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Introduction

The control design of systems subject to nonlinearities, including saturation, has attracted considerable attention in control theory literature for many years [START_REF] Hu | Control systems with actuator saturation. Analysis and design[END_REF]. It has been motivated by the large variety of practical applications and the occurrence in industrial processes. Besides the classical issue of stability analysis and stabilization of systems with saturated input [START_REF]Advanced Strategies in Control Systems with Input and Output Constraints[END_REF][START_REF] Khalil | Nonlinear Systems -Third Edition[END_REF][START_REF] Kokotović | Constructive nonlinear control: a historical perspective[END_REF], several approaches have been proposed to cope with controller performances, like disturbance attenuation [START_REF] Köse | Scheduled controllers for linear systems with bounded actuators[END_REF][START_REF] Zheng | Output feedback control of saturated discrete-time linear systems using parameter-dependent Lyapunov functions[END_REF][START_REF] Jungers | Finite L 2 -induced gain and λ-contractivity of discrete-time switching systems including modal nonlinearities and actuator saturations[END_REF] or using a representation as the feedback interconnection of a linear system with a sector bounded nonlinearity. This last option has been received attention with de proposal of new design tools [START_REF] Kokotović | Constructive nonlinear control: a historical perspective[END_REF][START_REF] Arcak | Circle and popov criteria as tools for nonlinear feedback designs[END_REF][START_REF] Arcak | Feasibility conditions for circle criterion designs[END_REF][START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] and, in particular, by considering the control saturations (see for instance [START_REF] Tarbouriech | Anti-windup strategy with guaranteed stability for linear systems with amplitude and dynamics restricted actuator[END_REF][START_REF] Gomes Da | Stability and stabilization of linear discrete-time subject to control saturation[END_REF][START_REF] Hu | An analysis and design method for linear systems subject to actuator saturation and disturbance[END_REF][START_REF] Castelan | Absolute stabilization of discretetime systems with a sector bounded nonlinearity under control saturations[END_REF][START_REF] Cao | Stability analysis of discrete-time systems with actuator saturation by a saturation-dependent lyapunov funtion[END_REF][START_REF] Hu | Composite quadratic lyapunov functions for constrained control systems[END_REF]).

The case of nonlinear systems subject to actuator amplitude limitations and for which the dynamics can be decomposed into the feedback interconnection described above, is treated in [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Castelan | Absolute stabilization of discretetime systems with a sector bounded nonlinearity under control saturations[END_REF] for continuous and discrete-time precisely known systems, respectively. The framework of Time-Varying Parameter (TVP) dependent and nonlinear systems in discrete-time is considered in [START_REF] Castelan | Stability and stabilization of a class of uncertain nonlinear discrete-time systems with saturating actuators[END_REF], by assuming that the TVP was unknown. Then the provided approach consists in considering a Parameter Dependent Lyapunov Function (PDLF) associated with a parameter independent state feedback control law and of the nonlinearity that models the nonlinear part of the open-loop system dynamics.

In practice, the current state is not usually available in its entirety and the considered control law class should involve a measured output. The prob-lem of the output feedback is a problem in automatic control which is still widely open (see [START_REF] Syrmos | Static output feedback -a survey[END_REF][START_REF] Daafouz | Stability analysis and control synthesis for switched systems: A switched lyapunov function approach[END_REF][START_REF] Bara | Static output feedback stabilization with H ∞ performance for linear discrete-time systems[END_REF] and references therein). For the LTI systems, full order dynamic output controllers could be designed via mainly two technics: a judicious pyramidal change of variables [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] and the projection lemma [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF].

They have been both applied for systems including saturations [START_REF] Zheng | Output feedback control of saturated discrete-time linear systems using parameter-dependent Lyapunov functions[END_REF][START_REF] Castelan | Synthesis of output feedback controllers for a class of nonlinear parameter-varying discretetime systems subject to actuators limitations[END_REF] and [START_REF] Turner | Anti-windup for linear systems with sensor saturation: sufficient conditions for global stability and L 2 gain[END_REF]. Nevertheless these techniques are not well adapted to systems including a TVP. The matrices of the output dynamic should be independent of the TVP (that is robust controller) or only quasi-TVP dependent (only some matrices are TVP-dependent, see [START_REF] Zheng | Output feedback control of saturated discrete-time linear systems using parameter-dependent Lyapunov functions[END_REF]). Such a framework is helpful and adapted to continuous-time system governed via a network [START_REF] Åström | Computer-Controlled Systems[END_REF], by including nonuniformaly sampling [START_REF] Cloosterman | Stability of networked control systems with uncertain time-varying delays[END_REF], quantification of the state and input saturation [START_REF] Kim | Network-delay-dependent h ∞ control of systems with input satuaration[END_REF].

This framework also allows to cope with the fuzzy control problem of nonlinear systems using Takagi-Sugeno fuzzy models [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis; A Linear Matrix Inequality Approach[END_REF] where, particularly, the membership functions are the (known) TVPs.

In this paper, we propose to consider the class of control laws formulated as gain-scheduled feedbacks of the measured output and of the nonlinearity. It is assumed that the current TVP is available (by estimation or measurement).

Sufficient conditions are provided here by using a modified sector condition for taking the saturation nonlinearity into acount, to design a Gain-Scheduled control law. Thus Linear Matrix Inequalities (LMI) conditions for local stabilization allow to cast this control design problem into a convex programming problem. To cope with control law based on measured output, we add to LMIs a set of Linear Matrix Equalities. Thus the obtained result will be less conservative than ones available in the literature, with a moderate increasing of LMI dimensions. This work is organized as follows: In section 2, the framework of the control design problem is presented. Section 3 provides some preliminary results and definitions, which allow to obtain the main result, formalized as a convex programming problem in Section 4. The paper ends with a numerical example, issued from the litterature of network control systems and concluding remarks respectively in Sections 5 and 6.

Notations. Relative to a matrix A ∈ R m×n , A ′ denotes its transpose, and

A (i) , i = 1, . . . m, denotes its ith row. If A = A ′ ∈ R n×n , then A < 0 (A ≤ 0)
means that A is negative (semi-)definite. The components of any vector x ∈ R n are denoted x (i) , ∀i = 1, . . . n. Inequalities between vectors are componentwise: x ≤ 0 means that x (i) ≤ 0 and x ≤ y means that x (i)y (i) ≤ 0. I n denotes the n × n identity matrix. The symbol ⋆ stands for symmetric blocks in matrices. For a symmetric and positive-definite matrix M ∈ R n×n , the ellipsoidal set E(M ) associated with M is given by {x ∈ R n ; x ′ M x ≤ 1}.

Problem presentation

Consider a nonlinear discrete-time TVP-dependent system represented by:

x k+1 = A (ξ k ) x k + G (ξ k ) ϕ (z k ) + B (ξ k ) sat(u k ), (1) 
z k = L (ξ k ) x k , (2) 
y k = Cx k . (3) 
where

x k ∈ R n , u k ∈ R m , z k ∈ R p and y k ∈ R q are at time k the state,
the input, the output of the system and the measured output, respectively.

ξ k ∈ R N is the unknown TVP at time k belonging to the unit simplex Ξ:

Ξ = {ξ ∈ R N ; N i=1 ξ (i) = 1 , ξ (i) ≥ 0 , i = 1, . . . , N }. (4) 
ξ k can be viewed as a model uncertainty. The structure of the system matrices are assumed to be a N -vertices polytope of the form:

A (ξ k ) B (ξ k ) G (ξ k ) L (ξ k ) = N i=1 ξ k(i) A i B i G i L i . (5) 
The matrix C involved in (3) is assumed to be full row rank and independent with respect to ξ k . The nonlinearity ϕ(.) : R p → R p verifies the cone bounded sector condition ϕ(.) ∈ [0 p , Ω], [START_REF] Johansson | Observer-based strict positive real (spr) feedback control system design[END_REF][START_REF] Khalil | Nonlinear Systems -Third Edition[END_REF], that is ϕ(0) = 0 and there exists a symmetric positive definite matrix Ω = Ω ′ ∈ R p×p such that, ∀z k ∈ R p , all components of ϕ (l) (•) independently verify the cone bounded sector condition

ϕ (l) (z k )[ϕ(z k ) -Ωz k ] (l) ≤ 0 , ∀l = 1, • • • , p. (6) 
By summing these inequalities with weigthing them by p arbitrary positive

scalars (δ l (ξ k )) -1 > 0, we obtain p l=1 (δ l (ξ k )) -1 ϕ (l) (z k )[ϕ(z k ) -Ωz k ] (l) = ϕ ′ (z k )(∆(ξ k )) -1 [ϕ(z k ) -Ωz k ] ≤ 0, ( 7 
)
where ∆(ξ k )

△ = diag{δ l (ξ k )} ∈ R p×p is diagonal and positive.
By definition [START_REF] Zheng | Output feedback control of saturated discrete-time linear systems using parameter-dependent Lyapunov functions[END_REF], which is assumed in the sequel, the nonlinearity ϕ(•) globally verifies the sector condition [START_REF] Jungers | Finite L 2 -induced gain and λ-contractivity of discrete-time switching systems including modal nonlinearities and actuator saturations[END_REF], for any diagonal and positive matrix ∆(ξ k ).

Thus, ∆(ξ k ) represents a degree-of-freedom and can be an optimization variable. Notice, however, that in a more general case where there may exist dependencies among different components of ϕ(•), it could be possible to consider only the sector condition provided in [START_REF] Johansson | Observer-based strict positive real (spr) feedback control system design[END_REF][START_REF] Khalil | Nonlinear Systems -Third Edition[END_REF]:

ϕ ′ (z k )[ϕ(z k ) -Ωz k ] ≤ 0, by restricting the degree-of-freedom ∆(ξ k ) to ∆(ξ k ) = δ(ξ k )I p
. Ω, which is independent on the parameter ξ k , is given by the designer and assumed to be known in the following.

The control inputs are bounded in amplitude, and the standard saturation function is considered:

sat(u(t)) (l) = sat(u (l) (t)) = sign(u (l) (t)) min(ρ (l) , |u (l) (t)|), (8) 
∀l = 1, . . . , m, where ρ (l) > 0 denotes the symmetric amplitude bound relative to the l-th control.

Throughout this work, we assume that the vector ρ is fixed and predefined and in addition that the current parameter vector, ξ k , is available in real time (measured or estimated). Thus, by extending the kind of control law provided in [START_REF] Castelan | Absolute stabilization of discretetime systems with a sector bounded nonlinearity under control saturations[END_REF][START_REF] Castelan | Stability and stabilization of a class of uncertain nonlinear discrete-time systems with saturating actuators[END_REF], the following gain scheduled control law is considered:

u k = K(ξ k )y k + Γ(ξ k )ϕ(z k ) = K(ξ k )Cx k + Γ(ξ k )ϕ(z k ) (9) 
where the m × q-matrix K(ξ k ) is a gain scheduled output feedback and the m × p-matrix Γ(ξ k ) is a gain scheduled feedback associated to the nonlinearity ϕ(.). Thus, with non trivial Γ(ξ k ), this feedback control law requires either the knowledge of ϕ(.) or its availability as a signal [START_REF] Arcak | Circle and popov criteria as tools for nonlinear feedback designs[END_REF]. The corresponding closed-loop system reads:

x k+1 = A(ξ k )x k + G(ξ k )ϕ(z k ) + B(ξ k )sat (K(ξ k )y k + Γ(ξ k )ϕ(z k )) . (10) 
In the sequel the following problem is considered:

Problem 1 (Robust stabilization under saturating actuators)

Determine gain scheduled feedback matrices K(ξ k ) and Γ(ξ k ) and a region S 0 ⊆ R n , as large as possible, such that for any initial condition x 0 ∈ S 0 the origin of the corresponding TVP-dependent closed-loop system (10) is uniformly asymptotically stable for any ϕ(.) verifying the sector condition [START_REF] Jungers | Finite L 2 -induced gain and λ-contractivity of discrete-time switching systems including modal nonlinearities and actuator saturations[END_REF] and for any sequency {ξ k } k∈N .

Before presenting the main result associated with Problem 1, some technical lemmas and definitions are pointed out in the following section.

Preliminaries

Consider the generic dead-zone nonlinearity Ψ(u k ) = u ksat(u k ). By considering u k given by ( 9), we can rewrite the closed-loop system (10) under the form

x k+1 = A cl (ξ k )x k + G cl (ξ k )ϕ(z k ) -B(ξ k )Ψ(u k ), (11) 
where

A cl (ξ k ) = A(ξ k ) + B(ξ k )K(ξ k )C and G cl (ξ k ) = G(ξ k ) + B(ξ k )Γ(ξ k ).
The following Lemma will be used to consider the dead-zone as a nonlinearity belonging to a generalized sector condition. For given ξ k -dependent matrices

H(•) ∈ R m×n and F (•) ∈ R m×p , consider the set S(H(•), F (•), ρ) defined by x ∈ R n | -ρ ≤ H(ξ)x -F (ξ)ϕ L(ξ)x k ≤ ρ ; ∀ξ ∈ Ξ . ( 12 
) Lemma 2 Consider ξ k -dependent m × q-matrix K(•), m × n-matrix E 1 (•) and m × p-matrices Γ(•), E 2 (•) and note H(•) = K(•)C -E 1 (•) and F (•) = Γ(•) -E 2 (•). If x k is an element of S(H(•), F (•), ρ), then by noting u k = K(ξ k )y k + Γ(ξ k )ϕ(z k ), the nonlinearity Ψ(u k ) satisfies the following inequality Ψ(u k ) ′ T (ξ k ) -1 Ψ(u k ) -E 1 (ξ k )x k -E 2 (ξ k )ϕ(z k ) ≤ 0 ( 13 
)
for any diagonal positive definite matrix T (ξ k ) ∈ R m×m .

Proof: It follows the same lines as the one of Lemma 1 in [START_REF] Tarbouriech | Anti-windup strategy with guaranteed stability for linear systems with amplitude and dynamics restricted actuator[END_REF] (see also [START_REF] Montagner | Improved estimation of stability regions for uncertain linear systems with saturating actuators: an LMI-based approach[END_REF]). 2

Let us consider a Parameter Dependent Lyapunov Function (PDLF) defined by V :

               R n × Ξ -→ R + , (x k , ξ k ) -→ V (x k , ξ k ). ( 14 
)
The Parameter Dependent Level Set (PDLS) associated to V is given by

L V △ = x k ∈ R n | V (x k , ξ k ) ≤ 1 , ∀ξ k ∈ Ξ ( 15 
)
The notion of contractive sets is basic for determining regions of asymptotic stability for the saturating closed-loop system [START_REF] Tarbouriech | Anti-windup strategy with guaranteed stability for linear systems with amplitude and dynamics restricted actuator[END_REF]. The following definition of contractivity is adapted to consider both the parameter uncertainties and the sector bounded characterization of nonlinearity ϕ(.).

Definition 3

The PDLS L V is robustly absolutely contractive with respect to the trajectories of system [START_REF] Tarbouriech | Anti-windup strategy with guaranteed stability for linear systems with amplitude and dynamics restricted actuator[END_REF], if ∀x k ∈ L V , ∀ξ k ∈ Ξ and ∀ϕ(.) ∈ [0 p , Ω],

V (x k+1 , ξ k+1 ) -V (x k , ξ k ) < 0. ( 16 
)
To provide the desired (local) stabilization conditions, we consider in the sequel the class of PDLF of the form

V (x k , ξ k ) = x ′ k Q -1 (ξ k )x k , with Q(ξ k ) = N i=1 ξ k(i) Q i , Q i = Q ′ i > 0. ( 17 
)
It is noteworthy that the PDLF is not linear with respect to the uncertainty ξ k as usual in dedicated literature.

Lemma 4

The PDLS L V (15), associated with the considered PDLF class [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF], verifies:

L V = ξ k ∈Ξ E(Q -1 (ξ k )) = i∈{1,••• ,N } E(Q -1 i ) (18) Proof: x ∈ L V ⇔ ∀ξ ∈ Ξ, V (x, ξ) < 1 ⇔ x ∈ ξ k ∈Ξ E(Q -1 (ξ k )). In addi- tion, ξ k ∈Ξ E(Q -1 (ξ k )) ⊂ i∈{1,••• ,N } E(Q -1 i ).
On the other hand, to prove that

i∈{1,••• ,N } E(Q -1 i ) ⊂ ξ k ∈Ξ E(Q -1 (ξ k )), consider x ∈ i∈{1,••• ,N } E(Q -1 i ), then ∀i = 1, • • • , N , x ′ Q -1 i x < 1, which is equivalent by Schur complement to         1 x ′ x Q i         > 0. Thus ∀ξ ∈ Ξ,         1 x ′ x Q(ξ)         > 0. This implies that x ∈ E(Q -1 (ξ)), ∀ξ ∈ Ξ, or x ∈ ξ∈Ξ E(Q -1 (ξ)). 2
The problem and the definitions of the used tools being set, two technical lemmas allowing to obtain the main theorem in Section 4, are presented.

Lemma 5 Consider, for i = 1, • • • , N , the existence of symmetric positive definite matrices Q i ∈ R n×n , positive diagonal matrices ∆ i ∈ R p×p and T i ∈ R m×m , matrices U i ∈ R n×n , Y 1,i ∈ R m×q , Z 1,i ∈ R m×n , W i ∈ R q×q and Y 2,i , Z 2,i ∈ R m×p such that ∀i, j = 1, • • • , N , in one hand: M ij =                     -Q i M 1 jj M 2 jj -B j T j ⋆ M 3 j U ′ j L ′ j Ω Z ′ 1,j ⋆ ⋆ -2∆ j Z ′ 2,j ⋆ ⋆ ⋆ -2T j                     < 0 ( 19 
)
and ∀i = 1, • • • , N , ∀j = 1, • • • , N -1 and ∀h = j + 1, • • • , N M ijh =                     -2Q i M 1 jh + M 1 hj M 2 jh + M 2 hj -B j T h -B h T j ⋆ M 3 j + M 3 h (U ′ j L ′ h + U ′ h L ′ j )Ω Z ′ 1,j + Z ′ 1,h ⋆ ⋆ -2(∆ j + ∆ h ) Z ′ 2,j + Z ′ 2,h ⋆ ⋆ ⋆ -2(T j + T h )                     < 0, ( 20 
)
where

M 1 jh = A j U h +B j Y 1,h C; M 2 jh = G j ∆ h +B j Y 2,h and M 3 j = Q j -U j -U ′ j .
And, in the other hand:

W i C = CU i , ∀i = 1, • • • , N. (21) 
Furthermore, by assuming that x k is such that ( 7) and ( 13) are both verified, then the gain scheduled output control ( a priori not linear with respect to ξ k )

u k = K(ξ k )y k +Γ(ξ k )ϕ(z k ) = Y 1 (ξ k )(W (ξ k )) -1 y k +Y 2 (ξ k )(∆(ξ k )) -1 ϕ(z k ), (22) 
with

Y 1 (ξ k ) Y 2 (ξ k ) U (ξ k ) ∆ (ξ k ) Z 1 (ξ k ) Z 2 (ξ k ) W (ξ k ) = N i=1 ξ k(i) Y 1,i Y 2,i U i ∆ i Z 1,i Z i,2 W i ( 23 
)
implies the inequality [START_REF] Hu | Composite quadratic lyapunov functions for constrained control systems[END_REF].

Proof: As C is full row rank and Q i positive definite, it follows from (21) that

W i is full rank for all i = 1, • • • , N . This yields B(ξ k )Y (ξ k )C = B(ξ k )Y (ξ k )W -1 (ξ k )CU (ξ k ) = B(ξ k )K(ξ k )CU (ξ k ).
By summing

M(ξ k , ξ k+1 ) = N i,j=1 ξ k+1,(i) ξ 2 k,(j) M ij + N i=1 N -1 j=1 N h=j+1 ξ k+1,(i) ξ k,(j) ξ k,(h) M ijh , (24) 
by using definitions [START_REF] Castelan | Synthesis of output feedback controllers for a class of nonlinear parameter-varying discretetime systems subject to actuators limitations[END_REF], and by introducing K(ξ k ) and Γ(ξ k ) as defined by [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] and the changes of variables of gain-scheduled matrices

E 1 (ξ k ) = Z 1 (ξ k )(U (ξ k )) -1 ; E 2 (ξ k ) = Z 2 (ξ k )(∆(ξ k )) -1 , (25) 
we obtain

M(ξ k , ξ k+1 ) =                     -Q(ξ k+1 ) A cl (ξ k )U (ξ k ) G cl (ξ k )∆(ξ k ) -B(ξ k )T (ξ k ) ⋆ Q(ξ k ) -U (ξ k ) -U ′ (ξ k ) U ′ (ξ k )L ′ (ξ k )Ω Z ′ 1 (ξ k ) ⋆ ⋆ -2∆(ξ k ) Z ′ 2 (ξ k ) ⋆ ⋆ ⋆ -2T (ξ k )                     < 0. ( 26 
)
From this last inequality, following [START_REF] Daafouz | Parameter dependent lyapunov functions for discrete time systems with time varying parametric uncertainties[END_REF], we deduce that

U ′ (ξ k )Q -1 (ξ k )U (ξ k ) ≥ U (ξ k ) + U ′ (ξ k ) -Q(ξ k ). ( 27 
)
Using Inequality [START_REF] Kim | Network-delay-dependent h ∞ control of systems with input satuaration[END_REF] and the change of basis diag[I;

U -1 (ξ k ); ∆ -1 (ξ k ); T -1 (ξ k )]
leads to a matrix inequality which can reformulated by Schur complement by

              A ′ cl (ξ k ) G ′ cl (ξ k ) -B ′ (ξ k )               Q -1 (ξ k+1 )               A ′ cl (ξ k ) G ′ cl (ξ k ) -B ′ (ξ k )               ′ -               Q -1 (ξ k ) L ′ (ξ k )Ω∆ -1 (ξ k ) E ′ 1 (ξ k )T -1 (ξ k ) ⋆ -2∆ -1 (ξ k ) E ′ 2 (ξ k )T -1 (ξ k ) ⋆ ⋆ -2T -1 (ξ k )               < 0. ( 28 
)
By multiplying this last inequality at left by [ x ′ k ϕ ′ (z k ) ψ ′ (u k ) ] and at right by its transpose, one has

V (x k+1 , ξ k+1 ) -V (x k ; ξ k ) -2ϕ ′ (z k )(∆(ξ k )) -1 [ϕ(z k ) -Ωz k ] -2Ψ(u k ) ′ T (ξ k ) -1 Ψ(u k ) -E 1 (ξ k )x k -E 2 (ξ k )ϕ(x k ) < 0. ( 29 
)
The assumption [START_REF] Hu | An analysis and design method for linear systems subject to actuator saturation and disturbance[END_REF] and the sector condition [START_REF] Jungers | Finite L 2 -induced gain and λ-contractivity of discrete-time switching systems including modal nonlinearities and actuator saturations[END_REF] imply the relation ( 16). 2 Lemma 6 Consider, for i = 1, • • • , N , that there exists symmetric positive definite matrices 21) hold and inequalities:

Q i ∈ R n×n , positive diagonal matrices ∆ i ∈ R p×p , matrices U i ∈ R n×n , Y 1,i ∈ R m×q , W i ∈ R q×q , Z 1,i ∈ R m×n and Y 2,i , Z 2,i ∈ R m×p such that ∀i = 1, • • • , N and ∀l = 1, • • • , m equalities (
N i,l =               -Q i + U i + U ′ i ⋆ ⋆ -ΩL i U i 2∆ i ⋆ (Y 1,i C -Z 1,i ) (l) (Y 2,i -Z 2,i ) (l) ρ 2 (l)               > 0 (30) 
and ∀i = 1, • • • , N -1, ∀j = i + 1, • • • N and ∀l = 1, • • • , m: N ij,l =               -Q i -Q j + U i + U j + U ′ i + U ′ j ⋆ ⋆ -Ω(L i U j + L j U i ) 2(∆ i + ∆ j ) ⋆ (Y 1,i C -Z 1,i + Y 1,j C -Z 1,j ) (l) (Y 2,i -Z 2,i + Y 2,j -Z 2,j ) (l) 2ρ 2 (l)               > 0. (31) 
Then

L V ⊂ S(H(•), F (•), ρ), (32) 
where

H(ξ) = K(ξ)C -E 1 (ξ) and F (ξ) = Γ(ξ) -E 2 (ξ) with definitions (22)
and [START_REF] Åström | Computer-Controlled Systems[END_REF].

Proof: By summing

N l (ξ k ) = N i=1 ξ 2 k,(i) N i,l + N -1 i=1 N i=p+1 ξ k,(i) ξ k,(p) N ip,l , (33) 
and due to inequality [START_REF] Kim | Network-delay-dependent h ∞ control of systems with input satuaration[END_REF], the change of base diag[U -1 (ξ k ); ∆ -1 (ξ k ); 1] leads to a matrix inequality, which writes by Schur complement

        -Q -1 (ξ k ) ⋆ -∆ -1 (ξ k )ΩL(ξ k ) 2∆ -1 (ξ k )         - 1 ρ 2 (l)         H ′ (l) (ξ k ) F ′ (l) (ξ k )           H (l) (ξ k ) F (l) (ξ k )   > 0. (34) 
By multiplying this last inequality at left by [ x ′ k ϕ ′ (z k ) ] and at right by its transpose, one has

V (x k , ξ k ) + 2ϕ ′ (z k )(∆(ξ k )) -1 [ϕ(z k ) -ΩL(ξ k )x k ] - 1 ρ 2 (l) H (l) (ξ k )x k -F (l) (ξ k )ϕ(z k ) 2 ≥ 0. (35)
Hence, by considering the sector condition [START_REF] Jungers | Finite L 2 -induced gain and λ-contractivity of discrete-time switching systems including modal nonlinearities and actuator saturations[END_REF], it follows that:

V (x k , ξ k ) ≥ 1 ρ 2 (l) H (l) (ξ k )x k -F (l) (ξ k )ϕ(z k ) 2 . ( 36 
)
For all x k ∈ L V , V (x k , ξ k ) < 1, which implies that x k ∈ S(H(•), F (•), ρ). We obtain the relation (32). 2

The PDLS L V is then the set S 0 of initial condition x 0 of uncertain closedloop system which is uniformly asymptotically stable for any non-linearity ϕ(•)

verifying the sector condition [START_REF] Jungers | Finite L 2 -induced gain and λ-contractivity of discrete-time switching systems including modal nonlinearities and actuator saturations[END_REF]. This set L V is convex, because this is the intersection of convex sets. However, contrary as mentioned in [START_REF] Hu | Composite quadratic lyapunov functions for constrained control systems[END_REF], L V cannot be formulated in the general case as a convex hull of different ellipsoidal sets.

Control design via convex programming

The optimization problem consists in determining a control defined by [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF], with the largest set L V = S 0 , under the constraints ( 19), ( 20), ( 30) and [START_REF] Daafouz | Parameter dependent lyapunov functions for discrete time systems with time varying parametric uncertainties[END_REF]. For obtaining the largest set L V , we consider a √ α-radius ball included into L V :

E 1 α I = {x ∈ R n ; x ′ x ≤ α} ⊂ L V = S 0 . ( 37 
)
This inclusion is equivalent to

E 1 α I ⊂ E(Q -1 i ), ∀i = 1, • • • , N , or (by noting µ = 1 α
; see [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]) to:

        µI n I n I n Q i         > 0, ∀i = 1, • • • , N. (38) 
Thus, the following convex programming problem is proposed in the main Theorem:

Theorem 7 By considering symmetric positive definite matrices 20), ( 30), ( 31) and (38) and to equalities [START_REF] Bara | Static output feedback stabilization with H ∞ performance for linear discrete-time systems[END_REF].

Q i ∈ R n×n , positive diagonal matrices ∆ i ∈ R p×p , matrices U i ∈ R n×n , Y 1,i ∈ R m×q , W i ∈ R q×q , Z 1,i ∈ R m×n and Y 2,i , Z 2,i ∈ R m×p , for i = 1, • • • , N and a scalar µ ∈ R, the convex optimization problem min W i ,Q i ,U i ,∆ i ,T i ,Z 1,i ,Z 2,i ,Y 1,i ,Y 2,i µ subject to LMIs (19), (
leads to a gain-scheduled control law represented by [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF], solution of Problem 1.

Proof: The proof is straightforward by using Lemmas 5 and 6 and Inclusion (37), with µ = 1 α . 2

Notice that a gain scheduled m × n state-feedback K(ξ k ) is recovered in [START_REF] Arcak | Feasibility conditions for circle criterion designs[END_REF] by considering q = n and C = I n , i.e. y k = x k . This implies that W i = U i , due to equalities [START_REF] Bara | Static output feedback stabilization with H ∞ performance for linear discrete-time systems[END_REF] and thus that equalities [START_REF] Bara | Static output feedback stabilization with H ∞ performance for linear discrete-time systems[END_REF] and variables W i cannot be considered in Theorem 7.

Remark 8

The framework proposed to find a solution to the stabilization problem can be extended in different ways to cope with other control problems, as for instance ones related to L 2 -gain and λ-contractivity [START_REF] Jungers | Finite L 2 -induced gain and λ-contractivity of discrete-time switching systems including modal nonlinearities and actuator saturations[END_REF]. Notice also that, at least conceptually, it can be possible to develop a similar gain scheduling solution to the stabilization problem by using the polytopic representation of the saturation nonlinearity [START_REF] Hu | Control systems with actuator saturation. Analysis and design[END_REF][START_REF] Zheng | Output feedback control of saturated discrete-time linear systems using parameter-dependent Lyapunov functions[END_REF]. This potential solution would imply more complex conditions, numerically or even for implementation [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF].

Numerical example

Consider the following data for system (2)-( 7), with N = 2:

A 1 =         -1.1 0.4 -0.2 1.1         , A 2 =         -0.2 0.7 0.6 1.3         , B 1 =         0 1.2         , B 2 =         0 1.3         , G 1 =         0.6 0         , G 2 =         1.6 0         , L 1 =   0 1.1   , L 2 =   0 0.9   , ρ = 1 2 .
The nonlinearity ϕ verifying the sector condition with Ω = 0.7 is given by ϕ(z) = 0.3z(1 + sin(z)). Both cases C = [1 1] and C = I 2 are considered and we obtain respectively µ = 2.60 and µ = 1.60.

In Figure 1, the sets E(Q -1 1 ) and E(Q -1 2 ) corresponding to the above syn- thesis result are plotted with symbol '+'. The solid lines denotes several sets E(Q -1 (ξ)), for several parameters ξ ∈ Ξ, uniformely distributed. Finally the solid sphere denotes the largest sphere E(µI), included in the intersection of

E(Q -1 1
) and E(Q -1 2 ). The set S 0 = L V is depicted by the intersection of both ellipsoids E(Q -1 1 ) and E(Q -1 2 ).

For the case C = [1 1], we consider an initial state belonging to L V /E(µI 2 ). The obtained trajectory is plotted with the control u k and its saturation sat(u k )

on Figure 2, with respect to the discrete time, for an arbitrary sequence of TVP ξ k . The saturation sat(u k ) is emphasized at the first sampled times.

Finally, in order to emphasize the efficient improvement of our method with respect to the literature, the conservative method provided in [START_REF] Castelan | Stability and stabilization of a class of uncertain nonlinear discrete-time systems with saturating actuators[END_REF] leads to µ = 2.09, that is 30% greater than µ obtained using our proposed approach for C = I 2 .

Conclusion

This paper provides a gain-scheduled output control design for systems coping with nonlinear time-varying parameter dependent systems subject to saturated actuators. The nonlinearity is taken into account by a cone bounded sector. The proposed LMI conditions are based on the use of a parameter dependent Lyapunov function and a modified sector condition for representing the saturation nonlinearity. The control design problem is formulated as an optimization problem under LMI conditions and Linear Matrix Equalities. Its resolution leads to a solution less conservative than the ones available in the literature.

Fig. 1 .

 1 Fig. 1. Sets E(Q -1 1 ) and E(Q -1 2 ) obtained from the optimization problem, and largest sphere included in L V for C = [2 3] (left) and C = I 2 (right).

Fig. 2 .

 2 Fig. 2. A particular trajectory: a) state components (x 1 with '+'; x 2 with '×'); b) control u k with '+' and saturated control sat(u k ) with '×'.