
HAL Id: hal-00544388
https://hal.science/hal-00544388

Preprint submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Interactive Method to Discover a Petri Net Model of
an Activity

Benoit Mathern, Alain Mille, Thierry Bellet

To cite this version:
Benoit Mathern, Alain Mille, Thierry Bellet. An Interactive Method to Discover a Petri Net Model
of an Activity. 2010. �hal-00544388�

https://hal.science/hal-00544388
https://hal.archives-ouvertes.fr

An Interactive Method to Discover a Petri Net

Model of an Activity

Benôıt Mathern1,2, Alain Mille1, and Thierry Bellet2

1 Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69621, France

http://liris.cnrs.fr/
2 INRETS, LESCOT, 25 avenue François Mitterrand, 69675 Bron cedex, France

http://www.inrets.fr/

Abstract. This paper focuses on interactive Knowledge Discovery pro-

cesses in the context of understanding an activity from behavioural data.
Data mining provides patterns experts have to interpret and synthesize
as new knowledge. Discovering patterns is an analysis task while build-
ing new symbolic knowledge is a synthesis task. A previous trace based
approach (Abstract) offered a first answer to support analysis. This
paper goes one step forward in supporting the synthesis task. We mod-
ify an algorithm of automata discovery in order to involve the user in
the mining process, exploiting his expert knowledge about the observed
activity. We chose the α-algorithm (Van Der Aalst et al.) developed for
Petri nets discovery in a workflow management context. The modified
algorithm is described and illustrated, showing how to use intermediate
data to converge interactively to a satisfying automata. Finally, we dis-
cuss the use of this approach to contribute to a new knowledge mining
process.

Key words: Knowledge discovery, Petri nets, Interactive mining

1 Introduction

1.1 General Context of the Work: Man Machine Interactive
Knowledge Discovery

The general context of this work is what we could call “man machine interactive
Knowledge Discovery” which can be considered as a special case of knowledge
engineering approach. Actually, if the knowledge engineering approach finds its
roots in the general question of knowledge acquisition, representation and main-
tenance in order to develop knowledge based systems (KBS) [7,12], its scope
becomes larger and larger for supporting construction of ontologies in knowl-
edge management context [8] and in the semantic web context [14]. A number
of tools have been developed to face this problem of semantic integration of
data, information and even people [17]: methods and tools for sharing ontolo-
gies; algorithms, heuristics and machine learning for ontologies mapping; and,
because of the lack of clearly identified experts, machine learning techniques to

http://liris.cnrs.fr/
http://www.inrets.fr/

2 B. Mathern, A.Mille, T.Bellet

mine available data, texts and logs [18]. Choosing the corpus of data, texts or
events to mine is an expert task. For example, the machine learning process
has to be tuned to produce relevant ontologies which are checked by experts.
A first issue is to get relevant data, texts and events among what is available
in the environment and to prepare these sources to properly build ontologies.
A second issue is to support the Knowledge Discovery process leading to create
new knowledge about the domain. A third issue is to take into account what is
discovered to guide new Knowledge Discovery. Beyond discovering relevant con-
cepts for a process, it becomes increasingly important to discover the dynamics
of these processes. Discovering knowledge by observing processes, through their
behaviour and their productions, is not new and there is a strong tradition in
the Human Computer Interactions research [19] to propose concrete methods
for discovering explicit knowledge from various observation sources (computer
events, video and audio records, annotations, data, texts, etc.). We can use the
general notion of “interaction traces” for referring to such knowledge sources
and we are specifically interested in exploiting traces of events for supporting
Knowledge Discovery of the dynamics of processes.

1.2 Modeled Trace and Trace Based System

Considering such interaction traces as “first class” computer objects, our re-
search team developed the notions of modeled traces (M-Traces) and of trace
based system (TBS) [13]. A modeled trace M-Trace is constituted of both the
sequence of temporally situated observed elements (obsels) which constitutes the
instantiated trace and of the model of this trace which gives the semantics of
the observed elements and of the relations between them. A trace based system
(TBS) is a framework managing such M-Traces and providing trace oriented
services such as: collecting a M-Trace, computing sequences satisfying a pattern
in a specific M-Trace, transforming a M-Trace into another one for abstrac-
tion purpose (filtering, merging, reformulating obsels), navigating through the
transformation graph of a M-Trace. . . In the context of this paper, we assume
these services are available and we take advantage of such a TBS which is em-
bedded in the Abstract software. In this framework, traces are represented
in RDF3 and their models are managed with the Protégé tool4. Using such a
TBS allows to prepare and transform sequences of events as M-Traces at the
relevant level of abstraction with explicit semantics. The Abstract framework
[10] has been developed in order to support the Knowledge Discovery process
in the context of driver behaviour analysis [9]. In this context, a huge quantity
of data is collected during driving sequences, from numerous sensors, video cap-
ture, observer annotations. . . Then, the analyst uses the Abstract interface to
progressively transform traces in order to discover relevant patterns according
to some hypothesis on the driver behaviour5.

3 http://www.w3.org/RDF/
4 http://protege.stanford.edu/
5 For details and Abstract demonstration see http://liris.cnrs.fr/abstract/

http://liris.cnrs.fr/abstract/

An Interactive Method to Discover a Petri Net Model of an Activity 3

1.3 Towards an Interactive Knowledge Discovery Process

Fayyad et al. [6] proposed a general process for discovering knowledge from data
(see figure 1 on the following page). We propose a slightly different approach
when data are collected from the observation of some process, using a Trace
Based System that provides both services of preparation and transformation to
support analysis. Furthermore, and following the general idea defended by R.
Michalski [16] we propose to complete this Knowledge Discovery process by a
computer supported synthesis step providing a formal knowledge representation
(for simulation purpose for example). This proposition is sketched in figure 2
on the next page. These knowledge oriented approaches offer opportunities to
provide feedback controls at each step with knowledge formal representations and
easy interactions with analysts (experts) to understand results and to control
the full Knowledge Discovery process.

1.4 AUTOMATA as a Support for Interpretation of the Dynamics
of Processes

The Abstract approach allows to consider the request to find a pattern as
the signature of a new concept which can then be added to the ontology that
describes activity traces. This is a first answer to the general issue of considering
“knowledge mining” instead of “data mining” according to R. Michalski [16]
since this process allows to enrich the formal representation of the activity. In
order to go a step further we propose a process, Automata6, to synthesize the
knowledge about the dynamics of the observed process, extending the Knowledge
Discovery process by supporting the interpretation task (automata description)
with the help of a trace mining process focusing on the available occurences of
patterns satisfying a particular request. In order to build such an assistance, we
propose to modify algorithms able to synthesize automata from traces. In this
paper, we focus on an algorithm developed by Aalst et al. [4] in the context of
workflows management. These algorithms assume that the automata traces are
complete which, of course, is not often the case when observing a real process.
In order to overcome this problem, we propose an interactive version of this
algorithm to allow the analyst to mobilize his own knowledge to compensate for
the lake of information in the process traces.

The state of the art (section 2) presents different data mining approaches for
automata discovery, explains the choice of Petri Nets discovery and describes the
α-algorithm chosen to illustrate the man machine interactive Knowledge Discov-
ery principle. The contribution is detailed in section 3 and is illustrated with a
simple example. The section 4 discusses the first results and future contribu-
tions: different ways the modified algorithm can guide the analyst to complete
intermediate results in order to get a relevant automata by combining observed
events and known elements about the observed activity.

6
Automata means: AUTOmata Modelling of the Activity, based on Trace Analysis.

4 B. Mathern, A.Mille, T.Bellet

Fig. 1. In this process, all steps are supposed to be automatic but the last one,
interpretation, is the only one which allows to tune the previous steps.

Fig. 2. In our approach, the user can interactively mine traces to produce rele-
vant patterns (Abstract step). Discovered knowledge (ontology) allows to tune
the collecting and the analysing steps. In this paper, we introduce an explicit
support (Automata) to the ”synthesis” step, opening a new step “Exploiting”
which completes the process. In our context, the formal knowledge representa-
tion of dynamics is a Petri Network, allowing further exploitation (for simulation
for example).

An Interactive Method to Discover a Petri Net Model of an Activity 5

2 State of the Art

2.1 Overview of Approaches for Building an Automata from Traces

Automata Approaches for Knowledge Representation An automaton
has a graphical representation that can be understood by a non-specialist, and at
the same time, it is an operative representation of knowledge. Both those qualities
are important for our approach as we want both the analyst to understand the
discovered knowledge and the discovered knowledge to be used for producing an
activity.

Actually, automata are used both for producing a behaviour (simulation) and
for describing (specification) expected behaviours (for example, the Statechart
formalism or UML state diagrams).

The literature proposes several ways to discover an automaton that could
produce a given set of traces. We focused on the Process Mining approaches [3,2].
Those approaches deal with logs coming typically from an entreprise’s workflow
management system. In this context a prescriptive model of the workflow exists
(how people should do). However, it does not guarantee that people are following
this prescriptive workflow. The goal is to discover a model of the real workflow,
as people actually instantiate it, in order to compare this actual workflow to the
prescriptive workflow and see how the workflow can be optimised.

Workflow Mining Issues Van der Aalst and Weijters [3] made a review of
the issues of Process Mining. There are several challenging issues that cannot be
tackled together by any single algorithm:

– mining hidden tasks (a task that does not appear in the traces),
– mining duplicate tasks (a task that would correspond to several states or

transitions of a model),
– mining loops,
– mining different perspectives (from the same traces, focusing on different

aspects of the activity),
– dealing with noise,
– dealing with incompleteness,
– visualizing results,
– . . .

Van der Aalst et al. [2] introduce four process mining algorithms: EMiT [1]
and Little Thumb [5,21] (both based on the α-algorithm), InWoLvE [11] and
Process Miner [20].

The authors compare the abilities of these four algorithms to discover known
models (to rediscover a model). We have selected four properties of the algorithm
from their comparison: the ability to deal with time, parallelism, loops and noise.

Table 1 on the following page presents a comparison of these algorithms
according to these four properties. This summary shows that EMiT approach
is interesting on many aspects but does not deal with noise. Little Thumb and

6 B. Mathern, A.Mille, T.Bellet

InWoLvE both deal with noise, but not with time. Process Miner neither deal
with time nor with noise. In the context we are studying (analysing human
activity), it is important to be able to deal with parallelism and with loops,
which they all can do.

Table 1. Comparison of four process mining approaches, adapted from Van der
Aalst et al. [2].

Approach Time Basic Parallelism Loops Noise

EMiT Yes Yes ++ No
Little Thumb No Yes ++ Yes
InWoLvE No Yes + Yes
Process Miner No Yes + No

In our context of use (human activity analysis and synthesis), the ability
to represent loops and parallelism is important. The ability to deal with time
(EMiT) or noise (Little Thumb or InWoLvE) would be a nice benefit. As both
EMiT and Little Thumb are based on a same algorithm, the α-algorithm, we
propose to make this common algorithm interactive. This would make it possible
for an analyst to deal with the incompleteness issue of the data: the analyst can
provide the algorithm with additional knowledge.

The α-algorithm is our first target to add interactivity to a mining algorithm.
It does not support itself all the types of loops, but, the resulting algorithm can
be integrated into EMiT or Little Thumb.

2.2 The α-algorithm: Definitions and Basic Presentation

The formal definitions introduced here are taken from Van der Aalst et al. [4].
For a complete formal definition of the notions used here and the proof of the
algorithm, please refer to Van der Aalst et al. [4].

Given (1) a Petri-net with some properties, and (2) a collection of traces of
this model, with some properties, the α algorithm can reproduce the Petri-net
(1) from the collection of traces (2).

We explain now more precisely what type of Petri-nets we are considering;
then, what type of collections of traces we need; and finally, how the α algorithm
works.

Petri-Nets Van der Aalst et al. use a variant of Petri-net called Place/Transition
nets.

Definition 1 (P/T-nets). A Place/Transition net, or simply P/T-net, is a
tuple (P, T, F) where:

1. P is a finite set of places,
2. T is a finite set of transitions such that P ∩ T = ∅, and

An Interactive Method to Discover a Petri Net Model of an Activity 7

3. F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation.

The authors define a workflow net (WF-net) as a particular subset of P/T-
nets. The figure 3 presents an example of WF-net. WF-nets have an input place
i ∈ P , with no flow relation directed to i, an output place o ∈ P , with no
flow relation starting from o and by linking the output place o to the input
place i with a new transition (t), the resulting P/T-net ((P, T ′, F ′) = (P, T ∪
{t}, F ∪ {(o, t), (t, i)})) is strongly connected, that is to say for any two places
or transitions x, y ∈ P ∪ T ′, there is a path of flow relations in F ′ from x to y.

Fig. 3. A WF-net with 3 parallel transitions. Circles are places, black rectangles
with labels are transitions and arcs are flow relations. The black dot represents
a token on the input place.

The authors define the notion of soundness of a WF-net. In a few words, a
WF-net N = (P, T, F) is sound if,

– it is safe: while firing transitions, starting from the initial marking (only the
input place has a token), there is no more than one token on each place.

– While firing transitions (starting from the initial marking), if there is a token
on the output place (final marking), then there is no other token on any other
place of the WF-net.

– It is possible to reach this final marking (from the initial marking).
– Any transitions of the WF-net is reachable from the initial marking.

The authors define a structured workflow net (SWF-net) as a particular type
of WF-net, with some structural properties: no implicit place, a choice between
two possible activities or a synchronisation between two activities is possible
with some constraints illustrated in figure 4 on the following page.

Workflow Logs The authors define the notions of workflow trace and workflow
log. Given a set of tasks T , a workflow trace, noted σ is a sequence of tasks of T

(σ ∈ T ∗). A workflow log, noted W , is a set of workflow traces.
Transitions of a WF-net correspond to tasks of a workflow. Thus, the work-

flow trace of a WF-net represents the sequence of execution of the different
transitions of this WF-net.

8 B. Mathern, A.Mille, T.Bellet

Fig. 4. Two constructs not allowed in SWF-nets [4].

Van der Aalst et al. [4] define several relations that can be deduced from
WF-logs W . We will introduce three of these. For a WF-log W of a WF-net
N = (P, T, F), and for a, b ∈ T :

1. a >W b means there is a trace σ ∈ W where b directly follows a;

2. a →W b iff a >W b and b ≯W a, which means there is a trace in W where b

directly follows a, and in no trace of W a directly follows b; and

3. a#W b iff a ≯W b and b ≯W a, which means in no trace of W b directly
follows a and in no trace of W a directly follows b.

In order to use the previous relations, the authors define the notion of com-
plete workflow log. Given a sound WF-net N , a workflow log W of N is complete
if (1) “all tasks that potentially directly follow each other in fact directly follow
each other in some trace in the log” (2) each transition of N appears at least
once, in at least one trace σ of the workflow log W .

α-algorithm Previous notions allow us to introduce the α-algorithm [4]. We
explain its meaning step by step.

Definition 2 (Mining algorithm α). Let W be a workflow log over T . α(W)
is defined as follows.

1. TW = {t ∈ T | ∃σ∈W t ∈ σ},

2. TI = {t ∈ T | ∃σ∈W t = first(σ)},

3. TO = {t ∈ T | ∃σ∈W t = last(σ)},

4. XW = {(A, B) | A⊆TW ∧B⊆TW ∧ ∀a∈A∀b∈B a→W b∧ ∀a1,a2∈A a1#W a2 ∧
∀b1,b2∈B b1#W b2},

5. YW = {(A, B) ∈ XW | ∀(A′,B′)∈XW
A ⊆ A′∧B ⊆ B′ =⇒ (A, B) = (A′, B′)},

6. PW = {p(A,B) | (A, B) ∈ YW } ∪ {iw, ow},

7. FW = {(a, p(A,B)) | (A, B) ∈ YW ∧ a ∈ A} ∪ {(p(A,B), b) | (A, B) ∈ YW ∧ b ∈
B} ∪ {(iw, t) | t ∈ TI} ∪ {(t, ow) | t ∈ TO}, and

8. α(W) = (PW , TW , FW).

An Interactive Method to Discover a Petri Net Model of an Activity 9

The authors prove that given a complete WF-log W of a sound SWF-net
N = (P, T, F) with no short loops, the α-algorithm can reconstruct N from W ,
modulo the name of the places. We explain its meaning in the following.

1. TW is the set of events observed in the WF-log traces. It corresponds to the
set of transitions of the reconstructed WF-net.

2. TI is the set of input transitions of the reconstructed WF-net.
3. TO is the set of output transitions of the reconstructed WF-net.
4. XW characterises a set of candidate places of the reconstructed WF-net. It

is a set of couples (A, B) where A and B are sets of transitions, such as any
transition of A is the origin of a flow relation to this candidate place and this
candidate place is the origin of flow relations to any transition of B. The
sets (A, B) are constructed such as for any two elements a1, a2 ∈ A, there is
no trace where a1 is directly followed by a2 and no trace where a2 is directly
followed by a1 (the same for any two elements in B), and for any couple
of elements (a, b) ∈ (A, B), there is a trace where a is directly followed by b

and no trace where b is directly followed by a. The figure 5 on the next page
illustrates this property.

5. YW characterises the places of the reconstructed WF-net (without the input
and output places). YW it the set of maximum elements of XW . If a can-
didate place (A, B) ∈ XW is such as there exists another candidate place
(A′, B′) ∈ XW with A ⊆ A′ and B ⊆ B′, then either (A, B) = (A′B′), and
the candidate place is kept, either the place (A, B) is redundant and does not
contain more information than the candidate place (A′, B′). The algorithm
does not keep such implicit places.

6. PW is the set of places of the reconstructed WF-net. Each couple (A, B) of
YW is explicitly defined as a place p(A,B), and the input (iw) and output (ow)
places are added.

7. FW is the set of flow relations between places in TW and transitions in PW .
The connection between places is defined as for each place p(A,B) each tran-
sition of A is connected by a flow relation to the place p(A,B), and the place
p(A,B) is connected by a flow relation to each place of B. In addition, FW also
contains the flow relation between the input place (iw) and the input tran-
sitions (TI) and between the output transitions (TO) and the output place
(ow)

8. α(W) is the reconstructed WF-net.

3 Contribution: an Interactive Variant of the α-algorithm

In this section, we describe how we have adapted the α-algorithm to make it
interactive. We also describe some further tracks to make interactions stronger
and smarter.

As several extensions of this algorithm exist (for example the α++-algorithm
[15]), we keep the possibility to go further without loosing the interactive prop-
erty.

10 B. Mathern, A.Mille, T.Bellet

A B
a1

a2

a

b

Fig. 5. An illustration of elements (A, B) of the XW set at the step 4 of the α-
algorithm. A and B are two sets of transitions. An arrow between two transitions
illustrates that there is a trace in the WF-log where the first transition is directly
followed by the other (>W relation). A crossed out arrow between to transition
means there is no trace in the WF-log where the first transition is directly
followed by the other (≯W relation).

3.1 From the α-algorithm to the α
i-algorithm

We want to make the α-algorithm interactive. This way an expert, a human
who wants to discover knowledge, can exploit his or her knowledge to help the
α-algorithm to (re-)discover a workflow net.

Why is it necessary for an expert to introduce some of his or her knowledge
in the mining step? Because in most cases, it is not possible to know whether
the collection of traces (WF-log) we mine is complete or not. Even worse, some-
times, especially when dealing with data related to human activity, we know the
collection of traces is incomplete, noisy, and even missing data related to not
directly observed7 behavior.

We consider three possibilities for a human to interact with the α-algorithm.

– Before applying the algorithm: by preparing traces, by adding traces as ex-
amples, or by giving negative examples (a behaviour that the constructed
model should not produce).

– On the results of the algorithm: by interpreting the output model, by renam-
ing places of the P/T-net, by editing the places and flow relations, adding
non-observable transitions.

– In the meanwhile: without changing the algorithm, by editing some interme-
diary results of the α-algorithm, or by changing the algorithm, implementing
a mechanism of mixed chaining that asks the user for (possibly) missing in-
formation.

In order to keep the good properties of the α-algorithm, allowing extensions
such as EMiT or Little Thumb, we focus on the edition of intermediate results
of the α-algorithm. Obviously, each step of the α-algorithm is an intermediary
result. We have chosen to focus on one particular intermediary result which is

7 A behaviour may be observable on a video for a human expert, but not actually
logged in a computer-readable trace

An Interactive Method to Discover a Petri Net Model of an Activity 11

not explicitly defined in the algorithm: the definition of the >W relation. Indeed,
step 4 uses the →W and #W relations that are defined from the >W relation.
We propose to present the >W relation to the analyst, so that he or she can edit
it, adding his or her own knowledge to the knowledge implicitly contained in the
traces.

This particular >W relation seems interesting for the analyst because it can
be easily translated in natural langage and thus understandable to the analyst.
Actually, a >W b stands for “there is a trace where b directly follows a”. But in
the case of incomplete traces (WF-logs), the question should be slightly different,
as we know everything is not observable in the traces. The real question of our
concern is “is it possible that a trace where b directly follows a exists”. The
answer to this question would lead to the definition of a new relation, that we
note >A (A stands for “Analyst”). From this new relation, we can rely on the
knowledge of the analyst to make the α-algorithm useful on incomplete traces.

Then, by using >A relation, relations →A and #A are straightforwardly
defined as follows. For all a, b ∈ TW :

– a →A b if and only if a >A b and b ≯A a, and

– a#Ab if and only if a ≯A b and b ≯A a.

On this basis, we propose the first modification of the α-algorithm as follows,
that we will refer as the αi-algorithm.

– Steps 1 to 3 are the same:

1. TW = {t ∈ T | ∃σ∈W t ∈ σ},

2. TI = {t ∈ T | ∃σ∈W t = first(σ)},

3. TO = {t ∈ T | ∃σ∈W t = last(σ)},

– Between step 3 and 4, we introduce 3 additional steps, to prompt the analyst
for additional knowledge:

(a) build the >W relation from traces,

(b) display the definition of >W in natural langage and propose the analyst
to complete this relation with his or her knowledge (resulting in the >A

relation), and

(c) from the >A relation, build the →A and #A relations.

– Then, steps 4 to 8 are exactly the same, except from that they implicitly
use knowledge coming from expertise (A), not only from WF-logs or traces
(W). In order to formally show this difference, we rewrite those steps here:

4. XA = {(A, B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a∈A∀b∈B a→A b ∧
∀a1,a2∈A a1#Aa2 ∧ ∀b1,b2∈B b1#Ab2},

5. YA = {(A, B)∈XA | ∀(A′,B′)∈XA
A⊆A′ ∧ B⊆B′ ⇒ (A, B) = (A′, B′)},

6. PA = {p(A,B) | (A, B) ∈ YA} ∪ {iw, ow},

7. FA = {(a, p(A,B)) | (A, B) ∈ YA ∧ a ∈ A} ∪ {(p(A,B), b) | (A, B) ∈
YA ∧ b ∈ B} ∪ {(iw, t) | t ∈ TI} ∪ {(t, ow) | t ∈ TO}, and

8. αi
A(W) = (PA, TW , FA).

12 B. Mathern, A.Mille, T.Bellet

3.2 Illustrative Example

We propose to show the interest of our approach on a simple example.

For this example, we will work with the P/T-net model presented in figure 3
on page 7 (that is a sound SWF-net matching the properties needed for the
α-algorithm). From this P/T-net model, we produce the following incomplete
set of traces (WF-log): ABCDE, ACBDE, ABDCE.

As expected from the α-algorithm, using this incomplete WF-log produce
random results. In this particular case, it produces a meaningful P/T-net, but
not the one we are looking for (figure 6).

Fig. 6. A resulting P/T-net of the α-algorithm on incomplete traces (WF-log).

With some knowledge coming from the analyst (figure 7), the algorithm is
able to rediscover the original P/T-net (figure 8 on the next page).

Fig. 7. A screenshoot presenting the interface the expert can interact with
(building the >A relation).

An Interactive Method to Discover a Petri Net Model of an Activity 13

Fig. 8. A resulting P/T-net of the interactive α-algorithmfrom an incomplete
traces (WF-log) completed by analyst’s knowledge.

4 Discussion and Perspectives

4.1 Discussion

We have shown that it is possible to adapt an algorithm, the α-algorithm to make
it interactive. The user, in our case an expert in the workflow, can interact with
the algorithm in order to add knowledge that was not available in the traces.
This interaction can be a base for dealing with the incompleteness issue of the
traces we collect.

The interaction we propose is based on the >W relation, that might be in-
complete (or erroneous, due to noise in the data). We propose that the user,
based on the computed >W enrich it to produce the >A relation. However, this
step hides a complexity problem. Listing all the possible >A relations for a WF-
net with n transition is O(n2). For the example shown in figure 7 on the facing
page, the WF-net studied has 5 transitions, the user has to check the 25 possible
relations.

This problem would appear nearly hopeless with a traditional mining ap-
proach. However, in the context of interactive Knowledge Discovery, introduced
at the very beginning of this article, we think we can master this issue. The
knowledge discovery is guided by a user, who knows what type of knowledge he
or she is looking for. From this top-down approach, it is possible, at the first
steps of the process to select data, analyse it with Abstract framework, before
using αi-algorithm.

4.2 Perspectives

The first immediate improvement for the αi-algorithm, would be to decline it
to the improved version of the α-algorithm, like in EMiT or Little Thumb. We
already started to work on making the α++-algorithm interactive. The α++-
algorithm [15] is a variant of the α-algorithm dealing with short loops.

14 B. Mathern, A.Mille, T.Bellet

It would also be interesting to enrich the possibilities of interaction. As seen in
section 3.1, the user could interact at three levels: before applying the algorithm
(on the traces), after applying the algorithm (on the resulting model), or in the
meanwhile (interacting with intermediary results or with a mechanism of mixed
chaining).

In the future, we will investigate more specifically the possibility (1) to de-
velop a mixed chaining, and (2) to interact with traces.

Mixed chaining would make it possible to reduce the effort of the expert to
use an algorithm by suggesting to him or her possible missing information. For
example, the algorithm could propose to the user “almost discovered” places
or flow relations. This tool would, we believe, improve the usability of such an
interactive algorithm.

Interacting with traces corresponds to integrating the interactive mining al-
gorithm into a software platform that guarantees that it is easy to loop back
and forth from knowledge discovered, to traces, to mining algorithms (figure 2
on page 4). Thus, we integrate the interactive version of the algorithm, in a
software platform capable of interacting with the Abstract platform. This in-
tegration has to come along with a methodology to discover knowledge, that
we will develop and instantiate on car-driving behavioural data, to support the
cognitive modelling of the driving activity.

5 Conclusion

This paper proposes a first approach to mine an observed activity process in
order to interactively construct descriptive and operational knowledge. We show
it is possible to adapt a workflow mining algorithm, the α-algorithm, to achieve
this interactive discovery approach. Human knowledge and intermediate mining
results are interactively woven to construct an automata that can be used as an
overall knowledge representation and as an operational knowledge representation
available for computer exploitation (simulation). Therefore, such an interactive
algorithm supports the general idea of making the overall knowledge discovery
process interactive (figure 2 on page 4).

Acknowledgments. This work was supported by Région Rhône-Alpes and the
“Transport, Territories and Society” Cluster.

References

1. Aalst, W., Dongen, B.: Discovering Workflow Performance Models from Timed
Logs. In: Proceedings of the First International Conference on Engineering and De-
ployment of Cooperative Information Systems. pp. 45–63. Springer-Verlag (2002)

2. Van der Aalst, W., Van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Wei-
jters, A.: Workflow mining: A survey of issues and approaches. Data & Knowledge
Engineering 47(2), 237–267 (2003)

An Interactive Method to Discover a Petri Net Model of an Activity 15

3. Van der Aalst, W., Weijters, A.: Process mining: a research agenda. Computers in
Industry 53(3), 231–244 (2004)

4. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Which processes
can be rediscovered? In: Eindhoven University of Technology. pp. 1–25 (2002)

5. van der Aalst, W., Weijters, T.: X-tra-KLeinduimpje in Workflowland: Op zoek
naar procesdata. Scope 10(12), 38–40 (2002)

6. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery: an overview. AI-Magazine pp. 37–54 (1996)

7. Feigenbaum, E.A., McCorduck, P.: The fifth generation. Addison Wesley (1983)
8. Fensel, D.: Ontology-based knowledge management. Computer 35, 56–59 (2002)
9. Georgeon, O., Henning, M.J., Bellet, T., Mille, A.: Creating cognitive models from

activity analysis: A knowledge engineering approach to car driver modeling. In:
International Conference on Cognitive Modeling. pp. 43–48. Taylor & Francis (July
2007)

10. Georgeon, O., Mille, A., Bellet, T.: Analyzing behavioral data for refining cognitive
models of operator. Philosophies and Methodologies for Knowledge Discovery pp.
588–592 (2006)

11. Herbst, J.: Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. Ph.D. thesis, Universitt Ulm (2001)

12. Kendal, S.L., Creen, M.: An introduction to knowledge engineering. Springer, Lon-
don (2007)

13. Laflaquière, J., Settouti, L.S., Prié, Y., Mille, A.: A trace-based system frame-
work for experience management and engineering. In: Second International Work-
shop on Experience Management and Engineering (EME 2006) in conjunction with
KES2006. vol. 4253, pp. 1171–1178. Springer, Berlin (2006)

14. Lee, T.B.: The semantic web. Scientific American (2001)
15. de Medeiros, A., van Dongen, B., van der Aalst, W., Weijters, A.: Process mining:

Extending the α-algorithm to mine short loops. Eindhoven University of Technol-
ogy, Eindhoven (2004)

16. Michalski, R.S.: Knowledge mining: A proposed new direction. Invited talk at the
Sanken Symposium on Data Mining and Semantic Web, Osaka University, Japan,
March 10-11, 2003 (march 2003)

17. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM
Sigmod Record 33(4), 65–70 (2004)

18. Omelayenko, B.: Learning of ontologies for the web: the analysis of existent ap-
proaches. In: In Proceedings of the International Workshop on Web Dynamics
(2001)

19. Sanderson, P.M., Fisher, C.: Exploratory sequential data analysis: Foundations.
Human-Computer Interaction 9, 215–317 (1994)

20. Schimm, G.: Process Miner-A Tool for Mining Process Schemes from Event-Based
Data. In: Proceedings of the European Conference on Logics in Artificial Intelli-
gence. pp. 525–528. Springer-Verlag (2002)

21. Weijters, A., Van Der Aalst, W.: Workflow mining: discovering workflow models
from event-based data. In: Dousson, C., Höppner, F., Quiniou, R. (eds.) Proceed-
ings of the ECAI Workshop on Knowledge Discovery and Spatial Data. pp. 78–84
(2002)

	An Interactive Method to Discover a Petri Net Model of an Activity
	B. Mathern, A. Mille and T. Bellet
	Introduction
	General Context of the Work: Man Machine Interactive Knowledge Discovery
	Modeled Trace and Trace Based System
	Towards an Interactive Knowledge Discovery Process
	AUTOMATA as a Support for Interpretation of the Dynamics of Processes

	State of the Art
	Overview of Approaches for Building an Automata from Traces
	Automata Approaches for Knowledge Representation
	Workflow Mining Issues

	The -algorithm: Definitions and Basic Presentation
	Petri-Nets
	Workflow Logs
	-algorithm

	Contribution: an Interactive Variant of the -algorithm
	From the -algorithm to the i-algorithm
	Illustrative Example

	Discussion and Perspectives
	Discussion
	Perspectives

	Conclusion

