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Abstract

This paper introduces a class of real-time systems de-

noted as Real-Time Physical Systems (RTPS), in which a

physical quantity of interest is associated with a real-time

resource. The physical quantity behavior is determined

by scheduling events generated by a real-time scheduling

algorithm. RTPS systems aim to generalize some exist-

ing models used in real-time computing systems, namely

power-aware and temperature-aware systems. Moreover,

they have been conceived to put a bridge across real-time

systems and the rapidly growing research field of Cyber-

Physical Systems.

In this paper we focus on a specific physical system

where a state variable changes with an exponential de-

cay behavior and the associated real-time resource must

be scheduled in order to bound the value of the state vari-

able within the desired working range. The aim is to de-

termine the relationship between those physical and real-

time parameters. For this purpose interesting properties

are highlighted and relevant results are derived regarding

the considered system model.

1 Introduction

The problem of scheduling real-time resources while

achieving some constraints on a related physical value is

being addressed in several kind of applications in these

last years. The notion of Real-Time Physical System

(RTPS) is introduced in this paper to indicate a class of

systems in which a physical value exists and its variation

is determined by the schedule generated using a real-time

scheduling policy. It is worth to outline that the physi-

cal value variation is not influenced by the computation

performed by the scheduled task. The only events influ-

encing the physical value behavior are determined by the

sequence of scheduling decisions generated by the sched-

uler. In fact, as described later in this section, some special

cases of RTPS do not necessarily require the existence of

real-time computing tasks, since scheduled real-time re-

sources are not related with computing systems. Figure 1

shows an example of a RTPS in which the physical value

x(t) decreases exponentially when the real-time resource

is scheduled for execution; otherwise it increases. Notice

that the physical value behavior is influenced only by the

switching events between execution and idle time.

One of the first examples of RTPS is represented by

power-aware real-time systems [1]. In such systems,

scheduling policies are proposed to minimize the overall

energy consumed by the computing system, while respect-

ing the timing constraints imposed to processing tasks.

In this case, the physical value is represented by the to-

tal power consumed by one (in uni-processor systems) or

more (in multi-processor systems) tasks at any time in-

stant. For this purpose, an energy consumption is associ-

ated to each task, and enabling technologies such as Dy-

namic Voltage Scaling (DVS) and Dynamic Power Man-

agement (DPM) are leveraged to optimize the consumed

energy while producing a feasible schedule [10, 8]. While

DVS saves energy by reducing the system working fre-

quency (clock) and thus running at a lower voltage, DPM

saves energy by putting system’s components into low

power states when they are not necessary for system oper-

ations. In recent works both techniques are jointly used to

improve the energy saving [3].

More recent examples of RTPS are the so-called

temperature-aware real-time systems. In those systems,

the physical value is the processor’s temperature. Real-

time scheduling algorithms are developed to generate a

task’s schedule such that an upper bound on the pro-

cessor’s temperature is guaranteed. The goal is limiting

CPU’s overheating and consequently reducing the energy

spent by CPU’s fans or air conditioning systems. Tech-

nical issues produced by high temperatures are becom-

ing extremely relevant in data-centers [15]. On the other

hand, working at lower temperatures has the effect of

extending the system lifetime. Temperature-aware tech-

niques are usually combined with DVS scheduling ap-

proaches [2, 17]. In other works, feedback techniques are

used to achieve the physical constraints on the tempera-

ture [6].

More recently, the study of Cyber-Physical Systems

(CPS) has emerged as a relevant multi-disciplinary re-

search topic [16]. Cyber-Physical Systems are charac-

terized by a tight integration between the computational

resource and the physical process to monitor and con-

trol. Real-time scheduling is, among other research fields,



strictly related to CPS due to its inherent applicability for

guaranteeing timing constraints involved in CPS. A grow-

ing interest in RTPS related with CPS may thus be ex-

pected. A special case of CPS is represented by the so-

called Cyber-Physical Energy Systems (CPES) [14]. In

CPES, a network of electric devices is the physical system

to be monitored and controlled. Embedded systems are

integrated to gather information about the most important

electric parameters, such as voltage, current, phases, con-

sumed energy and power. Environmental parameters, as

temperature, humidity and pressure, are also relevant for

system characterization. The acquired data are combined

and processed to generate suitable control commands for

the electric devices, in order to achieve the desired appli-

cation goal. And such goals include, or introduce con-

straints, on power and energy usage. In the literature,

CPES have been modeled as dynamic systems [9] or, in

a few recent works, using parameters derived from the

real-time scheduling domain [4, 5]. In particular, the lat-

ter approach has addressed the modeling of networks of

electric devices. For this purpose, an analogy is estab-

lished between real-time computing systems and electri-

cal systems, which represent the physical background of a

Cyber-Physical Energy System. Shortly, electric devices

are seen as computing tasks and are scheduled according

to their timing constraints, which in turn are set to achieve

some properties of the physical system. In the referred

papers the goal was to reduce the peak load of power con-

sumption. In particular, in [5] the schedule was associ-

ated with a linearly varying state variable (i.e., the physi-

cal value) to be kept within the desired range.

The present paper proposes an approach and model-

ing techniques to define a RTPS that have some affinities

with hybrid systems, a popular research field in the area of

control engineering [13]. Hybrid systems study the con-

trol issues when both continuous and discrete systems are

involved in the control loop, where the presence of dis-

crete systems is motivated by the use of digital computing

systems to execute the control strategy. In particular, the

so-called switched hybrid systems address the control of

systems where the state variable’s behavior is allowed to

switch among different dynamic behaviors (i.e., different

sets of differential equations are associated to each behav-

ior) [11]. However, switched hybrid systems are studied

from the control perspective, to determine properties such

as system stability, observability, etc. [7] or to find suitable

control techniques such as optimal control strategies [18].

For this reason they do not address the relationship with

real-time scheduling issues that may be involved in the

switching signal control.

1.1 Paper organization

After an introduction to the concept of real-time physi-

cal systems made in Section 1, the contribution of this pa-

per is stated in Section 2. The system model is presented

in Section 3, including the model of the physical system

and real-time parameters. Section 4 provides the results
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Figure 1. Example of real-time physical sys-

tem in which the x(t) physical value de-

creases exponentially when the resource is

scheduled for execution, and it increases

otherwise.

and describes the properties of our model, and puts into re-

lationship physical and real-time parameters. In Section 5

an example of application of the proposed techniques is

shown, while conclusions and future works are stated in

Section 6. Proofs of theorems are in Appendix.

2 Contributions

This paper presents and discusses a special case of

RTPS in which the state variable changes following an

exponential behavior. The goal is to schedule resources

using traditional real-time scheduling algorithms while

achieving some given constraints on the state variable. In

particular, we provide results regarding the working range

of the state variable, i.e., we are interested in bounding the

physical value within a given range. For this purpose, we

relate real-time parameters of scheduled resources to the

bounds of the working range.

Despite we focus on a specific RTPS, the proposed

model and results are general enough to model several real

physical systems. In fact, the exponential behavior of the

proposed RTPS arises from a modelization based on affine

time-invariant dynamic systems, which can describe many

existing physical systems. For this purpose, a differential

equation is associated to each real-time resource which

determine the physical value behavior.

3 System model

The considered system is composed by a set

Λ = {λ1, . . . , λn} (1)

of n resources that can be turned on and off. A re-

source is said to be active when it is turned on, inactive



otherwise. The resource activity is controlled by a re-

source scheduler that decides when each resource is ac-

tivated/deactivated. The activation of each resource is in-

dependent of other ones (i.e., no precedence or other kind

of constraints among resources are considered). Formally,

the scheduler assigns to each resource λi a schedule that

is modeled by the activation function si(t):

si(t) =

{

1 λi is active at t

0 otherwise
(2)

One physical system Γi is associated to each resource

λi. The physical system is composed by a state variable

xi (i.e., the physical quantity of interest), which evolves

as a function of the activity of the resource λi. A dynamic

system Φi determines the behavior of the state variable,

which is defined by the following equation:

Φi :
dxi(t)

dt
=koff

i

(

hoff
i − xi(t)

)

+

+ kon
i (hon

i − xi(t)) si(t)
(3)

with koff
i > 0 and kon

i > 0.

The state variable behavior is therefore made by two

components, describing two exponential decays. The for-

mer is when the resource is inactive, and the state variable

tends exponentially to hoff
i . The latter happens when the

resource is active. In this case the state variable tends ex-

ponentially to a value determined by a combination of all

the parameters, as detailed in Equation 10. It is worth

to note that the former component is always present and

it does not depend on the resource activity (i.e., it is not

multiplied by si(t)). This behavior models a background

“free component” of the physical process that is not af-

fected by resource activity. On the other hand, the same

state variable behavior could be equivalently formalized

as in Equation 4

Φi :
dxi(t)

dt
=k̃off

i

(

h̃off
i − xi(t)

)

si(t)+

+ k̃on
i

(

h̃on
i − xi(t)

)

si(t)

(4)

where si(t) is the logic negation (Boolean not) of the

si(t) signal, while all parameters in Equation 4 can be ex-

pressed as a proper function of parameters in Equation 3.

Equation 3 will referred in the reminder since it better

reflects the behavior physical system.

An example of state variable’s behavior determined by

Equation 3 (or Equation 4 as well) is depicted in Figure 1.

Each physical system is characterized by a set of con-

straints Ψi on the state variable. In the case considered in

this paper, the set of constraints is specified by the follow-

ing inequalities:

Ψi :

{

xi(t) ≤ xmax
i ∀t > t⋆i

xi(t) ≥ xmin
i ∀t > t⋆i

(5)

In other words, the state variable xi is required to be

bounded in the range [xmin
i , xmax

i ] after a certain time in-

stant t⋆i . It is worth to note that it may not be possible to

achieve physical constraints for every time instant t. In

particular, when the state variable lays outside bounds at

t = 0, there are no chances to meet physical constraints

until the state variable is led within its bounds. Our anal-

ysis considers such a possibility. For this reason, time t⋆i
is the time required to lead the state variable within its

bounds.

Therefore, a physical system is defined by the pair

Γi ≡ (Φi, Ψi), i.e., one dynamic system and a set of con-

straints.

It is noteworthy that the exponential model defined by

Equation 3 may represent a good approximation for many

physical systems. In fact, many physical phenomena can

be described or approximated by first-order differential

equations whose solution have exponential decay.

An icebox is an example of physical system that is suit-

ably described by the proposed model: internal temper-

ature represents the state variable, which requires to be

maintained within a given range (e.g., between -5°C and

-2°C).

3.1 Real-time modeling

Considering the parameters used to model a traditional

real-time computing task, we use the pair {Ti, Ci} to de-

fine a resource λi, where

• Ti is the time frame between two consecutive request

times (as in the periodic task model for real-time

computing tasks [12]); the k-th request for activating
the resource λi happens at time ri,k (request time),

where ri,k = kTi, k ∈ N; we refer to Ti as the pe-

riod of the i-th resource;

• Ci(≤ Ti) represents the activation time duration of

λi within each period Ti;

The utilization of λi is defined as

Ui =
Ci

Ti

(6)

while the total utilization of the resource set is

U tot =

n
∑

i=1

Ui (7)

Given the above model, the definition of valid schedule

is introduced as follow.

Definition 1. A schedule S is said to be valid if it assigns

to each resource λi an amount of activity time equal to Ci

between two consecutive request times. Formally,

∀λi, ∀k

� ri,k+1

ri,k

si(t) dt = Ci (8)



A valid schedule can be generated by a real-time

scheduling algorithm as Earliest Deadline First (EDF) or

Rate Monotonic (RM) [12] when applied to a feasible set

of resources, i.e., the specific schedulability test, applied

to the given resource set, is passed for the considered al-

gorithm.

For the sake of convenience, two specific activation

functions are defined, since they will be often referred in

following sections.

Definition 2. The activation function s⇑i (t) : [ta, tb] →
{0, 1} is defined by the following properties:

• has utilization Ui over the time interval [ta, tb]

• it holds

s⇑i (t) =

{

1, if t ∈ [ta + U(tb − ta), tb]

0, otherwise

Definition 3. The activation function s⇓i (t) : [ta, tb] →
{0, 1} is defined by the following properties:

• has utilization Ui over the time interval [ta, tb]

• it holds

s⇓i (t) =

{

1, if t ∈ [ta, ta + U(tb − ta)]

0, otherwise

The meaning of definitions 2 and 3 is that the whole

activation time of s⇑i (t) (respectively, s⇓i (t)) is temporally

located at the beginning (at the end) of the considered time

interval. In Figure 2 both functions are shown.

3.2 Expected results

A feasible RTPS is defined as a system characterized

by a valid schedule and whose physical constraints are sat-

isfied. In other words:

{

S is a valid schedule

Ψi are satisfied

Given the considered system model regarding both the

physical and real-time modelization, the goal of this pa-

per is to derive the relationship between physical and

real-time parameters for obtaining a feasible RTPS. While

the scheduling of resources is performed by some avail-

able real-time scheduling algorithm, we are interested in

finding suitable values for real-time parameters to satisfy

physical constraints Ψi.

For the sake of clarity, subscripts will be dropped from

notation when not required.

4 Properties and results

This section provides some interesting properties and

introduces relevant results regarding the relationship be-

tween real-time parameters and physical values.

Figure 2. The worst case conditions that de-

termine the maximum and minimum values

for x(tb).

Since we are interested in the evolution of the state

variable in the domain of time, we solve Equation 3 ob-

taining:

x(t) =

{

A − (A − x(0)) e−αt if s(t) = 1

B − (B − x(0)) e−βt if s(t) = 0
(9)

where

A =(konhon + koffhoff)/(kon + koff)

α =kon + koff

B =hoff

β =koff

(10)

The state variable x(t) has an exponential decay behav-
ior characterized by an asymptote A and a time constant

α when the resource λ is active; conversely, it has an ex-

ponential decay behavior determined by an asymptote B
and a time constant β when the resource is inactive.

Theorem 1. In any time frame R = [ta, tb] and for any

schedule s(t) in R such that the utilization is U , for any

given value x(ta), the following properties hold for x(tb):

1. the maximum value of x(tb), i.e. x+(tb), is obtained
when s(t) ≡ s⇓(t) in R

2. the minimum value of x(tb), i.e. x−(tb), is obtained
when s(t) ≡ s⇑(t) in R

Theorem 1 states that, when considering a generic time

interval R and an activation function having a given uti-

lization U within R, for any value assumed by the state

variable x(t) at t = ta, the worst case combination of

schedule activations/deactivations that generates the max-

imum and minimum values at t = tb occurs when the

activation function is active, respectively, at the beginning

and at the end of the time interval. Figure 2 shows an

example of this situation.

Thanks to the above properties, it is possible to easily

determine the bounds of the state variable when t = tb.



Corollary 1. In any time frame R = [ta, tb] and for any

schedule s(t) in R such that the utilization is U , for any

given value x(ta), it holds:

1. if s(t) ≡ s⇓(t) in R

x+(tb) =B + (A − B) e−β(1−U)(tb−ta)+

+ (x(ta) − A) e−(αU+β(1−U))(tb−ta)

(11)

2. if s(t) ≡ s⇑(t) in R

x−(tb) =A + (B − A) e−αU(tb−ta)+

+ (x(ta) − B) e−(αU+β(1−U))(tb−ta)

(12)

The results of Corollary 1 can be directly extended to

periodic real-time schedules, as specified by Corollary 2.

Corollary 2. The properties of Theorem 1 and Corol-

lary 1 hold for any valid schedule in the range [rk, rk+1]
for every k. In particular:

1. if s(t) ≡ s⇓(t) in [rk, rk+1]

x+(rk+1) =B + (A − B) e−β(1−U)T +

+ (x(rk) − A) e−(αU+β(1−U))T

(13)

2. if s(t) ≡ s⇑(t) in [rk, rk+1]

x−(rk+1) =A + (B − A) e−αUT +

+ (x(rk) − B) e−(αU+β(1−U))T

(14)

Corollary 2 states that, for any value x(rk) the value of
x(rk+1) is bounded in a range whose limits are function

of physical parameters A, B, α and β, and real-time pa-

rameters U and T . The exact value of x(rk+1) depends

on the values assumed by the activation function within

the range [rk, rk+1].
So far, a result regarding schedules within generic time

intervals (Theorem 1) has been proven, and then extended

to periodic real-time schedules. These results are now

used to determine a bound on the value of the state vari-

able in correspondence with request times. For this pur-

pose, the following definition is introduced:

Definition 4. The succession of values of the state vari-

able in correspondence of request times is Sk = {x(t)}
such that t = rk for k = 0, 1, 2, . . ..

Theorem 2. For any valid activation function s(t) the

succession Sk for k ≥ k∗, is bounded between x̃inf and

x̃sup, which are expressed by the following equations:

x̃inf =
A + (B − A) e−αUT − Be−(αU+β(1−U))T

1 − e−(αU+β(1−U))T

(15)

x̃sup =
B + (A − B) e−β(1−U)T − Ae−(αU+β(1−U))T

1 − e−(αU+β(1−U))T

(16)
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Figure 3. Attraction range for the succes-

sion Sk : x(rk).

Theorem 2 provides a bound on the Sk succession.

This means that, after a large enough time instant, the

values of x(rk) remain within the corresponding range,

that will be referred as attraction range, as shown in Fig-

ure 3. Clearly, the result is valid for large enough t, since
the state variable behavior may start outside the attraction

range. Therefore a suitable time interval is required to

converge within the attraction range.

However, in this paper we are interested in bounding

the state variable behavior, not only in correspondence

with request times, but for every t. On the other hand, the
result provided by Theorem 2 allows to study the worst

case behavior of the value of the state variable within one

period, instead of having to consider the system lifetime

for every t. In fact, given the worst case conditions of state
variable values in correspondence with request times, it is

possible to calculate the worst case conditions within pe-

riod, and such worst case will hold for every t.

Theorem 3. For any valid activation function s(t) it holds

xinf ≤ x(t) ≤ xsup, ∀t > t∗

where:

xinf =A −
(

A − x̃inf
)

e−αUT (17)

xsup =B − (B − x̃sup) e−β(1−U)T (18)

Theorem 3 provides the bounds for the state variable

variation range. It is worth to note that bounding values

xinf and xsup are expressed for clarity as function of x̃int

and x̃sup respectively. Therefore, bounds are function of

physical and real-time parameters only, and represent the

relationship between such parameters. Again, the result

holds for large enough t, i.e., we allow a state variable

initially set outside the attraction range to evolve towards

such range. On the other hand, if the initial value of the

state variable is within the feasible range, then Corollary 3

trivially holds.

Corollary 3. If x̃inf ≤ x(0) ≤ x̃sup then t∗ = 0.

Finally, it is of interest to notice that the state variable

has an asymptotic behavior for T → 0, as outlined by

Fact 1.
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Figure 4. Example of state variable behavior

and corresponding bounds.

Fact 1. For any valid schedule, it holds:

x̄ = lim
t→∞, T→0

x(t) =
AαU + Bβ(1 − U)

αU + β(1 − U)
(19)

Figure 4 shows an example of state variable behav-

ior. The succession Sk is depicted (indicated by circles)

as well as its bounding range. The asymptotic value for

T → 0 is also depicted.

4.1 Feasibility region in the U − T space

According to the notion of feasibility given in Sec-

tion 3.2, we are interested to find real-time parameters,

i.e. U and T , which allow to satisfy the physical con-

straints Ψ. For this purpose, we introduce the following

definition.

Definition 5. The feasibility region Ω is a region in the

U − T plane composed by all and only pairs (U, T ) such
that the system is feasible.

Given a pair (U, T ), it is possible to check whether it

belongs to the feasibility regionΩ by checking that, for the

values xinf and xsup obtained from equations 17 and 18,

the following inequalities are satisfied:

xinf ≥ xmin and xsup ≤ xmax (20)

In general, there exists a set of pairs (U, T ) ∈ Ω. Un-

fortunately, it is not possible to find the values of U and T
from equations 17 and 18 in closed form. Therefore, pairs

(U, T ) ∈ Ω must be found using numerical techniques.

On the other hand, the result from Fact 1 can be used to

find the bounds of Ω on the U axis. In fact, it is possible

to find a range [Umin, Umax] in which a pair (U, T ) ∈ Ω
can be found. In other words, conditions

Umin ≤ U ≤ Umax (21)

are necessary conditions for the system feasibility. Range

bounds can be determined by imposing x̄ = xmax and x̄ =
xmin, respectively, in Equation 19, leading to the following

equations:
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Figure 5. Example of feasible region in the

U − T space.

Umax =
β(B − xmax)

(α − β)xmax − (Aα − Bβ)
(22)

Umin =
β(B − xmin)

(α − β)xmin − (Aα − Bβ)
(23)

An example of feasibility region is depicted in Fig-

ure 5. The plot was obtained by using the following phys-

ical parameters: A = 0, B = 1, α = 1, β = 0.1,
xmin = 0.1, xmax = 0.3.

5 Example of application

This section provides an example of application of the

modeling, analysis and control techniques presented in

previous sections. The goal is to concurrently schedule

a set of three real-time resources such that physical con-

straints are satisfied.

The proposed physical system associated with each re-

source can represent a fridge where the state variable xi

is the internal temperature (assumed to be uniform) that

must be kept within a working desired range. Physical

parameters of each fridge are listed in Table 1.

Values Ai and Bi represent asymptotic values which

the state variable would tend to if the resource would be

kept always on (Ai) or always off (Bi). In the considered

physical system made by fridges, these values represent

refrigerant fluid and environmental temperatures respec-

tively; both are constant in our simple example. In par-

ticular, environmental temperature value is 20 Celsius de-

gree for all fridges and refrigerant fluid temperatures are

−10°C for λ1 and λ2, and−30°C, for λ3. Such values are

realistic for common refrigerators.

Values of the decay constants αi and βi are related

with physical properties such as thermal capacities and

heat transfer coefficients, which are in turn related with

building materials and size. The greater the decay con-

stant value, the faster fridge temperature dynamics (which

means less insulation and/or smaller size of the fridge).

On the other hand, the heat transfer coefficient between

the fluid refrigerator and the fridge content is related to

αi, while the heat transfer coefficient between the envi-

ronment and the fridge indoor is related to βi.



Table 1. Values of physical parameters used

for the simulation

i A α B β xmin xmax x(0)

1 -10 0.10 20 0.04 -4 -1 -1

2 -10 0.15 20 0.03 1 5 2

3 -30 0.20 20 0.03 -15 -10 -12

The refrigerator temperature working ranges are

bounded by xmin and xmax, which define the minimum and

maximum working temperature respectively. Finally, the

initial internal temperature (t = 0) is x(0).

In order to associate proper real-time parameter values

to each physical system, i.e. utilization U and period T ,

the range (Umin, Umax) has been calculated using Equa-

tions 22 and 23. The value of U was chosen in the middle

of the range, in this example. Regarding the subsequent

determination of the value of T , it has been accomplished

by trial, taking into account the constraint described by

Equation 20 (which involves Equations 15, 16, 17 and 18).

Table 2 lists the calculated real-time parameters.

Using the selected parameters, the total utilization is

less than 1 (U tot = 0.98). Therefore, it is possible to con-

currently schedule the resources using the EDF schedul-

ing algorithm, guaranteeing that at most one resource is

active at any given time instant. The corresponding sched-

ule is depicted in Figure 6. While the above three graphs

show state variable behaviors, the bottom graph represents

the resource schedule.

By using the modeling, analysis and control techniques

based on real-time parameters and scheduling algorithms

presented in this paper and applied to the example applica-

tion provided in this section, it is possible to strongly limit

the simultaneous activation of multiple resources, even if

total utilization is greater than 1. In this case it is possible
to use real-time scheduling techniques proposed for multi-

processor architectures (see [4] for further information).

Limiting simultaneous activations is a key feature of the

proposed approach, that can be applied to - for example -

the power optimization of energy systems to reduce the

peak of electric demand from the energy distribution grid.

In such scenario, Real-Time Physical Systems are used to

model electric drives that actuate some devices subject to

physical constraints. Refrigerators, air conditioning sys-

tems, and battery charge/discharge systems are some few

examples. In those applications, electric loads must be

scheduled to limit the peak load of electric power con-

sumption (which usually has significant impact on system

costs) while achieving per-load constraints. The reader

can refer to [4, 5] for details of the application of Real-

Time Physical Systems to power optimization in Cyber-

Physical Energy Systems.

Table 2. Values of real-time parameters used

for the simulation

i T U Umin Umax

1 2.0 0.55 0.48 0.62

2 3.0 0.21 0.17 0.26

3 1.5 0.22 0.18 0.26
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Figure 6. An example of application of the

proposed technique to the schedule of 3
real-time resources.

6 Conclusions and future works

This paper has introduced the class of real-time phys-

ical systems as a type of real-time systems in which

scheduling decisions affect the behavior of a tightly re-

lated physical value. This class of systems includes ex-

isting well-known real-time system models (power-aware

and temperature-aware systems), while applying also to

newer research topics such as cyber-physical systems.

A particular case of RTPS has been studied, modeled

and analyzed in this paper. The focus has been put on

the relationship between physical and real-time parame-

ters such that the constraints of the physical value behav-

ior are satisfied.

Future works will address the introduction of feedback

techniques on the proposed control strategy, the modeliza-

tion of errors, the extension to systems with deadlines less

than periods, and further inspections of physical proper-

ties as a function of real-time parameters.
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A Appendix: Detailed Proofs

Proof of Theorem 1

Proof. We limit our proof to the first case, since the sec-

ond one can be proven with similar arguments.

We prove this property for a simple schedule, and we

will extend by induction the considerations to generic

schedules. Let’s consider to divide the [t1, t5] range in

4 sub-ranges R1 = [t1, t2], R2 = [t2, t3], R3 = [t3, t4]
and R4 = [t4, t5], being ti < tj for all i < j. Suppose

the schedule switches between active and inactive state at

each range boundary. An example of state variable behav-

ior generated by this case is depicted by the solid line in

Figure 7. According to Equations 9 the following equa-

tions hold:

x2 = x(t2) = A − (A − x1)e
−α(t2−t1) (24)

x3 = x(t3) = B − (B − x2)e
−β(t3−t2) (25)

x4 = x(t4) = A − (A − x3)e
−α(t4−t3) (26)

x5 = x(t5) = B − (B − x4)e
−β(t5−t4) (27)
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Figure 7. The state variable behavior and re-

lated parameters when a slice ∆ is moved

in the schedule from the interval [t3, t4] to

[t1, t2].

being x1 = x(t1).
Now we obtain a second schedule by moving a time

slice ∆, being 0 < ∆ ≤ (t4 − t3) of active time from sub-

range [t3, t4] to [t1, t2]. Notice that the utilization within

[t1, t5] is unchanged. We obtain a new set of sub-ranges

which are R′
1 = [t1, t2 + ∆], R′

2 = [t2 + ∆, t3 + ∆],
R′

3 = [t3+∆, t4] andR′
4 = [t4, t5], and the corresponding

values at sub-ranges boundaries:

x′
2 = x(t2 + ∆) = A − (A − x1)e

−α(t2−t1)e−α∆ (28)

x′
3 = x(t3 + ∆) = B − (B − x2)e

−β(t3−t2) (29)

x′
4 = x(t4) = A − (A − x3)e

−α(t4−t3)eα∆ (30)

x′
5 = x(t5) = B − (B − x4)e

−β(t5−t4) (31)

The state variable behavior generated in this case is de-

picted by the dotted line in Figure 7.

We show that the schedule having utilization equal to

U such that the active time is located at the beginning of

the time frame (i.e., a schedule in the form of s⇓(t)) will
generate the maximum possible value of x′

5.

For this purpose, we prove that x′
5 > x5 for any value

of ∆. Therefore, since we are considering generic sub-

ranges, we will have proven that every time a slice is taken

from the interval [t3, t4] and it is moved to [t1, t2], the
value of x′

5 can only increase. Thus a schedule in the form

of s⇓(t) generates the highest possible value for x(t5).
From (31) and (27) it holds

x′
5 − x5 = (x′

4 − x4)e
−β(t5−t4) (32)

Since e−β(t5−t4) > 0, then it holds x′
5 > x5 if and only if

(x′
4 − x4) > 0. From (30) and (26) we obtain

x′
4 − x4 = e−α(t4−t3)((A − x3) − (A − x′

3)e
α∆) (33)

Equations 25 and 29 can be put within Equation 32, then

Equations 24 and 28 can be inserted in the newly obtained

equation. Then, after simple calculations, the following

equation can be written

x′
4 − x4 = e−α(t4−t3)(B −A)(1− e−β(t3−t2))(eα∆ − 1)

in which each term is strictly greater than zero (if ∆ > 0),
thus proving that Equation 32 is always positive.

The proof follows by noting that above procedure and

considerations can be generalized to the case of generic

schedules having given utilization U in which there is an

arbitrary number of switches.

Proof of Theorem 2

Proof. The proof is presented for Equation 16 only, since

the proof of Equation 15 can be done with similar argu-

ments.

Let us consider the succession Sk. From Corollary 2 it

can be noticed that Sk decreases regardless of s(t) while
x(rk) > x+(rk+1). We are interested in finding the value

of x̃sup such that this value delimits the region in which Sk

can only decrease. This region corresponds to the range

[x̃sup, +∞] in Figure 3.
The value of x̃sup can be obtained by imposing

x(rk) = x+(rk+1), i.e., by finding the fixed point of S′
k

defined as:

S′
k : x(rk+1) = B + (A − B) e−β(1−U)T +

(x(rk) − A) e−(αU+β(1−U))T

Proof of Theorem 3

Proof. We provide the proof for Equation 18, since Equa-

tion 17 can be proven similarly.

Theorem 2 indicates an upper bound x̃sup for the suc-

cession Sk : x(rk), for k > k∗. Therefore, the value

of xsup can be calculated by evaluating the maximum in-

crement that can be achieved by x(t) within one period

[rk, rk+1] when starting from the upper bound of Sk, i.e,

when x(rk) = x̃sup.

With similar arguments with respect to the proof of

Theorem 1 it can be proven that the worst case condition

takes place when s(t) = s⇑(t). Therefore, the maximum

increment can be easily calculated when the worst activa-

tion function is known.


