . . . which require that theirarguments are synchronised i.e. they are either all present or all absent. Whenall the arguments are present, they have their usual arithmetical semantics.{ \Polychrone" operators for which arguments are not necessarily synchronous.Signal provides two such operators. The when is used for sampling a signal:the signal de�ned by the expression x when b is obtained by sampling x atinstances when b is true. The default (union) operator merges two signalsgiving precedence to the signal at the left of the operator.{ In classical Signal, the delay operator $ is used to access the previousvalue of a signal: the signal x $ 1 is synchronous with x itself and carries theprevious value of x. By replacing 1 by other numbers, this mechanism permitsto access values that were emitted several instances back i.e. it provides amechanism for storing values in a memory cell for later access. We modify thesyntax of Signal in a way that makes explicit this memorising by forcing

the user to name the memory cells and specify their initial value. Moreprecisely, the only way to access the previous value of a signal x is via aspeci�cally designated delay variable that we shall write zx. Access to valuestwo instances back in the history of x must then be obtained by assigningthe value of zx to another signal y and accessing its delay variable zy. Toillustrate the last point: the equation x := ((x $ 1) + 1) when tick istransformed into the program x := (zx + 1) when tick .The distinction between the two kinds of variables means that we have the setof variables Var = X [ZX where{ X is the set of (observable) signals in the original program, ranged over byx; y; z : : :{ ZX = fzx j x 2 Xg is the set the memory (or delay) variables introducedby the transformation (i.e an isomorphic copy of X).By convention, variable names pre�xed by z will indicate delay variables.The Bathtub Example A typical yet simple example of reactive system that ouranalysis aims at handling is the bathtub problem. Suppose we have a bath whichwe wish to control so as to make sure that its water level never gets empty orover
ows. We need both a faucet and a pump and a mechanism to activate thembefore some critical condition occurs.The level in the bathtub is increased by the faucet, decreased by the pump.The
ow of the faucet increases as long as the level is low; likewise, the pumpis emptying more actively at higher levels. An output alarm is raised wheneverthe level gets out of bounds.(level := zlevel + faucet - pump| faucet := zfaucet + ((1 when zlevel <= 4) default (-1 when zfaucet > 0)default 0)| pump := zpump + ((1 when zlevel >= 7) default (-1 when zpump > 0)default 0)| alarm := (0 >= level) or (level >= 9))init zlevel = 1; zfaucet = 0; zpump = 0; zalarm = falseAlthough it is simple to model such a system in Signal, it is not evidentwhether the alarm ever can be raised. The analysis presented in this paper allowssuch a veri�cation. Even if this example is �nite-state, the analysis to come isnot limited to proving properties on such systems since it handles linear numericproperties for in�nite ones.3 Operational Semantics of Core SIGNALA Signal program is modelled by a labeled transition system (Mem;Label ;m0)with initial state m0 where

{ Value, the range of variables, is the union of the boolean and the integerdomains augmented by the element ? to model the absence of value.Value = Int [Bool [f?g{ Label = X ! Value is the set of all the potential instantaneous events thatcan be emitted by the system.{ Mem = ZX ! (Value � f?g) is the set of memory states. A state of memorym 2 Mem stores the value of each delay variable zx. Since it is the previousvalue carried by its corresponding signal x, memory variables never take theabsent value ?.{ A memory and a label together specify a value for each variable in Var . Sucha pair is called a state and belongs to the setState =Mem � Label :In the following, we assume that variables are typed with either type Int orBool and that all labels, memories and states respect this typing. Values namedu; v; ui range over non-? values whereas k will range over the whole domain.3.1 Semantics of ExpressionsGiven a memory m 2Mem, the semantics of an expression e, written E[e]m, isa set of pairs (�; v) where � 2 Label is a map from observable signals to valuesand v is the current value of the expression. E[e]m : (�; v) expresses that v is apossible value of e given that the observable signals of the program take valuesas speci�ed by �. This function has typeE[] : Expr !Mem! P(Label� V alue)and is de�ned by a set of inference rules that for a given e and m inductivelyde�ne the set E[e]m.Constants Constants can synchronise with any signal thus for any memory andlabel, the constant expression can either evaluate to its value or be absent.E[c]m : (�; c) E[c]m : (�;?)Variables The evaluation of a program (non-delay) variable expression mustyield the value that the variable is assigned in the corresponding label.E[x]m : (�; �(x))Signal imposes a synchronisation constraint between a signal and its delay:the delay variable can only be accessed when the signal itself is present. Whenpresent, the delay variable expression retrieves in memory the previous value ofits associated signal; otherwise, both get the ? value.�(x) = uE[zx]m : (�;m(zx)) �(x) = ?E[zx]m : (�;?)

Monochrone Operators According to the monochrone rule, if all argumentsof an operator f evaluate to a non-? value then the result is the usual mean-ing of this operator, otherwise all the arguments are absent and the expressionevaluates to ?.(E[ei]m : (�;?))ni=1; f 2 MonoOpE[f(e1 : : : en)]m : (�;?) (E[ei]m : (�; ui))ni=1; f 2 MonoOpE[f(e1 : : : en)]m : (�; f(u1 : : : un))When Operator If the condition is satis�ed, the evaluation of the when ex-pression yields its �rst argument, otherwise ?.E[e1]m : (�; k);E[e2]m : (�;?)E[e1 when e2]m : (�;?) E[e1]m : (�; k);E[e2]m : (�; false)E[e1 when e2]m : (�;?)E[e1]m : (�; k);E[e2]m : (�; true)E[e1 when e2]m : (�; k)Default Operator The evaluation of the default expression yields ? if botharguments are absent, otherwise its leftmost non-? argument.E[e1]m : (�; u);E[e2]m : (�; k)E[e1 default e2]m : (�; u) E[e1]m : (�;?);E[e2]m : (�; k)E[e1 default e2]m : (�; k)3.2 Semantics of a System of EquationsA program is the parallel composition of two kinds of equations: assignmentsand synchronisations. Each equation imposes constraints on the labels that canbe emitted by the system this equation belongs to. More precisely, given a mem-ory, the semantics of an equation is a set of possible labels inferred from thesynchronisation and assignment rules.Eq[] : Eq !Mem! P(Label)Synchronisation If both sides of the synchronisation equation evaluate either to? or a value and if their labels agree then these expressions are synchronised.E[e1]m : (�; k1);E[e2]m : (�; k2); k1 = ? , k2 = ?Eq[synchro e1 e2]m : �Assignment If the value of the the right-hand side agrees with the value of theleft-hand side stored in the label then an assignment can occur.E[e]m : (�; k); �(y) = kEq[y := e]m : �

Parallel Composition The parallel composition rule checks that the same labelcan be inferred for each equation. It means that this label describes a behaviourconsistent with all the equations.Eq[eq1]m : �;Eq[eq2]m : �Eq[eq1 k eq2]m : �3.3 Transition Semantics of a Set of EquationsFor each variable, the memory state stores the value that it was given the stepbefore. Hence every time an observable signal receives a new value, the memorystate has to be updated with that value. The functiontr : Mem � Label ! Memde�nes how the system evolves from one memory state to another when emittinga label �. tr(m;�)(zx) = ��(x) if �(x) 6= ?m(zx) otherwiseA set of equations de�nes a transition relation between memory states.De�nition 1. A set of equations Eq induces a transition relation ��! de�ned byEq[Eq]m : �m ��! tr(m;�)3.4 Transition System Semantics of ProgramsThe Signal syntax imposes that all delay variables are given an explicit initial-isation; the initial memory m0 that assigns an initial value to all delay variablescan therefore be extracted from the program text directly. We can then de�nethe semantics of a program as a rooted, labeled transition system as follows:De�nition 2. The semantics of program P = Eq init m0 is de�ned by[[P]] = (Mem ; ��!;m0)The Bathtub Example (Continued) Given an initial memory statem0 = fzlevel 7! 1; zfaucet 7! 0; zpump 7! 0; zalarm 7! falsegwe can derive the following (label,value)-pair for 1 when zlevel <= 4.Em0 [1 when zlevel <= 4] = (�; 1)by considering � = flevel 7! 2; faucet 7! 1; pump 7! 0; alarm 7! falseg sincem0(zlevel) is less than 4. For any equation y := e of the bathtub example,we can derive for the expression e the (label,value)-pair (�; �(y)) thus provingEq[Bath]m0 : �: Since no variable is absent in �, all the memory variables areupdated. The new memory state calculated by the transition function tr givenm0 and � is:tr(m0; �) = fzx 7! �(x) j zx 2 fzlevel; zfaucet; zpump; zalarmgg

4 Constraint-Based AnalysisIn this section we present an analysis for determining invariants of the behaviourof a given Signal program. These invariants express relations between the val-ues of the program's signals that hold at all instances during the execution ofthe program. We simplify the problem by considering invariants on the memoryvariables only. This is possible because values of observable signals are immedi-ately stored in their corresponding memory variables hence any relation foundbetween memory variables is a valid relation between the corresponding observ-ables. Formally, we want to �nd M � Mem such that if m0 is the initial stateof a program and m0 !� m then m 2M .4.1 � -InvariantsGiven a program, each possible transition is completely speci�ed by the memorym and the label of observable values � (the resulting state is then tr(m;�)cf. Sect. 3.3). Thus, a subset � of the set State =Mem�Label can be consideredas a restriction imposed on the behaviour of a program: a transition is onlyallowed if it is a member of � . We say that a set of memory states is � -invariantif it is invariant under all transitions authorised by � . Formally, M � Mem is� -invariant if 8(m;�) 2 �:if m 2M then tr(m;�) 2M:This notion facilitates the handling of non-determinism of Signal programs.Di�erent behaviours are possible in a given memory state depending on theabsence or presence of a signal. It is then convenient to split the analysis into�nding invariants for each possible combination of absence and presence in aprogram. More precisely, we structure the analysis in two phases:1. Determine a set f�igni=1 � P(State) of behaviour restrictions such that allthe �i together account for any possible behaviour of the program. Each �iwill be constructed so that a given signal is either always present or alwaysabsent in �i.2. Calculate an M � Mem such that M is �i-invariant for all the �i.Each �i is the solution to a set of constraints resulting from an analysisof the source program. The analysis never calculates the �i explicitly but usesthese sets of constraints in the calculation of the invariant M in phase 2. Inthe following we present the constraint-based analysis of the program and provethat the constraints found for a given program correctly approximate the possiblebehaviours of a program.4.2 Constraint ExtractionIn the proof to follow we consider programs in normal form. No loss of generalityis incurred since any program can be translated into this form by recursively

introducing extra variables and equations for each composite expression (seeAppendix A for details). The analysis will be carried out for these programs.pgm! eqn j eqn || pgmeqn ! x := c j x := x0 j x := zx0 j x := f(x1; : : : ; xn)j x := x1 when x2 j x := x1 default x2Semantics of Constraints The language of constraints is de�ned by the fol-lowing syntax: cst ! y = e j y 6= ?e ! c j x j f(x1; : : : ; xn) j ?Among these constraints, y = f(x1; : : : ; xn) re
ects the standard meaning ofmonochrone operators. The constraints y = ? and y 6= ? express presence andabsence of signal y, respectively. A constraint set C built over a set of variablesV � Var symbolically represents a set S � State. The precise semantics of C istherefore given by the solution function Sol de�ned such that S = Sol(C).Sol(C) = \c2C Sol(fcg)Sol(fy 6= ?g) = fv j v(y) 6= ?gSol(fy = ?g) = fv j v(y) = ?gSol(fy = cg) = fv j v(y) = cgSol(fy = xg) = fv j v(x) = v(y)gSol(fy = f(x1; : : : ; xn)g) = fv j v(y) = f(v(x1); : : : ; v(xn)); v(x1) 6= ?; : : : ; v(xn) 6= ?g[fv j v(y) = ?; v(x1) = ?; : : : ; v(xn) = ?gFig. 1. Semantics of constraintsDe�nition 3. We extend the function Sol to sets C of constraint sets as follows:Sol(C) = [C2C Sol(C)Constraint Extraction FunctionDe�nition 4. The constraint extraction function CE computes for a programa set of constraint sets that over-approximates the possible behaviours of theprogram.

Const CE(y := c) = ffy = cg; fy = ?ggVar CE(y := x) = ffy = xggDelay CE(y := zx) = ffx 6= ?; y = zxg;fx = ?; y = ?ggMonoOp CE(y := f(x1; : : : ; xn)) = ffy = f(x1; : : : ; xn); y 6= ?; x1 6= ?; : : : ; xn 6= ?g;fy = ?; x1 = ?; : : : ; xn = ?ggWhen CE(y := x when b) = ffy = x; b = trueg; fy = ?; b = falseg;fy = ?; b = ?ggDefault CE(y := a default b) = ffy = a; a 6= ?g; fy = b; a = ?ggParallel CE(eq1 k : : : k eqn) = fC j C = Sni=1 Ci and Ci 2 CE(eqi)gThe Bathtub Example (Analysis) We consider the composition of the equationslevel := zlevel + (faucet - pump)| alarm := ((0 >= level) or (level >= 13))Applying the constraint extraction function, one obtains a set of constraint setsfor each equation in isolation.CE(eq1) = f(level = zlevel+ faucet� pump level 6= ? faucet 6= ? pump 6= ?) ;(level = ? faucet = ? pump = ?)gCE(eq2) = f(alarm = ((0 >= level) or (level >= 13)) level 6= ? alarm 6= ?) ;(level = ? alarm = ?)gFor composition of equations, a naive computation of the CE function wouldyield an exponential number of constraint sets. Fortunately, this worst case com-plexity can be avoided by incrementally discarding constraint sets for which nosolution exists. For the example, since a signal cannot be both present and ab-sent, the composition gets rid of 50% of the constraint sets originally obtained.4.3 CorrectnessThe following theorem formalises how constraint sets serve to determine a safeapproximation to the set of reachable memory states of a program.Theorem 1. Given program P = Eq init m0 . Let C = CE(Eq) and let M �Mem. If M is a Sol(C)-invariant and m0 2M then Reach(P) �M .Proof. The core of the proof is Lemma 1 which states that the set of constraintsets extracted from a program over-approximates the set of transitions that theprogram can make in a given memory state. As a consequence, all sets of memorystates that are invariant under Sol(C) will be an invariant of the program. Thus,if a Sol(C)-invariant M � Mem contains the initial state m0, an induction onthe number of transitions shows that if m0 !� m then m 2M .

Lemma 1. Given set of equations Eq. Let Obsm = f� j Eq[Eq]m : �g andC = CE(Eq) then fmg � Obsm � Sol(C).Proof. For each equation, we consider any derivation path allowed by the stan-dard semantics. The constraints on values gathered along each derivation de-scribe Obsm (i.e the set of labels that can be deduced for a given memory). Forexample, the deducible derivations for the equation y := a default b are:E[a]m : (�; �(a)) E[b]m : (�; �(b)) �(a) = uE[a default b]m : (�; u) �(y) = uEq[y := a default b] : �E[a]m : (�; �(a)) E[b]m : (�; �(b)) �(a) = ?E[a default b]m : (�; �(b)) �(y) = �(b)Eq[y := a default b] : �Since, by de�nition u 2 Value � f?g, Obsm is given the intentional de�nitionObsm = f� j �(y) = �(a); �(a) 6= ?g [f� j �(y) = �(b); �(a) = ?gThis set is then proved to be a subset of the solutions to the set of constraintsets extracted from this equation. This proof scheme allows to prove Lemma 1for equations in isolation. Finally, for parallel composition, suppose that bothEq1 and Eq2 admit a label � in memory m. By induction hypothesis there exist(Ci 2 CE(Eqi))i=1;2 such that (m;�) belongs to a solution of both C1 andC2. Moreover, from the standard semantics (Eq[Eq1 k Eq2]m : �) and from theconstraint extraction function C1 [C2 2 CE(Eq1 k Eq2). As a result, since(m;�) belongs to a solution of C1 [C2, it follows that Lemma 1 is veri�ed.5 Fixed Point ComputationThe goal of this section is twofold. First, we provide a su�cient condition forSol(C)-invariance (Property 1). Based on this criterion, an over-approximationof the reachable memory states can be de�ned as the solution of a system of �xedpoint equations. Second, we abstract this system in the domain of convex poly-hedra to compute a solution (i.e a �nite set of polyhedra that over-approximatesthe set of reachable memory states).5.1 Fixed Point SystemsA constraint set C induces a symbolic transition function; this leads to anothercharacterisation of Sol(C)-invariance.De�nition 5. Given a set of memories M � Mem and a constraint set C suchthat Sol(C) � State, we denote TrC(M) such that:TrC(M) 4= fm0 : 8m 2 Sol(M);8(m;�) 2 Sol(C):m0 = tr(m;�)g

It follows that Sol(C)-invariance can be reformulated by the following statement:Corollary 1. M is Sol(C)-invariant if and only if TrC(M) �M .Property 1 Let C be a constraint set, and let Cov = fRigni=1 a �nite cover ofM �Mem. If 8R 2 Cov 9R0 2 Covsuch that TrC(R) � R0then M is Sol(C)-invariant.The Property 1 gives a strategy for verifying Sol(C)-invariance. As a result,Theorem 1 and this straightforward property characterise the invariants of pro-gram's behaviour as post �xed points of the operator Tr(�) and can thereby becalculated by iteration. More precisely, it yields a family of �xed point systemsparameterised by the cover. For example, consider the �xed point system to solvewhen the cover is reduced to a singleton:fM � TrC(M)gC2C [fM � m0gA more re�ned system can be built by associating each item of the cover toa constraint set in C and solve the set of inequalitiesfM �MCgC2C [fM � m0g[fMC � TrC(m0)gC2C [fMC � TrC(MD)gC;D2C5.2 Convex ApproximationHowever, two problems have to be addressed:{ the sets in P(Mem) can be in�nite.{ there are in�nite ascending chains in the lattice (P(Mem);�).A standard solution to these problems is to restrict the sets under consider-ation to convex polyhedra [8]. This domain provides an interesting trade-o�between precision and computable e�ciency: it is precise since it models linearbehaviours (as well as boolean as a special case) and e�cient compared with in-teger programming methods. Moreover, convex polyhedra have a �nite, symbolicdescription and widening operators can be de�ned to ensure the convergence of�xed point iteration.One inconvenience of using convex polyhedra is that non-linear constraintscannot be modelled accurately. In the present analysis we simply ignore anynon-linear relation. This is safe but can lead to considerable loss of precision.Another inconvenience is that the accuracy of the analysis depends on the choiceof the �xed point system to solve. Indeed, convex polyhedra are not closed byunion which must be approximated by the convex hull operation. Due to thisoperation widely used by the �xed point iteration process, the precision dependson how reachable states are grouped into polyhedra. This problem is overcomeby re�ning the system of �xed point equations according to Property 1.

5.3 Symbolic Transition FunctionTo provide a computable symbolic transition function for a constraint set in C,we �rst normalise C. This transformation that preserves solutions splits eachconstraint set according to presence (resp. absence) of signals. As a result, anynormalised constraint set is interpreted by a convex polyhedron stating con-straints on present signals and delay variables plus a list of absent signals. Forsuch constraint sets, a symbolic transition function can be de�ned from the basicpolyhedral operations of intersection and projection by iterating the followingsteps{ Calculate the intersection of the polyhedra M and C.{ Project this union onto the memory variables ZX for which the correspond-ing observable signal is present.{ Add the newly found memory states to those already found.The �rst step of the transition consists in selecting the possible behaviours inC allowed by the memory states M . The second step consists in propagatingthe information stored in the obtained polyhedron to the next state by pro-jecting signals carrying new values on their corresponding delay variables. Theanalogy with the concrete semantics is straightforward: if a program signal x isconstrained to ?, the memory is unchanged (zx projected on zx), otherwise, xcarries the update of zx (x projected on zx).The Bathtub Example (Fixed Point) For this example, the constraints extractionalgorithm yields 32 constraint sets that summarise any potential behaviour ofthe program. Among these, 20 sets raise alarm under given conditions on thememory states. The analysis will �nd that none of these conditions are met byany reachable state (i.e no reachable memory state raises alarm).The bathtub example does not require sophisticated �xed point iteration tocheck the property. Yet, we apply a general scheme that yields a trade-o� betweenaccuracy and e�ciency. This strategy consists in gathering in a polyhedron PCimemory states reached by a constraint set Ci that does not raise the alarmwhereas memory states that raise the alarm are gathered in a single polyhedron.For example, the constraint setsC1 = � level = zlevel+ faucet� pump faucet = zfaucet+ 1 pump = zpumpzfaucet � 0 zpump � 0 zlevel � 4 1 � level � 8 alarm = false �C2 = � level = zlevel+ faucet� pump faucet = zfaucet+ 1 pump = zpumpzfaucet � 1 zpump � 0 zlevel � 4 1 � level � 8 alarm = false �C3 = � level = zlevel+ faucet� pump faucet = zfaucet� 1 pump = zpump+ 1zfaucet � 1 zpump � 0 zlevel � 7 level � 8 alarm = false �lead to an iteration the �rst steps of which areM0 = � zlevel = 1 zalarm = falsezfaucet = 0 zpump = 0 �

M0C1 = TrC1(M0) = � zlevel = 2 zalarm = falsezfaucet = 1 zpump = 0 �M0C2 = TrC2(M0C1) = � zlevel = 4 zalarm = falsezfaucet = 2 zpump = 0 �M1C2 =M0C2 [TrC2(M0C2) = � zlevel� 3zfaucet+ 2 = 0 zalarm = false2 � zfaucet � 3 zpump = 0 �M0C3 = TrC3(M1C2) = � zlevel = 8 zalarm = falsezfaucet = 2 zpump = 1 �6 Convex Hull Based WideningConvex polyhedra have two dual representations. The representation most fre-quently used in program analysis is as solutions of sets of linear constraints.P = Sol(f mXj=1 ai;j � xj � bjgni=1) where ai;j ; bj 2 ZAnother representation is in terms of convex hull of a set of vertices, extendedwith a listing of the directions in which the polyhedron extends in�nitely:De�nition 6. A vertex of a convex polyhedron P is any point in P that cannotbe expressed as a convex combination of other distinct points in P.De�nition 7. A ray of a convex polyhedron P is a vector r, such that x 2 Pimplies (x + �r) 2 P for all � � 0. A ray of a convex polyhedron P is said tobe extreme if and only if it cannot be expressed as a positive combination of anyother two distinct rays of P. The set of extreme rays form a basis which describesall directions in which the convex polyhedron is open.De�nition 8. A line (or bidirectional ray) of a polyhedron P is a vector l, suchthat x 2 P implies (x+ �l) 2 P for all � 2 Q.Theorem 2. Every polyhedron P can be written as follows:P = fx j x = �Xi=1(�i � si) + �Xj=1(�j � rj) + �Xk=1(�k � dk)g;where 0 � �i � 1;P�i=1(�i) = 1; 0 � �j and si 2 vertices; rj 2 rays; dk 2 lines.A minimal normalised representation can be exhibited for both representations[17]. This property is essential for de�ning a widening operator.Widening issues for convex polyhedra were �rst investigated by Cousot andHalbwachs [8, 10]. Their widening strategy is based on cardinality of the con-straint form: after a bounded number of iterations, the minimal number of linear

constraints needed to represent a polyhedron must strictly decrease by each it-eration. Since this number is �nite, the convergence is ensured. The wideningoperator derived from this strategy only keeps constraints that were invariantby the previous iteration step. We will highlight the weakness of this wideningand present an improved widening operator.First, the dimension of a polyhedron is not abstracted correctly by the num-ber of constraints. According to the standard widening strategy, the widening of asquare by a cube leads to a semi-in�nite square section. Our strategy accepts theinitial cube as the result of the widening. Furthermore, intuitively, closed poly-hedra are smaller than open ones. Our strategy will formally take into accountthis fact. As another weakness, consider the following iteration that describesa �xed point iteration involving a triangle. The in�nite computation leads to a
Fig. 2. Limit out of the scope of widening strategysolution (a half-band) described by the same number of constraint than the ini-tial triangle. The standard widening strategy cannot produce this limit whereasours does while ensuring convergence.6.1 Convex Hull Based WideningThe standard widening strategy uses the constraint representation of polyhedra;we propose an alternative relying on the convex hull representation. Whereas the�rst representation is abstracted by one parameter (the number of constraints),the latter is abstracted by four parameters: the dimension, the number of ver-tices, extreme rays and lines. Examples argue that these parameters give a moreprecise description than the number of constraints. Moreover, we establish thatthe following widening strategy respects the �nite ascending chain property. Letv = j vertices j, r = j extreme rays j, l = j lines j and d the polyhedron dimen-sion. Let id = r + 2 � l the number of semi-in�nite directions.Theorem 3. Let P0 � P1 : : : � Pn � : : : be an ascending chain of polyhedra .If for all i in the chain one of the following statement holds{ dPi < dPi+1

{ dPi = dPi+1 ^ idPi < idPi+1{ dPi = dPi+1 ^ idPi = idPi+1 ^ vPi > vPi+1then the ascending chain stabilises (9n8i > n:Pi = Pi+1)We propose two widening techniques for polyhedra respecting this new widen-ing strategy: decrease of the number of vertices, increase of the number of ex-treme rays. In the following, P and Q denote two polyhedra for which we intendto compute the widening polyhedron R = POQ.One technique consists in reducing the number of vertices by selecting a ver-tex belonging to the convex hull of both P and Q. If it is satis�ed by constraintsthat evolved since the previous iteration then these constraints are replaced bythe constraint obtained by normed linear combination of these constraints. Thistransformation can be interpreted like a projection along a suitable direction.Typically, it is relevant to apply this heuristics for the example of Fig. 3. The
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

Fig. 3. An in�nite band rather than an half-spacesecond technique uses the fact that convergence is ensured if the number of ex-treme rays is at least increased by one. As a consequence, an added ray R mustbe an extreme ray that does not make redundant any existing extreme ray. For-mally, R must be a solution of the following system where rays includes extremerays and lines (bidirectional rays).�8v; w 2 rays; @�; � � 0; � � v + � � w = R8v; w 2 rays; @�; � � 0; � � v + � �R = wAmong these solutions, a good direction for this new ray is chosen by two heuris-tics. The �rst one assums that the polyhedral center follows a linear trajectoryde�ned by the vector �!v and compute the ray closer to this direction. It amountsto maximise �!v �R under the previous constraints. The second makes a hypoth-esis similar to the standard widening and give conditions so that the additionalray does not weaken constraints invariant by the iteration step. Let C be thisset. Formally these conditions are expressed by the following system:8c 2 C;R � v? � 0where vc? is the vector orthogonal to c.7 Related WorkSemantics Previous works [16] showed how denotational semantics can be usedas a foundation for deriving clock analyses for data-
ow synchronous languages

(Lustre and Signal) by abstract interpretation. In this paper we have shownhow a small-step operational semantics can serve to prove correctness of data-
ow analyses for such languages. For this, we have de�ned an operational seman-tics for Signal that di�ers from the existing operational semantics of Signal[3] and Esterel [4] in the way that delay variables are handled. The exist-ing semantics rewrite the program such that the value to be memorised appearssyntactically in the program, thus directly incorporating states into the programsyntax. Rather than using rewrite semantics, our operational framework main-tains an explicit distinction between the system of equations, the state and itsinstantaneous valuation. In this respect it is closer to usual operational seman-tics for imperative languages with state. This proximity makes it in our opinionsimpler to adapt existing static analysis techniques to this new paradigm. Thesemantics is de�ned for the Signal language but we believe that it should beeasy to modify in order to model Lustre and Esterel.Analysis of Synchronous Programs The notion of synchronous observer providesa means of expressing safety properties in the programming language itself. Asynchronous observer is a program composed with the system to verify. It doesnot in
uence the system but spies its behaviour and emits an alarm if the desiredproperty is not satis�ed. Verifying that such an alarm will never be emittedconsists in reachability analysis. This methodology is applied to express andverify boolean safety properties of synchronous Lustre programs [13, 14, 12].Under these conditions, the e�ective computation of reachable states is done bymodel checking techniques. Our approach extends this to integer-valued signals.Polyhedra-Based Analyses In the framework of abstract interpretation [7], linearconstraint analysis was �rst de�ned for an imperative language [8]. It associatesto each program point a polyhedron that safely approximates the set of mem-ory states that can reach that point. First, the analysis derives a system ofequations that describes safely in terms of polyhedra the meaning of each im-perative construct. Second, this system is solved by �xed point iteration with awidening operator to ensure the convergence. We have shown how to apply thisanalysis strategy to the synchronous programming paradigm. Analyses based onconvex polyhedra have been applied to linear hybrid automata: an extension of�nite-state machine that models time requirements. A con�guration of such anautomaton consists of a control location and a clock valuation. Clocks evolvelinearly with time in a control location and can be assigned linear expressionswhen a transition, guarded by linear constraints, occurs. Halbwachs et al. adaptthe analysis of [8] to deal with a class of linear hybrid automata and approx-imate the reachable con�gurations of any location by a polyhedron [15]. Thetime elapse is modelled by a polyhedron transformation. Following the previousmethod, a system of equations is derived and solved by �xed point iteration.For a restricted class of linear hybrid automata, the timed automata, the modelchecking of TCTL formula is proved decidable [1]. This is used in the Kronostool [9]. Apart from our time model being discrete the main di�erence is thatwe handle arbitrary linear assignments and guards. The price for this general-

ity is that we in general calculate an over-approximation of the real answer. Insynchronous programming, linear relation analysis is also applied to approxi-mate the behaviour of delay counters [10]. The polyhedral equations are derivedfor the interpreted automaton produced by the Esterel compiler. In practice,it allows to check properties and to remove unreachable states and transitionsfrom the interpreted automaton. We use the same technology based on polyhe-dra but propose a new widening operator that can ensure convergence wherethe standard widening based on decreasing the number of constraints would fail.Furthermore, our framework allows us to prove correctness of the analysis withrespect to the original program semantics|this is to our knowledge the �rsttime that this has been done for synchronous programs.8 ConclusionsWe have presented a semantics-based static analysis for determining linear rela-tions between variables in Signal programs via a �xed point calculation withwidening in the domain of convex polyhedra. The paper contributes with:{ A simple, state-based operational semantics of Signal that clearly separatesthe program's syntax and the transition system that models it.{ A constraint-based analysis that produces a system of equations whose so-lution is the property analysed for. This analysis is proved correct wrt. theoperational semantics.{ A novel widening operator for the domain of polyhedra based on theirconvex-hull representation. This widening operator ensures convergence wherewidening based on reducing the number of linear constraints fails.A prototype implementation of the analysis has allowed preliminary experimentson Signal programs up to approximately 60 equations. The analyser is imple-mented with the polyhedra library produced by the API project at IRISA1 and isinterfaced with a generic �xed point solver developed by IRISA's Lande project.Acknowledgments: Thanks are due to Mirabelle Nebut for extensive com-ments on an earlier version of the paper.A TranslationWe present a simpli�ed translation scheme by a set of rewrite rules to apply toequations until they belong to the restricted form.x := f(e1; : : : ; en) ; x1 := e1 | : : : | xn := en | x := f(x1; : : : ; xn)x := e1 when e2 ; x1 := e1 | x2 := e2 | x := x1 when x2x := e1 default e2 ; x1 := e1 | x2 := e2 | x := x1 default x2synchro e1 e2 ; x1 := e1 | x2 := e2 | t1 := x1 = x1 | t2 := x2 = x2 | s := t1 = t21 See http://www.irisa.fr/API

References[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. 5thSymp. on Logic in Computer Science (LICS 90), pages 414{425, 1990.[2] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and theSignal language. IEEE Trans. on Automatic Control, 35(5):535{546, May 1990.[3] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming withevents and relations: the Signal language and its semantics. Science of ComputerProgramming, 16(2):103{149, September 1991.[4] G. Berry and G. Gonthier. The esterel synchronous programming language:design, semantics, implementation. Science of Computer Programming, 19, 1992.[5] M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan. Formal veri�cationof signal programs: Application to a power transformer station controller. InProc. of the Fifth International Conference on Algebraic Methodology and SoftwareTechnology, pages 271{285. Springer LNCS vol. 1101, 1996.[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative languagefor programming synchronous systems. In Proc. of 14th ACM Symp. on Principlesof Programming Languages, pages 178{188. ACM Press, 1987.[7] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model forstatic analysis of programs by construction of approximation of �xed points. InProc. of the 4th ACM Symp. on Principles of Programming Languages, Los An-geles, pages 238{252, New York, NY, 1977. ACM.[8] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-ables of a program. In Proc. of the 5th ACM Symp. on Principles of ProgrammingLanguages, pages 84{96. ACM, January 1978.[9] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In R. Alur,T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume 1066 ofLecture Notes in Computer Science, pages 208{219. Springer-Verlag, 1996.[10] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis,editor, Proc. of the 5th Int. Conference on Computer Aided Veri�cation, volume697 of LNCS, pages 333{346. Springer, 1993.[11] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer AcademicPublishers, 1993.[12] N. Halbwachs. About synchronous programming and abstract interpretation. InB. Le Charlier, editor, Proc. of the 1st Int. Static Analysis Symposium, LNCS864, pages 179{192. Springer, 1994.[13] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-timesystems by means of the synchronous data-
ow language Lustre. IEEE Trans. onSoftware Engineering, 18(9):785{793, September 1992.[14] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the veri�-cation of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors,3d Int. Conf. on Algebraic Methodology and Software Technology, AMAST'93.Workshops in Computing, Springer, 1993.[15] N. Halbwachs, Y.-E. Proy, and P. Raymond. Veri�cation of linear hybrid systemsby means of convex approximations. In B. Le Charlier, editor, Proc. of the 1stInt. Static Analysis Symposium, LNCS 864, pages 223{237. Springer, 1994.[16] T. Jensen. Clock analysis of synchronous data
ow programs. In Proc. of ACMSymposium on Partial Evaluation and Semantics-Based Program Manipulation.ACM Press, 1995.[17] D. K. Wilde. A Library for Doing Polyhedral Operations. Research Report 785,INRIA, December 1993.

