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Abstract

In some applications, each job has a preferred point
in time for execution, which we call target point, but
can shift around this point, albeit at lower utility. We
call these applications target sensitive. As scheduling all
jobs directly at their target points might result in overlap-
ping executions, the trade-off that maximizes the accrued
utility of the system without violating timing constraints
must be addressed. In [7] we proposed the gravitational
task model, which is able to express the target demand of
such applications and compute an approximation of their
trade-off assuming elliptical utility functions. This task
model is based on a physical pendulum analogy, which
makes the understanding of the problem and solution in-
tuitive. Nonetheless, target demands may differ among
applications and even among jobs within the same appli-
cation.

In this paper, we address these issues with a novel
method to find the trade-offs which is not bound to a par-
ticular function and holds even if each job has a differ-
ent type of utility function. This method generalizes the
method in [7] and is optimum. Moreover, it maintains the
intuition of the physical pendulum analogy.

1 Introduction

Real-time systems are traditionally defined as comput-
ing systems that must react to events within time con-
straints to provide correct behavior [3]. Therefore, most
real-time schedulers were developed having deadlines as
primary concern. This timeliness criteria is used to ex-
press an interval of time (execution window) where the
task is allowed to execute. As a result, there is the as-
sumption that the utility of tasks is constant within their
execution window [13].

Some applications havetarget sensitive constraints:
each job should preferably execute at a specific point
within its execution window, calledtarget point, but can
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execute around this point, albeit at lower utility. The util-
ity of a job is, hence, defined as a function of the devi-
ation from the target point. The utility function of jobs
may vary depending on applications’ properties, differing
even among jobs within the same application. As execut-
ing all jobs directly at their target points might not be fea-
sible due to overlapping executions, the trade-off among
the schedule of their executions must be computed so that
the accrued utility of the system is maximized.

Examples for such applications include media process-
ing and control. In media processing, frames must be dis-
played at target points for the best user perceived quality
of the video stream. Buffering frames in advance is not
an option in these applications [10], hence frames must be
displayed before the next frame starts being decoded. If
frames cannot be displayed at their target points, e.g., due
to the execution of other jobs, they can be either dropped
or delayed. The impact of dropping/delaying the display
of a frame on the perceived quality of video may vary
among frames [10]. In control, sampling and actuation
are ideally executed at their target points for optimum out-
put [15]. Shifting them a little bit for the sake of feasibility
is acceptable provided the system response remains within
bounded limits. On the other hand, jitter in the computa-
tions executed between samplings and actuations do not
jeopardize the system. As can be seen, the sensitivity to
deviations from the target points may vary among appli-
cations and even among jobs within the same application.

Time utility function (TUF) scheduling as presented in
[5, 18, 13] and earliness/tardiness schedulers [2] go be-
yond the starttime-deadline notion to express tasks’ tem-
poral constraints. In TUF schedulers, tasks aggregate a
given amount of utility to the system as a function of when
they execute; the goal of the scheduler is to maximize sys-
tem utility. A study on several types of time utility func-
tions was presented in [11]. The work in [16] proposes a
utility function based approach to express the importance
of tasks in order to assign resources. This work covers
multiple resources and investigates how utility functions
can be used to solve the resource allocation problem, but
presents no scheduling algorithm. A best-effort solution
for resource allocation in computing systems was pro-



posed in [14]. However, scheduling decisions are based
only on the utility that tasks accrue to the system at the
current point in time and not on the shape of their utility
functions over time. A TUF scheduler assuming any kind
of utility function was proposed in [5]. It uses a heuris-
tic to find an ordering on average close to the optimum in
O(n3), under the constraint that work cannot be deferred.
In [18], the same problem was solved inO(n2) assuming
only non-increasing TUFs. The result was used in ether-
net packet scheduling, to define the ordering. Since the
utility decreases upon delayed arrival, packets are sent as
early as possible after being ordered. This work was ex-
tended in [19] and [12] to support variable cost functions
and mutual exclusion of resources, respectively. In [20] an
energy-aware TUF scheduler was proposed, but the focus
is to satisfy statistical performance requirements.

Earliness/tardiness schedulers seek the minimization of
the overall penalty of the system due to tasks that com-
plete too early or too late. However, the penalty function
is linear with the distance from the deadline and with-
out bounds. In this approach deadlines are allowed to
be missed, which is not part of our assumptions. The
computational time and quality of such schedulers depend
mainly on the ordering algorithms and not on the temporal
constraint. A small survey on earliness/tardiness sched-
ulers presented in [2] shows that many are based on branch
and bound and most of them can only schedule tasks in a
busy period.

In classic task models the utility of jobs cannot be ex-
pressed, but target sensitivity can be enforced by tighten-
ing the offsets and deadlines, at the expense of decreasing
the maximum feasible utilization. A method to decrease
the variation in the completion time of tasks under EDF
was proposed in [1]. This problem was solved by decreas-
ing the deadlines of tasks based on their importance, pro-
vided that with the new deadline assignment the schedule
is still feasible. Although this work states the possibility
of adjusting offsets as well, this approach does not take
offsets into account. Therefore, target points within the
execution windows cannot be addressed.

The elastic scheduling of [4] presents a method that
improves the acceptance of tasks under overload situations
in EDF. In order to accept a task, it increases the period of
tasks to reduce the utilization of the system based on a
spring system analogy. This work does not consider the
target sensitivity when readjusting periods.

In [6] we proposed a gravitational task model for target
sensitive applications which allows jobs to express target
points and utilities. This task model is based on a physical
pendulum analogy which makes the understanding of the
problem and solution intuitive. Furthermore, we presented
a method with linear complexity to compute the trade-off
among the execution of jobs for improved accrued utility
which is based on an analogy with the equilibrium of pen-
dulums. We called this methodequilibrium. This equilib-
rium approximates the optimum and holds provided the
order jobs execute is given and jobs have the same type of

utility functions, which must be elliptical. We extended
this work in [7] to allow jobs to express an arbitrary point
with their execution to relate to the target points. In [8] we
presented an on-line scheduler for the gravitational task
model that uses this equilibrium. Finally, we presented
in [9] a video adaptation strategy which uses the gravita-
tional task model to compute the trade-off between delay-
ing and dropping the display of a frame for final improved
quality of video and resource usage. However, this work
assumed that the impact of delay on frame display does
not vary among frames, as the gravitational task model
was not able to handle jobs with different utility functions.

In this paper, we present a generalization of the equi-
librium of the gravitational task model [7] which we call
generic equilibrium. It holds not only for elliptical, but for
any continuously differentiable concave utility function.
It holds also for sets of jobs which have different types
of concave utility functions. A closed-form equation does
not exist for the general case; the generic equilibrium con-
sists of a uni-dimensional equation that needs to be calcu-
lated for each case. Therefore, we present an example of
an analytical solution to the generic equilibrium for a par-
ticular concave and continuously differentiable function.
As in some cases a closed-form solution cannot be pro-
vided, we prove that the generic equilibrium can always
be solved using any numerical root-finding algorithm. Fi-
nally, we demonstrate how the generic equilibrium can be
used to schedule jobs with an scheduling example.

The generic equilibrium is optimum and covers a large
set of utility functions, yet it keeps the intuition resulting
from the physical pendulum analogy. It also allows appli-
cations’ jobs to have mixed types of utility functions in the
schedule. Therefore, particular needs of each target sen-
sitive application can be individually expressed (e.g. the
variability among different frames of the impact of delay
on frame display on the user perceived quality of video).

As a final contribution, we compare the generic equi-
librium and the equilibrium proposed in [7]. First, we
show that the equilibrium, besides being an approxima-
tion of the trade-off for elliptical utility functions, is opti-
mum for a particular class of quadratic utility functions.
Then, we empirically compare the approximation pro-
posed in [7] with the numerical solution of the generic
equilibrium.

The rest of this paper is organized as follows: Sec-
tion 2 recalls the gravitational task model presented in [7]
as needed for this paper; Section 3 describes the generic
equilibrium and Section 4 brings an example of how it
can be solved analytically; Section 5 describes a schedul-
ing example which is designed to exploit the generic equi-
librium; Section 6 brings results from a simulation study;
and, finally, Section 7 concludes the paper.

2 The gravitational task model

In this section, we briefly recall the gravitational task
model [7] as needed for the rest of this paper. We start



describing a pendulum system and drawing the analogies
with real time systems. Then, we formally describe the
gravitational task model.

A pendulum is an object attached to a pivot point that
can swing freely. A basic example is the simple gravity
pendulum or bob pendulum. As depicted in Figure 1, it
consists of a bob at the end of a massless string, which,
when given an initial push, will swing back and forth un-
der the influence of gravity over its central (lowest) point
in a circular trajectory. Placed at the lowest point, the bob
will come to rest there (rest position). If the bob pendu-
lum contains more than one bob, they cannot be all at the
same time in the lowest part, and hence, will push each
other aside to find a new rest position. It is said that the
system is then in anequilibrium state. The equilibrium
condition is that the sum of all torques in the system is
equal to zero and the distance between the centers of two
consecutive bobs is the sum of their radii. How far from
the central point each bob comes to rest in the equilibrium
state depends on their weights and sizes.

Figure 1. Analogy between bob pendulum
and task.

Drawing the analogy, we can think of a bob as a job
whose execution time is equivalent to the size of the bob.
A job is allowed to execute at its target point in the absence
of other jobs in the system with the same target point. The
target point is equivalent, thus, to the central (lowest) point
of a pendulum trajectory and the swinging range is the
execution window of the job. The importance of a job,
which represents its resistance to be shifted away from its
target point when interacting with other jobs, can be seen
as the weight of the bob. The heavier a bob is, the closer to
the bottom it will come to rest. Finally, the job utility as a
function of its deviation from the target point is similar to
the potential energy of a bob as a function of its deviation
from the central point. As the equilibrium is the state that
minimizes the potential energy of the pendulum, the best
compromise of the job’s interests maximizes the accrued
utility of the system. This analogy is depicted in figure 1

and summarized in table 1.

pendulum task set

bob job
weight importance

swinging range execution window
central point target point

potential energy function utility function
equilibrium state best compromise

Table 1. Analogy between bob pendulum
and task set

The gravitational task model (depicted in figure 5)
assumes non-preemptive jobsji in a uni-processor sys-
tem. They have earliest start timeesti, relative dead-
line dli (absolute deadlineabs_dli = esti + dli), worst
case execution timeWCETi, target pointtpi and impor-
tanceimpi. They may or may not be instances of re-
curring tasks. Since the entire execution of a job can-
not be performed at a single point in time, we select a
pointαi within its execution, calledanchor point, which
is used to relate a job to its target point. We define the
value ofαi as the fraction ofWCETi executed before
the anchor point, which ranges between0 and1, where
0 corresponds to the beginning and1 the end. Thus,
the distancedi between two consecutive anchor points is
(1 − αi) × WCETi + αi+1 × WCETi+1. Theexecu-
tion windowof a job is defined as the range where the
anchor point can be placed without violating the timing
constraints. Jobs are not allowed to execute outside their
execution window. The variation of theutility gi of a job
within its execution window as a function of its deviation
xi from the target point is given by equation 1. Refer to [7]
for a detailed description of the gravitational task model.

gi(xi) =
2× impi

dli −WCETi

×

√

(

dli −WCETi

2

)2

− x2
i

(1)
Although the analogy between bob pendulums and real

time task scheduling appears straightforward, a number
of issues have to be addressed before a direct mapping.
See [7] for the detailed discussion and motivation. In the
final analogy depicted in figure 5 we consider the anchor
point of each job as a particle that must be kept at least a
horizontal distancedi from the next particle, has a weight
Wi and hangs on a pivot pointPi by a massless string of
lengthRi.

In the new analogy,di is the same as in the gravitational
task model,Ri is equal to half the length of the execution
window of a job,Pi is equal to the target pointtpi and
Wi = 2 × impi/(dli − WCETi). All pivot points are
aligned perpendicularly to the gravity, i.e. they are at the
same height. This consideration is important because we
can use the same reference point to compute the potential



energy of the particles in the equilibrium state, which is
equivalent to the utility accrued by a job in the analogy.

A set of jobs in a busy period is called ajob chainck in
the gravitational task model. It contains jobs that would
have overlapping execution if placed at their target points
(see figure 5) and is equivalent to a set of particles that
push each other aside in a particle pendulum. In [7], we
derived an approximation of the trade-off in a job chain
with N jobs that maximizes the accrued utility inspired
on the equilibrium condition of physical pendulums. It
is given by equation 2, which is calledequilibrium and
computes the deviation of the last job in the chain from
its target point. The equilibrium holds provided the order
jobs execute is given and all jobs have the same type of
utility function, which must be elliptical. A detailed de-
scription of the equilibrium can be found in [7]; here we
focus on results, as needed for the work in this paper.

xN =

∑N−1

i=1
Wi × (

∑N−1

j=i (dj) + tpi − tpN )
∑N

i=1
Wi

(2)

3 Generic equilibrium

The trade-off in a job chain ofN jobs maximizing the
accrued utility of the system for a given order of jobs is ex-
pressed by the constrained maximization problem 3. The
goal function to be maximized is the sum of the utilities
of each job, subject to the constraints that there is no idle
time between consecutive jobs (1st constraint in (3)) and
that the anchor points are not placed outside the respec-
tive execution windows (2nd and3rd constraints in (3)).
This mathematical formulation is equivalent to the equi-
librium condition of pendulums. In this section, we de-
scribe how to convert this constrained multi-dimensional
maximization problem into one single unconstrained uni-
dimensional maximization problem which has an opti-
mum solution. Unlike the equilibrium equation derived
directly from the pendulum analogy, this solution holds
assuming jobs with any continuously differentiable con-
cave utility functiongi. The utility functiongi of each job
can be of different types, e.g. elliptical, parabolic, hyper-
bolic, etc.

max : g(x1, . . . , xn) =
∑N

i=1
gi(xi)

s.t :
tpi+1 + xi+1 − (tpi + xi) = di ∀i = 1..N−1
xi≤abs_dli−(1−αi)×WCETi−tpi ∀i = 1..N
xi ≥ esti + αi ×WCETi − tpi ∀i = 1..N

(3)
The goal functiong is an N dimensional problem as

function ofx1, . . . , xn. However, the1st constraint can
be rewritten to expressxi as a function ofxN , hence re-
ducing the problem to1 dimension. The steps that lead to
equation 4 show this transformation.

tpi+1 + xi+1 − (tpi + xi) = di
N−1
∑

j=i

(tpj+1 + xj+1 − (tpj + xi)) =
N−1
∑

j=i

dj

tpN + xN − (tpi + xi) =

N−1
∑

j=i

dj

finally:

xi(xN ) = tpN − tpi −

N−1
∑

j=i

dj + xN (4)

As a result,g(x1, . . . , xn) becomes a sum of composite
functions ofgi andxi as a function ofxN , as can be seen
in equation 5.

g(xN ) =
∑N

i=1
(gi(xi(xN )) =

∑N

i=1
(gi ◦ xi)(xN )

(5)
By replacing equation 4 in the2nd and3rd constraints,

which describe the space whereg(x1, . . . , xn) is defined,
we obtain inequality system 6.











xN ≤abs_dli−(1−αi)×WCETi−tpN+
∑N−1

j=i dj

xN ≥esti + αi ×WCETi − tpN +
∑N−1

j=i dj
∀i = 1..N

(6)
Solving this inequality system gives the intervalI

where equation 5 is defined. IfI is empty, there exists
no trade-off that meets the timing constraints of all jobs
at the same time. Otherwise, the schedule that maximizes
the accrued utility in a job chain is given byxN ∈ I that
maximizes equation 5. OncexN is found, the deviations
of the other jobs from their target points are calculated us-
ing equation 4.

Next we show how to find the maximum value of
g(xN ) in any intervalI providedg(xN ) is concave. The
sum of continuously differentiable concave functions is
also a continuously differentiable concave function [17].
Therefore, if each jobji has a concave and continuously
differentiable utility functiongi(xi), theng(xN ) is con-
cave and continuously differentiable in intervalI. We as-
sume applications provide utility functions to the system
along with their closed-form derivatives.

A function is called concave in a interval iff its deriva-
tive is monotonically decreasing in this interval [17]. Fig-
ure 2 shows a concave function and its derivative. If
g(xN ) is concave and continuously differentiable,g′(xN )
has at most one root in any intervalI, whereI must fall in
one of the3 categories below (depicted in figure 2):

1. the interval contains only positive values ofg′(xN ),
thusg(xN ) is monotonically increasing with maxi-
mum at the rightmost point ofI.



2. the interval contains only negative values ofg′(xN ),
thusg(xN ) is monotonically decreasing with maxi-
mum at the leftmost point ofI.

3. the interval contains both positive and negative
values of g′(xN ), thus g(xN ) has maximum at
g′(xN ) = 0, which is the absolute maximum.

Figure 2. Example of a concave function
and its derivative.

We differentiateg(xN ) by applying the chain rule to
solve

∑N

i=1
(gi ◦ xi)

′(xN ), thus obtaining equation 7,
which we callgeneric equilibrium. Note thatx′

i(xN ) =
1, ∀i = 1..N . If I falls in either case1) or 2), findingxN

that maximizes the accrued utility is straightforward. Oth-
erwise, we must find the root of the generic equilibrium.

g′(xN ) = 0
N
∑

i=1

(gi ◦ xi)
′(xN ) = 0

N
∑

i=1

(g′i ◦ xi)(xN )× x′

i(xN ) = 0

finally:
N
∑

i=1

(g′i ◦ xi)(xN ) = 0 (7)

The root of the generic equilibrium can be found ei-
ther analytically or using any numerical (iterative) root-
finding algorithm [17], e.g. the bisection method, New-
ton’s method, etc. A discussion on these methods is be-
yond the scope of this paper. An analytical solution is
preferable, but it is not always possible.

Solving equation 7 consists of applying the numeri-
cal method rule to the sum ofN elements (

∑N

i=1
(g′i ◦

xi)(xN )) until the return value of this sum converges to
0. Each iteration of the numerical root-finding algorithms
has complexity O(1) and

∑N

i=1
(g′i ◦ xi)(xN ) is computed

with complexityO(N) as in algorithm 1.
Figure 3 shows some examples of types of continu-

ously differentiable concave utility functions. Note that
since the gravitational task model defines that the utility
of jobs is maximized at the target points,gi(xi) is maxi-
mized when the deviation from the target point is zero, i.e.
xi = 0. We assume that a negative deviation happens to
the left side of the target point and a positive to the right.

Figure 3. Some continuous differentiable
concave utility functions.

The complexity to solve the generic equilibrium is
O(K ∗ N), where K denotes the number of iterations
necessary to converge and is independent of the num-
ber of jobs. Note that the efficiency of the solution also
depends on the rate of convergence of the chosen root-



Algorithm 1 Computing
∑N

i=1
(g′i ◦ xi)(xN ).

sum_d = - d[N]
result = 0
i = N
while i > 0
{
sum_d = sum_d + d[i]
x[i] = tp[N] - tp[i] - sum_d + x[N]
result = result + g’[i](x[i])
i = i - 1

}
return result

finding algorithm. Solvingg′[i](x[i]) analytically is in-
dependent of any other job rather thanji, hence having
complexityO(1). Therefore, an analytical solution of the
generic equilibrium has complexityO(N). The next sec-
tion brings an example of an analytical solution of the
generic equilibrium.

4 Example of analytical solution of the
generic equilibrium

The generic equilibrium presented in section 3 holds
for jobs with any continuously differentiable concave util-
ity function. We proposed a solution using root-finding
algorithms because a closed-form solution does not exist
in the general case. In this section, we present an example
of an analytical solution of the generic equilibrium assum-
ing quadratic utility functions as in equation 8.

gi(xi) = aix
2
i + bixi + ci (8)

Figure 4 depicts a valid quadratic utility function. As
gi(xi) must be concave, we havea < 0. Furthermore,
gi(xi) must be maximized atxi = 0 to be a valid utility
function, and hence, we haveg′i(0) = 0. As can be seen
in equation 9,g′i(0) = 0 only if bi = 0. At xi = 0 the
return value isci.

g′i(xi) = 2aixi + bi (9)

Replacing equation 9 in the generic equilibrium (equa-
tion 7), we obtain equation 10 after a few steps forbi = 0.
The outer sum in the numerator can be reduced to range
from 1 to N − 1 because, fori = N , tpi = tpN and
∑N−1

j=i dj = 0, which zeros out the term.
Note that fora1 = Wi equation 10 becomes equa-

tion 2, which is the equilibrium proposed in [7]. There-
fore, besides being an approximation of the trade-off for
elliptical utility functions, this equilibrium is optimumfor
a particular class of quadratic utility functions. This class
of quadratic utility functions hasai = (2× impi)/(dli −
WCETi), bi = 0 andci = impi.

Figure 4. A quadratic utility function.

N
∑

i=1

(g′i ◦ xi)(xN ) = 0

N
∑

i=1

2aixi(xN ) = 0

N
∑

i=1



2ai×



tpN − tpi −

N−1
∑

j=i

dj + xN







 = 0

N
∑

i=1

2aixN +

N
∑

i=1

2ai×



tpN−tpi−

N−1
∑

j=i

dj



 = 0

finally:

xN =

∑N−1

i=1
ai(

∑N−1

j=i (dj) + tpi − tpN )
∑N

i=1
ai

(10)

5 Scheduling example

In this section, we present an example of a scheduling
algorithm that uses the generic equilibrium. This algo-
rithm is divided into2 intertwined phases:ordering phase
and timing phase. In the ordering phasethe scheduling
algorithm decides the order jobs will execute. In [6, 7] the
authors proposed a static ordering by target points, and
in [8] the authors proposed a dynamic ordering heuristic
based on the utility density of jobs for increased utility ac-
crual. For the sake of simplicity, we use the static ordering
proposed in [6, 7]. In the so-calledtiming phase, after the
insertion of each job in the schedule, the scheduler uses
the generic equilibrium to compute the deviation of each



job from its target point that results in maximum accrued
utility for the particular ordering. This timing phase with
the generic equilibrium is fully compliant with the order-
ing phase proposed in previous work.

Figure 5. Scheduling example 1.

Assume the scheduling ofM jobs (see figures 5 and 6).
First of all, job chains must be detected in order to apply
the generic equilibrium. Therefore, system jobs are in-
serted into the schedule one by one and, upon overlapping
execution with a job chain in the schedule, the inserted
job becomes part of this chain and the generic equilib-
rium is computed as described in section 3. In the case
depicted in figure 6, jobji+3 becomes a part of job chain
ck+1 after being inserted into the schedule depicted in fig-
ure 5. Note that the generic equilibrium shifts the new
chain, which might merge with other chains, creating a
ripple effect. In figure 6 we observe that job chainsck and
ck+1 present in figure 5 merge into a single chain. At each
such merge the generic equilibrium must be computed for
the new chain. As can be seen in the figures, this situa-
tion is similar to adding a new particle in a pendulum; the
particles will push each other aside and come to rest in a
new equilibrium state where new interactions with parti-
cles might happen. An inserted job which does not cause
any execution overlap is considered as a new job chain in
the schedule (as jobji in figure 5). Once all jobs have
been inserted into the schedule, all job chains are known
and their schedule maximizes the accrued utility of the
system for the given execution order.

This scheduling algorithm presented here serves only
as example, and is not the focus of this paper. This al-
gorithm has complexityO(K ∗N2), since the scheduling
algorithm applies the timing phaseN times (for each job
insertion). In order to apply this algorithm on-line, arrival
of future jobs may have to be taken into account in the
schedule because the timing phase delays the execution
of jobs. Scheduling recurring tasks also deserves special
treatment. In case tasks are strictly periodic and dead-

Figure 6. Scheduling example 2.

lines are not larger than the periods, it suffices to sched-
ule all jobs within the hyper-period at the beginning of
each hyper-period. Further aspects of the development of
scheduling algorithms for the gravitational task model can
be found in [8].

6 Evaluation

In our simulations, task sets comprise periodic tasks
and the system utilization varies in the range[0.1, 0.9]
with granularity0.1. Each utilization category comprises
1000 randomly generated task sets, including infeasible
ones. We do not discard infeasible task sets because they
are also a property of the scheduling algorithm. As we
consider only feasible task sets for evaluation of the utility
accrual, the actual number of task sets per utilization cat-
egory (in increasing order of utilization) are1000, 1000,
991, 916, 748, 603, 472, 339, and237. The evaluation re-
sults for each utilization category are within a confidence
level of95% with significance level of0.05.

The number of periodic tasks in each task set is a ran-
dom integer uniformly distributed in the interval[2, 10].
The period and importance of each task are integer num-
bers uniformly distributed in the interval[1, 10]. Dead-
lines are equal to the period, earliest start times are equal
to 0 and target points lie in the middle of the execution
window of the jobs, thus allowing the same amount of
deviation to both sides of the target point. The computa-
tion times were uniformly distributed such that the gener-
ated task set has the desired utilization. In each schedule,
we considered all jobs within the hyperperiod and ordered
them by their target points.

We consider5 different types of continuously differen-
tiable utility functions (whereRi =

dli−WCETi

2
):

• g1i(xi) = impi ×

√

1−
(

xi

Ri

)2



• g2i(xi) = impi ×

√

1−
(

xi

Ri

)4

• g3i(xi) = impi ×

(

1−
(

xi

Ri

)4
)

• g4i(xi) = impi ×

(

2− e

1.31695×xi
Ri +e

−
1.31695×xi

Ri

2

)

• g5i(xi) = impi ×

(

1−
(

xi

Ri

)2
)

The respective derivatives are:

• g1′i(xi) = −
impi×

(

xi
Ri

)

Ri×

√

1−

(

xi
Ri

)

2

• g2′i(xi) = −2×
impi×

(

xi
Ri

)

3

Ri×

√

1−

(

xi
Ri

)

4

• g3′i(xi) = −4× impi ×
(

xi

Ri

)3

× 1

Ri

• g4′i(xi) = −impi × 1.31695
Ri

×
(

e

1.31695×xi
Ri −e

−
1.31695×xi

Ri

2

)

• g5′i(xi) = −2× impi ×
(

xi

R2

i

)

The utility functiong1i(xi) is the same as in equation 1
after a few algebraic steps to convert from the pendulum
domain to the task set domain (see section 2), andg5i(xi)
is a quadratic polynomial function as in equation 8 (see
section 4). The other utility functions are arbitrary.

In our experiments, we compare the generic equilib-
rium with the equilibrium proposed in [7]. Other TUF
schedulers are not applicable because they do not con-
sider the target sensitivity of tasks to delay work, i.e. those
schedulers are work-conserving. The metric of compari-
son is the accrued utility of each task set; acceptance ratio
is left out of this comparison because we are interested
in evaluating the generic equilibrium, rather than the ex-
ample scheduling algorithm. Therefore, we calculate for
each feasible task set the error of the accrued utility ob-
tained by the original equilibrium, which is1 − geq

gopt (geq

stands for the utility accrued by the original equilibrium
andgopt stands for the utility accrued by the generic equi-
librium, which is optimum).

In the experiment depicted in figure 7, all jobs have
utility function g1i(xi). To the best of our knowledge, a
closed-form of the generic equilibrium for elliptical func-
tions is not possible; we solve the the generic equilibrium
using the bisection method [17]. This figure contains the
cumulative distribution functions (C.D.F.) of the error of
geq; the y-axis is in polynomial scale to the power40.
Task sets are categorized by their utilization in the ranges
[0.1, 0.3], [0.4, 0.6] and[0.7, 0.9]. Under low system uti-
lization jobs rarely overlap execution when scheduled at
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Figure 7. C.D.F. of error of geq (jobs with util-
ity function g1i(xi)).

their target points. Hence, we can see that for task set uti-
lization within [0.1, 0.3] the equilibrium and the generic
equilibrium have very close results. As the utilization in-
creases, the approximation of the trade-off among jobs’
executions loses accuracy. The line for task set utiliza-
tion within [0.7, 0.9] shows that the error in the original
equilibrium is smaller than4% in approximately96% of
the cases, but in4% of the cases this error ranges from
4% to approximately18%. The superiority of the generic
equilibrium does not come at the expense of a higher com-
plexity.
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Figure 8. C.D.F. of error of geq (jobs with ei-
ther utility function g1i(xi), g2i(xi), g3i(xi),
g4i(xi) or g5i(xi)).

In the experiment depicted in figure 8, each job has one
of the5 utility functions listed earlier. All other job param-
eters remain as in the previous experiment. Once again
we observe that for task set utilization within[0.1, 0.3] the
original equilibrium and the generic equilibrium have very



close results and that the error goes up to20% in some
cases for high task set utilization. In fact, the experiments
depicted in figures 7 and 8 have very similar results.

7 Conclusion

In some applications, each job has a preferred point in
time for execution, calledtarget point, but can shift around
this point, albeit at lower utility. We call these applica-
tions target sensitive. The utility function of jobs may
vary depending on applications’ properties, differing even
among jobs within the same application. As scheduling
all jobs directly at their target points might result in over-
lapping executions, the trade-off that maximizes accrued
utility of the system without violating timing constraints
must be addressed.

In this paper we have introduced a new method to
compute this trade-off generalizing the gravitational task
model we proposed earlier, which is based on a intuitive
physical pendulum analogy. There, we proposed an ap-
proximation inspired by such pendulums calledequilib-
rium. It assumes a given order of job executions with all
jobs having the same type - elliptical - of utility functions.
Thegeneric equilibriummethod proposed here is a gen-
eralization of the equilibrium presented earlier, in that it
is not bound to a particular utility function and holds even
if jobs of the same application have different utility func-
tions. These features address the particular needs of target
sensitive applications such as control and media process-
ing. The generic equilibrium is optimum and holds for
any continuously differentiable concave utility function,
yet keeps the intuition resulting from the physical pendu-
lum analogy.

We presented an example of a scheduling algorithm
which uses the generic equilibrium. Simulation results
showed the superiority of this scheduler in accruing utility
over a scheduler using the equilibrium presented earlier.

On-going and future work include explicit considera-
tion of full preemption, determining job ordering and sup-
port for variable job parameters (e.g. importances, execu-
tion times, etc.).
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