
HAL Id: hal-00544374
https://hal.science/hal-00544374

Preprint submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Real-Time Scheduling Framework for Embedded
Systems with Environmental Energy Harvesting

Hussein El Ghor, Maryline Chetto, Rafic Hage Chehade

To cite this version:
Hussein El Ghor, Maryline Chetto, Rafic Hage Chehade. A Real-Time Scheduling Framework for
Embedded Systems with Environmental Energy Harvesting. 2010. �hal-00544374�

https://hal.science/hal-00544374
https://hal.archives-ouvertes.fr

A Real-Time Scheduling Framework

for Embedded Systems

with environmental energy harvesting

Hussein EL Ghor1, Maryline Chetto1 and Rafic Hage Chehade2

1IRCCyN lab, university of Nantes, France.
1 Rue de la Noe, F-44321 Nantes FRANCE.

elghorh@irccyn.ec-nantes.fr and maryline.chetto@univ-nantes.fr
2Lebanese University, IUT Saida, Lebanon.

rafichajj@hotmail.com

Abstract

Real-time scheduling refers to the problem in which there is a deadline asso-
ciated with the execution of a task. In new generation embedded systems,
tasks execute in devices that use a rechargeable energy storage unit (e.g.
battery or ultracapacitor) and a recharging system (e.g. photovoltaic cells).
In this paper, we address the scheduling problem for a uniprocessor platform
with unique voltage and frequency, that is powered by a renewable energy
storage unit. First, we describe our model where two constraints need to
be studied: energy and deadlines. Since executing tasks require a certain
amount of energy, traditional task scheduling like Earliest Deadline as Soon
as possible (EDS) and Earliest Deadline as Late as possible (EDL) are no
longer convenient. We present an on-line scheduling scheme, called EDeg
(Earliest Deadline with energy guarantee), that jointly accounts for charac-
teristics of the energy source, capacity of the energy storage as well as energy
consumption of the tasks, and time. In order to demonstrate the benefits of
our algorithm, we compare it by means of simulation with the classical EDS
and EDL. And we show that EDeg outperforms these energy non-clairvoyant
algorithms in terms of both deadline miss rate and size of the energy storage
unit.

Keywords: Real-time systems, energy harvesting, on-line scheduling,
periodic tasks, Earliest Deadline First, renewable energy.

Preprint submitted to Int. Journal of Computers & Electrical Engineering May 6, 2010

1. Introduction

The Power management is becoming the central issue in embedded sys-
tems that must carry their own power source and cannot rely on a power
outlet on the wall. Without power, the system is useless. In the consumer
space such as mobile communication, the consequence may be minor; how-
ever, in the so-called hard real-time embedded systems, energy lack means
a failure that can cost millions and even human lives. Traditionally, many
embedded systems have been designed to be low-power. But there is a fun-
damental difference between power-aware and low-power technologies. In a
power-aware system, we have to make the best use of the available power
and the goal of a scheduler is to assign real-time tasks to time slots such that
all timing and power constraints are satisfied [1].
Nowdays, higher energy-density batteries and supercapacitors are being de-
veloped but the amount of energy available still severely limits the system’s
lifespan. On the other hand, in most wireless applications including sensor
networks, recharging or replacing batteries is not practical or permitted and
consequently alternative power sources which are present in the environment
should be employed. Environmental energy harvesting is deemed a promising
approach because many sensing environments provide sufficient energy that
can be harvested for providing power on an infinite time [13]. Several tech-
nologies to extract energy from the environment have been demonstrated in-
cluding solar, motion-based, biochemical, and vibrational energies and many
others are being developed [11]. Energy harvesting is the conversion of am-
bient energy into electricity to power small electric and electronic devices,
making them self-sufficient, often for decades. A key consideration that af-
fects power management in an energy harvesting system is that instead of
minimizing the energy consumption and maximizing the lifetime achieved
as in classical energy storage operated devices, the system operates in a so-
called energy neutral mode by consuming only as much energy as harvested
[19].
Embedded systems are generally real-time ones which have to compute a
timely response to external stimuli [21]. Real-time systems can be classified
in three categories: hard, soft and weakly-hard. In hard real-time systems,
all the application programs called tasks, must be guaranteed to complete
within their deadlines. For soft real-time systems, it is acceptable to miss
some of the deadlines occasionally with additional value for the system to
finish the task, even if it is late. In weakly-hard real-time systems, tasks are

2

allowed to miss some of their deadlines, but there is no associated value if
they finish after the deadline. Whatever its category, a real-time embedded
system is said to achieve energy neutral operation if its execution require-
ments can be supported forever despite energy limitations. This supposes
to execute the tasks such that the energy used by them is always less than
the energy harvested. A simple approach would be to build a harvester
whose minimum instantaneous power at any instant is sufficient to supply
the maximum power required by any executing task. Unfortunately, this has
disadvantages, such as high costs and large space.
Most embedded systems constructed to date do not extract power efficiently
from the source. As a result, they use a much larger harvester (e.g. solar
panel) than necessary to yield the same level of power as a more efficient
one, or they rely on a larger, more expensive, higher capacity battery than
needed in order to sustain extended operation. In both cases, the low har-
vesting efficiency limits the achievable performance and will preclude the
system from many important applications. This has motivated researchers
to design energy harvesting capabilities specifically dedicated to real-time
embedded systems from about four years [9]. The crucial issue associated to
these systems is to find scheduling mechanisms that can adapt their perfor-
mance to the available energy profile. Up to now, when designing a real-time
embedded system, the first concern has been usually time, leaving energy
efficiency as a hopeful consequence of empiric decisions. Now, the primary
concern is that power from solar panels or other free sources that cannot be
stored (or stored with limited capacity) should be fully consumed greedily,
or else this energy will be wasted.
In this paper, we address the problem of scheduling real-time tasks on one
processor to meet deadlines and energy constraints. The system we target
here consists of a processing unit, an energy harvester and a rechargeable
energy storage such as battery or supercapacitor.
So, the problem we deal with can be formulated as follows: How can we
schedule the tasks so as to guarantee their timing constraints perpetually by
suitably exploiting both the processor and the available ambient energy?.
This work presents experimental results about a scheduling framework called
EDeg (Earliest Deadline with energy guarantee) resulting from the extension
of the EDL (Earliest Deadline as Late as possible) server [4]. We modify
Earliest Deadline First (EDF) scheduler so as to account for the properties
of the energy source, capacity of the energy storage as well as energy con-
sumption of the tasks. We propose a slack-based method for delaying tasks

3

and making the processor inactive during recharging phases of the energy
storage unit. On-line computing by how long the tasks should be delayed is
possible thanks to EDL properties.
The remainder of the paper is organized in the following manner. In the next
section, we summarize related work. Section 3 describes the model and gives
necessary terminology. In section 4, we present background materials that
are essential for the understanding of the paper. Section 5 is the presenta-
tion of our scheduling scheme, EDeg, with some indications about practical
issues. Results of a simulation study are presented in section 6. Section 7
concludes the paper and gives some new directions of work.

2. Related Work

Energy-aware real-time scheduling has been the subject of intensive re-
search. Most of the works focus on either minimizing the energy consumption
or maximizing the system performance such as the lifetime achieved under
the energy constraints [2]. In such works, the rechargeability of the energy
storage unit is always disregarded. Little work has explored the problem
of scheduling real-time tasks in a uniprocessor rechargeable system. The
question amounts to find a schedule which is able to execute all the tasks
within the deadline and energy storage constraints i.e. without running out
of energy. Classical priority driven scheduling has been extended to variable-
voltage processors. The idea is to save power by slowing down the processor
just enough to meet the deadlines [22]. But solely applying these techniques
has limitations in energy harvesting systems because they minimize CPU
power, rather than they dynamically manage power according to the profiles
of both available energy and processor workload. In what follows, we review
the main studies for scheduling tasks in real-time energy harvesting systems.

2.1. Scheduling frame based systems

In [6], Allavena et al. address the problem of finding the scheduling of
frame-based embedded systems which is able to execute all the tasks within
the deadlines, starting with an energy storage fully charged, ending at the
same energy level as when started. In this model, all task periods are identical
and all task deadlines are equal to the common period. Consequently, the
order of task execution within a frame is not crucial for whether the task
set is schedulable or not. Moreover, the power scavenged by the energy
source is assumed to be constant and all tasks consume energy at a constant

4

rate. A solution is presented that schedules tasks in such a way that the
wasted recharging energy is minimized and the energy storage level is at all
times within two limits. The idea behind this algorithm is to insert as little
idle time as necessary for recharging the energy storage and minimizing the
length of the schedule. This work is certainly the first one to concentrate on a
rechargeable system with hard real-time constraints. However, the solution
only deals with frame based systems under the restrictive hypothesis that
each task is characterized by an instantaneous consumption power which is
constant along time.

2.2. Scheduling with task rewards

Weakly-hard real-time systems can be designed so as providing services
with adjustable quality evaluated in terms of rewards. Reward-based schedul-
ing was explored in the context of Imprecise Computation where real-time
tasks consist of mandatory and optional parts and a reward function is asso-
ciated with the length of the optional part [23]. Multiple versions allow qual-
ity of service tradeoffs by providing different levels of accuracy with different
execution times and energy consumptions. When the harvested energy is
temporarily low, the service must be lowered or suspended. The main issues
are to maximize the overall reward and to determine the minimum battery
capacity necessary to optimally exploit a given power source. The research
presented in [8] propose off-line solutions in a single speed processor system
while a solution with Dynamic Voltage Scaling (DVS) has been proposed
recently in [26].

2.3. Scheduling with solar energy harvesting

The first work that really makes adaptive power management for energy
harvesting systems has been published by A. Kansal et al. [7],[19]. Their
model captures the behaviour of an actual solar energy source through trac-
ing its power profile. In that paper, the authors propose algorithms for tuning
system duty cycle based on the parameters of the solar energy source. The
system switches between active mode and sleep mode depending on harvest-
ing energy and consequently may operate perpetually. Here, the problem
is formulated as a linear program. This linear program has to be solved
periodically. Within each period, adaptations of the duty cycle become nec-
essary if the observed energy values differ from the predicted ones. The main
drawback of the proposed algorithms is that they do not target at tasks in

5

a real-time pattern. Dealing with real-time tasks under the strong variation
of energy source with respect to time remains a central issue up to day [24].

2.4. Scheduling tasks with constant power consumption

Later in [9], Moser et al. focus on scheduling tasks with deadlines, peri-
odic or not, that run on a uniprocessor system that is powered by a recharge-
able storage unit. The source power is assumed to be predictable but time-
varying. They propose LSA (Lazy Scheduling Algorithm) and prove it to be
optimal in terms of deadline miss ratio. LSA is a variation of the famous
Earliest Deadline First scheduler [14]: the system starts executing a task
only if the task is ready and has the earliest deadline among all ready tasks
and the system is able to keep on running at the maximum power until the
deadline of the task. In that work, the consumption power of the computing
system is characterized by some maximum value which implies that for ev-
ery task, its total energy consumption is directly connected to its execution
time through the constant power of the processing device. The main disad-
vantage of this work is that the LSA algorithm executes tasks at full power
and therefore, future tasks will violate deadlines because of limited energy.
Moreover, in practice, the total energy which can be consumed by a task is
not proportional to its execution time.

2.5. Scheduling with DVFS technology

In [6], A. Allavena et al. describe an off-line scheduler that uses voltage
and frequency selection (DVFS) for a frame based system. While they permit
to reduce power consumption by slowing down task execution under dead-
line constraints, their approach relies on the unrealistic assumption that both
the instantaneous consumption power and production power are constant. In
2008, S. Liu et al. propose an energy aware dynamic voltage and frequency
selection algorithm, called EA-DVFS, for periodic tasks [25], [10]. The pur-
pose of EA-DVFS is to efficiently use the task slack and further reduce the
deadline miss rate. In this algorithm, whether or not the system slows down
the task execution for energy saving depends on the available energy. If the
system has sufficient energy, the task is executed at its full speed; otherwise,
it is stretched and executed at a lower speed. Unfortunately, this algorithm
has limited impact since, in most embedded applications, the energy storage
has a non constant recharging rate and every task is characterized by its own
profile of power consumption which can vary along time.

6

2.6. Scheduling tasks with variable power consumption

In practice, the total energy which can be consumed by a task has no
correlation with the worst case execution time [10]. For every task, the
worst case instantaneous consumption power depends on the circuitry as well
as the instrumentation used by the task during and/or after its execution.
Let us notice that the biggest energy consumption is not necessarily in the
computer. It may come from actuators receiving output data from the tasks
such as motors. Clearly, as an embedded system uses a unique energy storage
considered as the critical resource of the system, a successful power-aware
scheme must consider these non-computation activities and coordinate their
power usage as a whole system.

3. Model and Terminology

Figure 1: Energy harvesting real-time system

3.1. Task Set

A large number of energy-constrained embedded real-time systems oper-
ate in a cyclic basis, with a set of tasks that must execute before deadlines.
We consider here an embedded system that is composed of periodic tasks as
depicted in figure 1. The arrival times, energy demands and deadlines of the
tasks are known in advance. A periodic task set can be denoted as follows:
τ = {τi, i = 1, . . . , n}. A four-tuple (Ci, Ei, Di, Ti) is associated with each
τi. In this characterization, task τi makes its initial request at time 0 and
its subsequent requests at times kTi, k = 1, 2, ... called release times. The

7

least common multiple of T1, T2, . . . , Tn (called the hyperperiod) is denoted
by TLCM . Each request of τi requires a Worst Case Execution Time (WCET)
of Ci time units and has a Worst Case Energy Consumption (WCEC) of Ei.
We assume that the WCEC of a task has no relation with its WCET.
A deadline for τi occurs Di units after each request by which task τi must
have completed its execution. We assume that 0 < Ci ≤ Di ≤ Ti for each
1 ≤ i ≤ n. We define:

• the processor utilization as Up =
∑n

i=1
Ci

Ti
.

• and the energy utilization as Ue =
∑n

i=1
Ei

Ti

A job is any request that a task makes. A four-tuple (rj, Cj, Ej, dj) is associ-
ated with a job Jj and gives its release time, WCET, WCEC and (absolute)
deadline respectively. A job can be preempted and later resumed at any time
and there is no time or energy loss associated with such preemption.

3.2. Energy Source

In order to characterize the energy source, we have to concentrate on the
harvested energy since it can incorporate all losses caused by power conver-
sion and charging process. Generally, the harvested power is time-varying
including solar energy which can be assumed constant on average in a long-
term perspective. However, on a short-term perspective, the harvested power
is highly unstable.
Here, we assume that the energy source is uncontrolled but predictable: we
cannot control it but its behavior may be modeled to predict the expected
availability at a given time within some error margin. Solar energy cannot
be controlled but models for its dependence on diurnal and seasonal cycles
are known and can be used to predict availability. The prediction error
may be improved using commonly available weather forecasts for the place
where the embedded system is deployed. Consequently, we define the WCCR
(Worst Case Charging Rate), namely Pr(t), which is a lower bound on the
harvested source power output. Pr(t) is then the instantaneous charging rate
that incorporates all losses caused by power conversion and charging process.
We assume that energy production times can overlap with the consumption
times. Clearly, we make no assumption about the nature and dynamics of the
energy source, making our approach more easily implemented in real systems
where data about the energy source may not be available beforehand.

8

3.3. Energy Storage

Our system uses an ideal energy storage unit (supercapacitor or battery)
that has a nominal capacity, namely E, corresponding to a maximum energy
(expressed in Joules or Watts-hour). The energy level has to remain between
two boundaries Emin and Emax with E = Emax − Emin. The stored energy
may be used at any time later and does not leak any energy over time. If
the storage is fully charged, and we continue to charge it, energy is wasted.
In contrast, if the storage is fully discharged, no task can be executed.

3.4. Definitions

• A schedule Γ for τ is said to be valid if the deadlines of all tasks of τ
are met in Γ, starting with a storage fully charged.

• A task set τ is said to be temporally-feasible if there exists a valid
schedule for τ without considering its energy constraints.

• A task set τ is said to be feasible if there exists a valid schedule for τ
with considering its energy constraints.

• A scheduling algorithm will be called optimal if it finds a valid schedule
whenever one exists.

4. Background Material

Real-time task scheduling refers to determine the order in which tasks are
to be executed. The problem of scheduling periodic tasks on one processor
with no energy constraint has been an active area of research for more than
thirty years [3].

There are two popular approaches: fixed-priority algorithms, including
the Rate Monotonic and Deadline Monotonic algorithms [14], [15] and dynamic-
priority algorithms, including the Earliest Deadline First (EDF) algorithm
[16]. EDF schedules at each instant of time t, the ready task (i.e the task
that may be processed and is not yet completed) whose deadline is closest
to t. EDF is an optimal scheduling algorithm in the sense that if a set of
tasks can be scheduled by any algorithm, then it can be scheduled by EDF.
The EDF algorithm is typically preemptive, in the sense that, a newly ar-
rived task may preempt the running task if its absolute deadline is shorter.
This dynamic priority assignment allows EDF to exploit the full processor,
reaching up to 100% of the available processing time. EDF can be used to

9

schedule both periodic and aperiodic tasks, this is because the task order is
based on the absolute deadline. Liu and Layland [14] proved that a periodic
task set with deadlines equal to periods is schedulable by EDF if and only if
the total processor utilization Up is less than or equal to one i.e.

n∑
i=0

Ci

Ti

≤ 1 (1)

4.1. Static EDS

In general, implementation of EDF consists in ordering tasks according
to their urgency and executing them as soon as possible with no inserted
idle time. Such implementation is known as EDS (Earliest Deadline as Soon
as possible) [4]. For a given periodic task set, the EDS schedule can be
pre-computed and memorized in order to reduce scheduling overheads at run
time.

Consider a periodic task set τ that is composed of three tasks, τ =
{τi, |1 ≤ i ≤ 3 and τi = (Ci, Di, Ti)}. Let τ1 = (3, 6, 9), τ2 = (3, 8, 12)
and τ3 = (3, 12, 18).

The EDS schedule produced on task set τ during the first hyperperiod is
depicted in Figure 2:

Figure 2: Static EDS Schedule

4.2. Static EDL

We may imagine an implementation of EDF that leads to execute periodic
tasks as late as possible without causing their deadline to be missed. Then,
determination of the latest start time for every instance requires preliminary
construction of the schedule produced by the so-called Earliest Deadline as
Late as possible (EDL) algorithm [4].

10

The main idea of EDL is to differ the execution of tasks which results in
maximizing the length of idle time periods at the beginning of the schedule.
Determination of the duration and position of these idle times is done by
mapping out the EDL schedule produced from time zero up to the end of the
first hyperperiod thanks to recurrent formulae given in [4].

This is realized by means of the two following vectors [18]:

• Static Deadline Vector K: it represents the time instants from 0 to
the end of the first hyperperiod, at which idle times occur and is con-
structed from the distinct deadlines of tasks. K = {k0, k1, · · · , ki, ki+1, · · · , kq}.
We note that q ≤ N+1 whereN denotes the number of instances within
[0, TLCM].

• Static Idle Time Vector D: it represents the lengths of the idle times
which start at time instants given byK. D = {∆0,∆1, · · · ,∆i,∆i+1, · · · ,∆q}.

Let us consider the previous task set τ . We note thatK = (0, 6, 8, 12, 15, 20, 24,
30, 32, 33) and D = (2, 0, 1, 0, 2, 1, 0, 0, 0, 3) (see Figure 3).

Figure 3: Static EDL Scheduling

4.3. Mixed scheduling EDS/EDL

The slack time of a hard deadline task set at current time t is the length
of the longest interval starting at t during which the processor may be idle
continuously while still satisfying all the timing constraints. Slack time anal-
ysis has been extensively investigated in real-time server systems in which
aperiodic (or sporadic) tasks are jointly scheduled with periodic tasks [18].
In these systems, the purpose of slack time analysis is to improve the re-
sponse time of aperiodic tasks or to increase their acceptance ratio. A means

11

of determining the maximum amount of slack which may be stolen, without
jeopardizing the hard timing constraints, is thus key to the operation of the
so-called slack-stealing algorithms. Determining slack time is realized at run-
time by computing the so-called dynamic EDL schedule precisely defined by
the two following vectors:

• Dynamic Deadline Vector K(t): it represents the time instants greater
than or equal to t in the current hyperperiod, at which idle times occur.

• Dynamic Idle Time Vector D(t): it represents the length of the idle
times that starts at time instants given by K(t).

Details of computation are given in [18]
Let us assume that the previous periodic task set has been scheduled ac-

cording to EDS from time zero until time t=6. To determine the slack time
at time 6, we compute the dynamic EDL schedule for the interval [6, 36]. Fig-
ure 4 enables us to verify that K(t) = (6, 8, 12, 15, 20, 24, 30, 32, 33), D(t) =
(2, 1, 0, 2, 1, 0, 0, 0, 3) and the slack time equals 2 . In what follows, we will
use the idea of slack stealing to delay the tasks whenever energy is not suf-
ficient to ensure execution of the tasks. Then recharging the energy storage
must be achieved while still guaranteeing the deadlines constraints.

Figure 4: Dynamic EDL schedule at time 6

5. A Scheduling Algorithm under Renewable Energy Constraints

Under energy constraints, the scheduling algorithm has to make the en-
ergy storage level be sufficient to provide energy for all future occurring tasks,
considering their timing and energy requirements and the replenishment rate
of the storage unit. For this reason, scheduling tasks with EDS or EDL
algorithms may result in unnecessary deadline violations.

12

5.1. Presentation of the Algorithm

The intuition behind the scheduling algorithm is to run tasks according
to the earliest deadline first (EDF) rule. However, before authorizing a task
to execute, we must ensure that the energy storage is sufficient to provide
energy for all future occurring tasks, considering their timing and energy
requirements and the replenishment rate of the storage unit. We take a
hypothesis that a task can consume energy with any power. In this case, and
before attempting to execute a task, we must ensure that there is a sufficient
energy to execute this task during one time unit and during one unit, we
cannot get sufficient energy.Consequently, this is the reason why the storage
capacity may not reach the empty state. When this condition is not verified,
the processor has to be idle so that the storage unit recharges as much as
possible and as long as the system will be able to meet all the deadlines i.e.
the system will have available time to remain idle.

Following the idea described above, we propose the EDeg (Earliest Dead-
line with energy guarantee) algorithm. To formally present the algorithm,
we need to introduce two concepts:

• The slack energy of job Jj at time t represents the amount of energy
surplus in the storage that can be used from t until the start time of Jj

while still guaranteeing its timing and energy requirements. The slack
energy of job Jj at time t is given by E(t)+

∫ dj

t
Pr(t)dt−Aj where Aj is

the processor demand within [t, dj) required by the periodic instances
ready to be processed between t and dj.

• The slack energy of the periodic task set at current time t, is the maxi-
mum amount of energy that can be consumed from t continuously while
still satisfying all the timing constraints. The slack energy at time t
is computed only when there is at least one job, say Jj which will be
released after t and has a deadline dj that is less than or equal to that
of the highest priority job, ready at t. The slack energy of the system
is determined by the minimum slack energy of all the jobs.

The three major components of EDeg algorithm are E(t), Slack.energy(t)
and Slack.time(t). In details, t is the current time, E(t) is the residual
capacity of the storage unit at time t i.e. the energy that is currently stored.
Slack.energy(t) and Slack.time(t) are respectively the slack energy and the
slack time at time t. PENDING is a boolean which equals true whenever

13

there is at least one job in the ready list queue. We use the function wait()
to put the processor to sleep and function execute() to put the processor to
run the ready job with the earliest deadline.

The framework of the EDeg scheduling algorithm is as follows:

Algorithm 1 Earliest Deadline with energy guarantee algorithm (EDeg)

while (1) do
while PENDING=true do

while (E(t) > Emin and Slack.energy(t) > 0) do
execute()

end while
while (E(t) < Emax and Slack.time(t) > 0) do

wait()
end while

end while
while PENDING=false do

wait()
end while

end while

We notice that:

• We never run out of storage (that is, we never dispatch tasks when
there is no energy); this is obvious from the algorithm that does not
allow tasks to run after Emin.

• We start charging the storage unit when, either it is empty or there
is no more sufficient energy to guarantee the feasible execution of all
future occurring tasks i.e. the system has no more slack energy.

• the charging process aims to charge at the maximum level provided
there is sufficient slack time.

• We only waste recharging power when there are no pending tasks and
the storage unit is full.

5.2. Efficiency

The computations of Slack.energy(t) and Slack.time(t) are thus the major
keys to the operation of the EDeg algorithm. As shown in [18], the slack

14

time of a periodic task set at a given time instant can be obtained on-line
by computing the dynamic EDL schedule, with complexity O(K.n). n is
the number of periodic tasks, and K is equal to bR/pc, where R and p are
respectively the longest deadline and the shortest period of current ready
tasks.

The complexity for computing the slack energy is O(K.n) too. As EDeg
has low and constant space requirements, this makes it easily implementable
on many low-power, unsophisticated hardware platforms including micro-
controllers.

A suggestion to improve the efficiency of the scheduler in terms of over-
head is to compute statically a lower bound on the slack time and a lower
bound on the slack energy and use them instead of exact values which are
computed on-line. The effect will be only, first to stop charging earlier and
second to stop executing tasks earlier. As a consequence, decreasing the pro-
cessor overheads due to computations will cause increasing the number of
tasks preemptions.

5.3. Measurement Support

As any power management algorithm, EDeg typically needs information
about available energy resources. Many battery operated devices, ranging
from hand-helds to laptops, provide the facility to monitor the residual ca-
pacity of the battery. A second related measurement is the variability in this
energy supply. A method to estimate the energy input then is to measure
the current flowing out of the harvesting source and its voltage. This imme-
diately yields the instantaneous power input at any time point. Data about
when and how much environmental energy is available is directly provided by
these measurements. Also, these measurements can be tracked at the desired
resolution in time to estimate the variability of the energy source.

5.4. Illustrative Example:

Let us consider the previous periodic task set where each task is now
characterized by its worst case consumption requirement. τ = {τi|1 ≤ i ≤
3, τi = (Ci, Di, Ti, Ei)}. Let τ1 = (3, 6, 9, 8), τ2 = (3, 8, 12, 8) and τ3 =
(3, 12, 18, 8). We assume that the energy storage capacity is E = 6. For
simplicity, the rechargeable power, Pr is constant along time and equals 2.
We note that Up = 0.75, Ue = 2 and consequently the necessary feasibility
condition related to energy constraints, Ue ≤ Pr is satisfied.

15

By scheduling the task set τ according to EDS, disregarding energy lim-
itations, within the first hyper-period i.e. from 0 to 36, we verify that τ
is temporally-feasible (see figure 2). However, when considering the energy
constraints, the task set reveals to be not feasible since the storage becomes
empty at t = 9. As the system immediately stops, we conclude that the
deadline miss ratio during the hyperperiod is 33.34 as shown by figure 5.

Figure 5: Static EDS Scheduling under Energy Constraints

With static EDL scheduling, the storage unit is empty at t = 27. The
system stops which enables us to state that the deadline miss ratio is 77.78
(see figure 6). Whereas the first deadline miss occurs later compared to EDS,
EDL does not provide acceptable performance. While energy is wasted in
the early part of the schedule, afterwards it reveals to be insufficient to cope
with demands of periodic instances that have been delayed.

Figure 6: Static EDL Scheduling under Energy Constraints

Finally, let us consider the EDeg schedule for τ in the first hyper-period.
Flexibility of EDeg enables us to insert an idle time as soon as the energy
storage unit is empty. Then, the processor is let inactive as long as the energy

16

storage has not filled completely (E = Emax) and the latest start time of the
next periodic task has not been attained. Clearly, this amounts to make
slack stealing controlled by the residual capacity of the energy storage. The
EDeg schedule is described in figure 7.

Figure 7: EDeg Scheduling

Let us explain how EDeg dynamically constructs the schedule. At time
0, the storage is full. τ1 is the highest priority task, executes until time
3 and consumes 8 energy units. At time 3, the residual capacity is E =
Emax−E2 +Pr∗C2 = 4. τ2 has now the highest priority and the slack energy
is undefined since no future instance has a deadline less than the deadline of
τ2. τ2 executes completely until time 6 and consumes 8 energy units. The
energy storage capacity equals 4 energy units. τ3 has now the highest priority
and completely executes until time 9 where the residual capacity becomes 0.
As the storage is empty, the processor has to remain idle as long as the
storage has not fulfilled (predicted at time 12) and the latest start time has
not been attained (at time 12 which is computed using dynamic EDL).

τ1 is then the highest priority task and executes till time instant 15. The
energy storage capacity is 4 energy units and τ2 becomes the highest priority
task and executes till time 18 where the energy storage capacity equals 4
energy units. At time 18, τ1 executes until time 21 where the energy storage
capacity equals 0. The processor remains idle as long as the storage has not
fulfilled (predicted at time 24) and the latest start time has not been attained
(at time 24 which is computed using dynamic EDL).

At time 24, τ3 is the highest priority task and executes for completion ex-
actly at time 27 where the energy storage capacity equals 4. τ2 then executes
till time 30 where the energy storage capacity equals 2 energy units. τ1then
executes until time 33 where the energy storage is empty. The processor is

17

let idle for recharging until the end of the hyperperiod at t = 36. We note
that neutral operation is guaranteed since the storage is fully charged at the
end of the hyperperiod.

In contrast to EDS and EDL, EDeg feasibly schedule the task set, given
the characteristics of the storage unit and the power source profile.

6. Performance Evaluation

6.1. Simulation Details

Two main issues need to be discussed in order to evaluate EDeg: energy
storage size and operational performance level in terms of deadline missing.
To evaluate the effectiveness of the proposed EDeg algorithm, we develop a
discrete-event simulation in C/C++. In the simulator, we implement EDeg.
For sake of comparison, we also implement EDS and EDL and two heuris-
tics respectively called EDd 1 and EDd A. EDd A is the Earliest Deadline
as Soon as possible scheduler that discards ALL the ready instances when-
ever the storage unit is empty and consequently let the processor idle until
the next release time. EDd 1 is the Earliest Deadline as Soon as possible
scheduler that discards only one instance (the highest priority one) whenever
the storage unit is empty and then let the processor idle until the next release
time.

We report here part of a performance analysis which consists of two sim-
ulation experiments. In the first experiment, we measure the percentage of
feasible instances during one hyper-period. In the second one, we measure
the remaining energy in the storage unit along time up to the first deadline
violation or the end of the first hyper-period.

Since the performance of the above algorithms is severely affected by
the properties of the arriving tasks, we use a simulator that generates 30
tasks with least common multiple of the periods equal to 3360. The worst-
case computation times are set according to the processor utilization,Up.
Deadlines are less than or equal to periods and greater than or equal to the
computation times (Ci ≤ Di ≤ Pi).

The rechargeable power is variable with time. A random number genera-
tor enables us to produce for every quantum of time within the hyperperiod,
a power energy profile with minimum value 1 and a maximum value which
is an input of the simulator, for example 9 as in Figure 8.

The energy consumptions of every task are set according to the energy
utilization, Ue, which necessarily verifies (Ue ≤ max(Pr)(t)) .

18

Figure 8: Energy source behavior

We assume that the energy storage is fully charged at the beginning of the
simulation. After a deadline violation is detected, the simulation terminates
for EDL and EDS. Under EDd 1 and EDd A, the simulation continues
until the end of the hyper-period. The simulation is repeated for 1000 task
sets for a given processor utilization ratio. For the fair comparison of EDeg,
EDS, EDL, EDd 1 and EDd A, all simulations are performed under the
same condition.

6.2. Experiment 1: storage size and deadline miss rate

First, we take interest in the average ratio of instances that meet their
deadlines with the five scheduling algorithms by varying the energy storage
capacity. This metrics enables us to deduce two measures. The first one gives
us an indication about the ratio of time during which there is no deadline
violation. The second one gives, for each scheduler and for a given processor
utilization ratio, the minimum size of the storage that ensures time and
energy feasibility. We report here the results of three simulation studies
where the processor utilization Up is set to 0.3, 0.6 and 0.9 respectively.
Figure 9 depicts the percentage of instances that meet their deadlines over
the energy storage capacity E. For each task set, we compute Efeas as the
minimum storage capacity which permits to achieve neutral operation i.e.
time validity of the schedule with battery fully recharged at the end of the
hyperperiod. Consequently, we make vary E with E ≥ Efeas so as all task
sets turn out to be feasible under EDeg.
When Up is set to 0.3, the percentage of feasible instances in the EDeg
algorithm is 100% when the energy storage capacity is at least 1700 energy

19

(a) Deadline miss rate with low processor utilization
(0.3)

(b) Deadline miss rate with medium processor uti-
lization (0.6)

(c) Deadline miss rate with high processor utilization
(0.9)

Figure 9: Percentage of feasible instances

units. Consequently, Efeas = 1700. Under EDS, maximum idle time is made
available at the end of the hyperperiod. As the storage is initially full, the
energy which is available will be used to execute task instances. EDS idle
times in the early part of the schedule do not permit the storage to fully
recharge because the processor is quasi-continuously busy. On the contrary,
under EDL, the maximum idle time is made available at the beginning
of the hyperperiod. As the storage is initially full, energy may be wasted
because the probability that the storage becomes full before the end of the
early idle times is very high. In the EDL schedule, tasks are delayed as
much as possible and during the EDL idle times the storage unit recharges
sufficiently to execute task instances in the EDL busy intervals without
making the storage empty and the system failed. As a result, EDL will give
better results than EDS in terms of number of feasible instances before first
deadline violation. In summary, both EDS and EDL are greedy schedulers

20

which perform badly in energy constraint environment and do not permit
to build a valid schedule. Consequently, we are interested in examining the
performances of two heuristics that provide respective solutions in order to
cope with energy lack situations and continue to operate despite a deadline
violation.

When the energy storage unit is empty, EDd 1 discards the highest pri-
ority instance that is ready. Then, we let the processor idle until the next
release time. EDd 1 performs significantly better than EDd A that system-
atically discards all ready instances when the energy storage unit is empty.
Even if no time is wasted in attempting to execute tasks which will not
meet their deadlines, the total number of discarded instances is higher with
EDd A compared to EDd 1. However, when the size of the energy storage
increases, the number of discarded instances will be close to each other and
consequently the difference between EDd 1 and EDd A will not be signif-
icant. As observed in figure 9-a, 100% task instances meet their deadlines
i.e. task sets are feasible when the energy storage capacity is 5800 for EDS,
EDd 1 and EDd A. That means that the storage unit must be more than 3
times bigger with EDS, EDd 1 and EDd A to maintain zero deadline miss,
compared to EDeg.

When Up is set to 0.6 (see figure 9-b), the percentage of feasible instances
under EDeg algorithm is 100% when the energy storage capacity is at least
2400 energy units. Furthermore, the energy storage capacity that is required
for EDS, EDd 1 and EDd A to ensure 100% feasible instances is 5900. That
means that EDeg can provide the same level of performance with a storage
unit which is about 2.5 times less. We observe that the relative performance
gain of EDeg in terms of capacity savings is decreasing when the processor
utilization rate is increasing. The reason is the following: As computation
times Ci increase, (Ei− (Pr ∗Ci)) decrease. This quantity represents energy
deficit in the storage unit when the processor is active, executing task τi.

At higher values of the utilization U these savings are decreasing, yet they
are still significant. When Up is set to 0.9 (see figure 9-c), EDeg obtains
capacity savings of about 50 percent compared to EDL, EDS, EDd 1 and
EDd A. Let us notice that EDeg, EDS, EDL, EDd 1 and EDd A require
exactly the same storage size when Up = 1 since the processor is always ac-
tive and there is no flexibility at all in the construction of the schedule. And
to ensure feasibility, the average source power must be greater than or equal
to the average consumption power of the tasks.

21

Experiment 1 points out that the proposed EDeg scheduler is very effec-
tive in reducing deadline miss rate and storage size for a real-time system
with energy harvesting facilities. And lower is the processor utilization rate,
higher is the capacity saving.

6.3. Experiment 2: remaining energy in the storage unit

Finally, we are interested in the remaining energy stored in the system.
Figure 10 aims to illustrate for Up = 0.3, how the energy level in the stor-
age unit changes along time. We only report this information for the three
following schedulers, EDeg, EDS and EDL. Under EDS, the remaining
energy in the storage capacity decreases until the storage capacity is empty
or not sufficient to execute the highest priority instance. On the contrary,
the EDL algorithm will benefit from the idle times which are present in the
early part of the hyperperiod in order to recharge the storage unit. This is
why EDL stores significantly more energy than EDS. In our simulation,
EDS and EDL stops at about 10 and 20 percent of the total length of the
hyperperiod when there is no more energy in the storage unit (Figure 10).

Figure 10: Remaining energy with low utilization

EDeg runs as EDS except that, whenever there is no sufficient energy
to execute the highest priority task, then the processor becomes idle. Recall
that in our model, the instantaneous power that is consumed by a task may
be arbitrarily high. Consequently, whenever a task requires to be run, the
scheduler compares its energy consumption with the amount of available
energy during one unit of time. According to the result of that test, either the
task will be authorized to execute or the processor will idle. This mechanism

22

implies that the battery level will decrease systematically when executing
a task without necessarily attaining the minimum level i.e. 0. Then, the
storage unit will recharge until being fulfilled and as long as the system will
be able to meet all the deadlines. As dedicated in figure 10, the energy level
is decreasing until t = 350, where the remaining energy is not sufficient to
execute the next task instance. Therefore the processor idles until t = 420,
where the battery level is around 77%. This phenomena is repeating several
times during the hyperperiod. At the end of the hyperperiod, the storage
unit is fulfilled again which means that the application runs in a neutral
operation mode.

7. Conclusion

Energy-aware design becomes a more important issue in embedded sys-
tems that require best use of available power sources and deliver high perfor-
mance at the same time. The performance of a practical energy harvesting
real-time system, measured by the deadline miss rate, heavily depends upon
the stored energy and the energy harvested from the environment. Unfor-
tunately, the scavenging power is time-varying and thus very unstable. We
target a scheduling framework for embedded systems with variable power
constraints which need to operate perennially thanks to the environmen-
tal energy. In this paper, our focus was on scheduling periodic tasks with
deadlines on a uniprocessor and fixed-speed system which is powered by a
renewable energy storage with limited capacity such as a battery or a capac-
itor.
This work presents the following contributions to research: Our scheduler is
model-free with respect to the energy source. It can be implemented in any
energy harvesting system without the need for a priori information about
the source which may be uncontrollable and time-varying. We propose an
efficient way of scheduling tasks, based on the on-line computation of the
slack time and the slack energy which is a new concept dedicated to hard
deadline tasks with regenerative energy constraints.

We started by describing the preemptive scheduling algorithm, namely
EDeg, that is a variation of EDF. EDeg has been designed for any set of
time critical tasks, periodic or not, given any energy source profile with a
variable power production and an energy storage unit with limited capacity.
The simulation study reports the performance of EDeg, measured by the
deadline miss rate compared to classical EDF. It shows that EDeg outper-

23

forms EDS and EDL for all processor utilization factors.

Several interesting issues need further attention. To expand the applica-
bility of our scheduling framework, we would like first to incorporate addi-
tional power management techniques including Voltage/ Frequency Scaling
and Dynamic Power Management to support more effective power-aware de-
signs.

References

[1] M.T. Schmitz, B.M. Al-Hashimi and P. Eles. System-Level Design Tech-
niques for Energy-Efficient Embedded Systems. Kluwer Academic Pub-
lishers, 194 pages, 2004

[2] A. Sinha and A. Chandrasan. Dynamic power management in wireless
sensor networks.IEEE Design and Test of Computers 18, 6274, 2001.

[3] J.-W.-S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[4] H. Chetto, and M. Chetto. Some results of the earliest deadline schedul-
ing algorithm. IEEE Transactions on Software Engineering, 15(10):
12611269, 1989.

[5] A. Kansal, D. Potter, and M. B. Srivastava. Performance aware task-
ing for environmentally powered sensor networks. In Proceedings of the
International Conference on Measurements and Modeling of Computer
Systems, SIGMETRICS 2004, pages 223234, New York, NY, USA, June
10-14 2004.

[6] A. Allavena and D. Mosse, Scheduling of frame-based embedded sys-
tems with rechargeable batteries, In Workshop on Power Management
for Real-time and Embedded systems (in conjunction with RTAS 2001),
2001.

[7] A. Kansal, J. Hsu. Harvesting aware power management for sensor net-
works, In IEEE Proceedings of Design Automation Conference, 2006.

[8] C. Rusu, R. G. Melhem, and D. Mosse. Multi-version scheduling in
rechargeable energyaware real-time systems. In 15th Euromicro Confer-
ence on Real-Time Systems, ECRTS 2003, pages 95104, Porto, Portugal,
July 2-4 2003.

24

[9] C. Moser, D. Brunelli, L. Thiele, L. Benini. Real-time scheduling for
energy harvesting sensor nodes, Real-Time Systems, Volume 37, Issue 3,
Pages: 233 - 260, December 2007.

[10] S. Liu, Q. Qiu and Q. Wu. Energy Aware Dynamic Voltage and Fre-
quency Selection for Real-Time Systems with Energy Harvesting, In
Proceedings of the conference on Design, automation and test in Eu-
rope, Pages 236-241, 2008.

[11] R. Kotz and M. Carlen. Principles and applications of electrochemical
capacitors. In Electrochimica Acta 45, pages 24832498. Elsevier Science
Ltd., 2000.

[12] M. Chetto and H. El Ghor. Real-time Scheduling of periodic tasks in a
monoprocessor system with rechargeable energy storage, The 30st IEEE
Real-Time Systems Symposium, Work in Progress Proceedings, Decem-
ber 2009.

[13] B. Atwood, B. Warneke and K. S.J. Pister. Smart Dust mote forerun-
ners, Proceedings of 14th Annual International Conference on Microelec-
tromechanical Sytsems, pp 357-360, 2001.

[14] C.-L. Liu, and J.-W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the Association for
Computing Machinery, 20(1): 46-61, 1973.

[15] J.-Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evaluation, 2: 237-
250, 1982.

[16] M.L. Dertouzos. Control Robotics: The Procedural Control of Physi-
cal Processes, Proceedings of International Federation for Information
Processing Congress, pp. 807-813, 1974.

[17] J.-P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for schedul-
ing soft-aperiodic tasks in fixed-priority preemptive systems. In Pro-
ceedings of the 13th IEEE Real-Time Systems Symposium, pp. 110-123,
1992.

25

[18] M. Silly-Chetto. The EDL Server for scheduling periodic and soft aperi-
odic tasks with resource constraints. The Journal of Real-Time Systems,
17: 1-25, 1999.

[19] A. Kansal, J. Hsu, S. Zahedi and M.B. Srivastava. Power management
in energy harvesting sensor networks. ACM Transactions on Embedded
Computing Systems , 6(4), 2007.

[20] V. Raghunathan and P. H. Chou. Design and power management of
energy harvesting embedded systems. Proceedings of the 2006 interna-
tional symposium on Low power electronics and design, pp. 369 - 374,
2006.

[21] C.M. Krishna and K.G. Shin. Real-Time Systems. McGraw-Hill Series
in Computer Science, 448 pages, 1997.

[22] V. Raghunathan, A. Kansal, et al. Design considerations for solar energy
harvesting wireless embedded systems. In Proceedings of the Fouth In-
ternational Symposium on Information Processing in Sensor Networks,
pp. 457-462, April 2005.

[23] W.K. Shih and J.W.S. Liu. On-Line Scheduling of Imprecise Computa-
tions to Minimize Error. SIAM Journal on Computing , 25(5), pp. 1105
- 1121, 1996.

[24] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan. Adap-
tive duty cycling for energy harvesting systems. In Proceedings of the
2006 international symposium on Low power electronics and design, pp.
180185, 2006.

[25] S.Liu, Q. Qiu and Q. Wu. Energy Aware Dynamic Voltage and Fre-
quency Selection for Real-Time Systems with Energy Harvesting, In
Proceedings of DATE08 , pp. 236-241, 2008.

[26] C. Moser, J.-J. Chen, L. Thiele. Reward Maximization for Embedded
Systems with Renewable Energies. Proceedings of 14th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 247-256, 2008.

26

