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ON THE GENERALISED TATE CONJECTURE FOR PRODUCTS OF ELLIPTIC CURVES OVER FINITE FIELDS

 concerning the Tate conjecture. We prove it in full if the elliptic curves run among at most 3 isogeny classes. We also show how things become more intricate from H 4 onwards, for more that 3 isogeny classes.

Let F q be a finite field. It is known that the Tate conjecture for all smooth projective varieties over F q implies the generalised Tate conjecture for all smooth projective varieties over F q ([3, Rk. 10. [START_REF] Kahn | Zeta functions and motives[END_REF] 2)], [6, §1]); however, the proofs in these two references are non-effective. It is therefore of interest to ask if one can prove the generalised Tate conjecture for certain explicit classes of F q -varieties.

In [START_REF] Spiess | Proof of theTate conjecture for products of elliptic curves over finite fields[END_REF], Michael Spiess proved the Tate conjecture for products of elliptic curves over a finite field: this provides a natural candidate for such a class. In this note, we show that a slight modification of his argument does yield the generalised Tate conjecture, in cohomological degree 3 or if the elliptic curves run over at most 3 distinct isogeny classes.

Contrary to [START_REF] Kahn | Zeta functions and motives[END_REF] and [6], the proofs do not appeal to Honda's existence theorem [START_REF] Kahn | Honda Isogeny classes of abelian varieties over finite fields[END_REF]. This theorem appears, however, when studying H 4 of a well-chosen product of 4 elliptic curves: this is directly related to the delicate combinatorics of Weil numbers 1 ; we illustrate the noneffectiveness of the arguments from [START_REF] Kahn | Zeta functions and motives[END_REF] and [6] in this case.

Theorem 1. Let X be a product of elliptic curves over F q . Then the generalised Tate conjecture holds for H 3 ( X, Q l ): the subspace of Tate coniveau 1 coincides with the first step of the coniveau filtration.

Let q = p r for p be a prime number and r ≥ 1. As in [START_REF] Spiess | Proof of theTate conjecture for products of elliptic curves over finite fields[END_REF], we write [ρ] for the ideal generated by an algebraic integer ρ. As in [START_REF] Spiess | Proof of theTate conjecture for products of elliptic curves over finite fields[END_REF]Def. Date: Jan. 7, 2011. 1 The corresponding computation seems in contradiction with the one from [START_REF] Kowalski | Some local-global applications of Kummer theory[END_REF]Claim p. 130].

1 1], we also say that a Weil q-number α is elliptic if it arises from the Frobenius endomorphism of an elliptic curve over F q . There are two kinds of elliptic Weil q-numbers: the supersingular ones, of the form ±p r/2 and the ordinary ones, which generate a quadratic extension of Q in which p is totally decomposed. In the latter case, if [p] = p 1 p 2 , then [START_REF] Kahn | Honda Isogeny classes of abelian varieties over finite fields[END_REF] [α] = p r 1 or p r

2

(compare [7, Lemma 2].)

The main lemma is:

Lemma 2. Let α 1 , α 2 , α 3 be 3 elliptic Weil q-numbers, generating a multiquadratic number field K/Q. Suppose that

[α 1 α 2 α 3 ] = [qβ]
with β an algebraic integer. Then there exist i = j such that

[α i α j ] = [q].
Proof. If two of the α i are supersingular the assertion is obvious. Thus we may assume that at least two of the α i are ordinary.

Case 1: one of the α i , say [START_REF] Kahn | Honda Isogeny classes of abelian varieties over finite fields[END_REF] as in [7, proof of Lemma 3], either α 1 and α 2 generate the same quadratic field and then [α 1 ] = [α 2 ], or α 1 and α 2 generate a biquadratic extension K/Q in which [p] = q 1 q 2 q 3 q 4 and then without loss of generality, [α 1 ] = (q 1 q 2 ) r and [α 2 ] = (q 1 q 3 ) r .) If r > 1, we get a contradiction. If r = 1, we have the equation [α

α 3 , is supersingular. If [α 1 α 2 ] = [q], one sees that [α 1 α 2 ] is not divisible by [p]. (Using
1 α 2 ] = [ √ pβ] in K( √ p). Since p is totally ramified in Q( √ p), the prime divisors of [p] in K are totally ramified in K( √ p)
and we get a new contradiction.

Case 2: all the α i are ordinary. We assume again that the conclusion of the lemma is violated, and show that [α 1 α 2 α 3 ] is then not divisible by [p].

If (say) α 1 and α 2 generate the same quadratic field, then as seen in Case 1, [α 1 ] = [α 2 ] and [α 1 α 2 α 3 ] is not divisible by [p]. Suppose now that the α i generate three distinct imaginary quadratic fields. In particular,

[K : Q] ≥ 4. If [K : Q] = 4, then K = Q(α 1 , α 2 ) (
say) and α 1 , α 2 generate two distinct quadratic subextensions of K. Then α 3 must generate the third quadratic subextension: but this is impossible because the latter is real. Thus [K : Q] = 8.

We now set up some notation. Let G = Gal(K/Q) ≃ (Z/2) 3 , and let X(G) be the character group of G. The quadratic subextensions generated by α 1 , α 2 , α 3 correspond to characters χ 1 , χ 2 , χ 3 forming a basis of X(G). Let (σ 1 , σ 2 , σ 3 ) be the dual basis of G. Finally, let c ∈ G be the complex conjugation: since χ i (c) = 1 for all i, we find that c = σ 1 σ 2 σ 3 . Note that, since the α i are Weil q-numbers, we have α i α c i = q. Since p is totally decomposed in all Q(α i ), it is totally decomposed in K. Pick a prime divisor p of [p]. We then have

[p] = p σ∈G σ .
Since α 1 is invariant under σ 2 and σ 3 , we find from (1), up to changing α 1 to α c 1 :

[α 1 ] = p r(1+σ 2 )(1+σ 3 ) and similarly:

[α 2 ] = p r(1+σ 1 )(1+σ 3 ) , [α 3 ] = p r(1+σ 1 )(1+σ 2 ) . We now compute: [α 1 α 2 α 3 ] = p rm , with m = (1 + σ 2 )(1 + σ 3 ) + (1 + σ 1 )(1 + σ 3 ) + (1 + σ 1 )(1 + σ 2 ) = 3 + 2(σ 1 + σ 2 + σ 3 ) + σ 2 σ 3 + σ 1 σ 3 + σ 1 σ 2 .
This shows that p rm is not divisible by [p] (the summand

σ 1 σ 2 σ 3 is missing). Similarly, [α 1 α 2 α c 3 ] = p rm ′ with m ′ = (1 + σ 2 )(1 + σ 3 ) + (1 + σ 1 )(1 + σ 3 ) + c(1 + σ 1 )(1 + σ 2 ) = 2 + σ 1 + σ 2 + 3σ 3 + 2σ 1 σ 3 + 2σ 2 σ 3 + σ 1 σ 2 σ 3
and p rm ′ is not divisible by [p] (the summand σ 1 σ 2 is missing). The other possible products reduce to those by permutation of the α i and conjugation by c: the proof is complete.

Proof of Theorem 1. It is sufficient to prove the equality after tensoring with a large enough number field K, Galois over Q. We first observe that the Frobenius action on H * ( X) := H * ( X, Q l ) ⊗ K is semi-simple since X is an abelian variety (compare [2, Lemma 1.9]). Let v be an eigenvector of Frobenius, with eigenvalue ρ. Since H 3 ( X) = Λ 3 H 1 ( X) and X is a product of elliptic curves, v is a sum of vectors of the form v 1 ∧ v 2 ∧ v 3 where v i ∈ H 1 ( X) is an eigenvector with Frobenius eigenvalue α i with α 1 α 2 α 3 = ρ, α i corresponds to an elliptic curve E i and v i comes from H 1 ( Ēi ) ֒→ H 1 ( X). Suppose ρ is divisible by q. Without loss of generality, we may assume that v is a single vector

v 1 ∧ v 2 ∧ v 3 . By Lemma 2, up to renumbering we have [α 1 α 2 ] = [q]. As in [7, Corollary p. 288], there is an integer N ≥ 1 such that (α 1 α 2 ) N = q N .
By the Tate conjecture in codimension 1 for 1) is of the form cl(γ) where γ is a cycle of codimension 1 on Ē1 × Ē2 and cl is the cycle class map. Hence v⊗Q l (1) = cl(π * γ)•v 3 , with π : X → E 1 ×E 2 the projection. Theorem 3. Let X be a product of elliptic curves, belonging to at most 3 distinct isogeny classes. Then the generalised Tate conjecture holds for X in all degrees and all coniveaux.

E 1 × E 2 (Deuring, cf. Tate [8]), v 1 ∧ v 2 ⊗ Q l (1) ∈ H 2 ( Ē1 × Ē2 )(
The proof is a variant of the one above: in the proof of Lemma 2, Case 2, the computation showing that [α

1 α 2 α 3 ] and [α 1 α 2 α c 3 ] are not divisible by [p] extends to show that [α n 1 1 α n 2 2 α n 3 3 ] and [α n 1 1 α n 2 2 (α c 3 ) n 3 ]
are not divisible by [p] for any nonnegative integers n 1 , n 2 , n 3 . This generalises Lemma 2 to any product of Weil q-numbers involved in the cohomology of X.

Finally, we show what problems arise when one tries to replace 3 by 4 in Theorem 1 or 3. Start again with three non isogenous ordinary elliptic curves E 1 , E 2 , E 3 , with Weil numbers α 1 , α 2 , α 3 . We retain the notation from Case 2 in the proof of Lemma 2. Apart from χ 1 , χ 2 and χ 3 , χ 1 χ 2 χ 3 is the unique character which does not vanish on c. In the corresponding quadratic subfield of K, there is the possibility of a new Weil q-number α 4 with [α 4 ] = p r(1+σ 1 σ 2 )(1+σ 1 σ 3 ) . This can actually be achieved provided r is large enough. Since the class group Cl(O K ) is finite, we may choose r such that p r is principal, say p r = [λ]. Then N K/Q (λ) = q (since K is totally imaginary) and we choose α 4 = λ (1+σ 1 σ 2 )(1+σ 1 σ 3 ) .

Up to increasing r, we may assume that the similar formulas hold for α 1 , α 2 and α 3 . By Honda's theorem [START_REF] Kahn | Honda Isogeny classes of abelian varieties over finite fields[END_REF], α 4 corresponds to a 4th (isogeny class of) elliptic curve

E 4 . Now α 1 α 2 α 3 α c 4 = λ m ′′ with m ′′ = m + c(1 + σ 1 σ 2 )(1 + σ 1 σ 3 ) = 3 + 2(σ 1 + σ 2 + σ 3 ) + σ 2 σ 3 + σ 1 σ 3 + σ 1 σ 2 + σ 1 σ 2 σ 3 (1 + σ 1 σ 2 + σ 1 σ 3 + σ 2 σ 3 ) = N + 2(1 + σ 1 + σ 2 + σ 3 ) with N = σ∈G σ. Thus α 1 α 2 α 3 α c 4 = qβ 2 , with β = λ (1+σ 1 +σ 2 +σ 3 ) .
This β is a new Weil q-number; it generates K since the isotropy group of [β] in G is trivial. By the Honda-Tate theorem, it corresponds to the isogeny class of a simple F q -abelian variety A of dimension 4 (see [8, p. 142 

formula (7)]).

Let us say that a Weil q-number γ is ordinary if gcd(γ, γ c ) = 1. This is equivalent to requiring that gcd(p, γ + γ c ) = 1, hence, by [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF]Prop. 7.1], that the corresponding abelian variety be ordinary. Let γ ∈ K be an ordinary Weil q-number. Since γγ c = q, the divisor of γ is of the form p rmγ , where m γ ∈ Z[G] is the sum of elements in a section of the projection G → G/ c . These sections form a torsor under the group of maps from G/ c to c , so there are 16 of them. Up to conjugation by c, we get 8. Among these 8, 4 are given by the kernels of the characters χ 1 , χ 2 , χ 3 and χ 1 χ 2 χ 3 , recovering α 1 , α 2 , α 3 and α 4 . Among the 4 remaining ones, there is the one defining β; since the isotropy group of [β] is trivial, the other ones are conjugate to it. We have exhausted the ordinary Weil q-numbers contained in K.

Let X = 4 i=1 E i . If we run the technique of proof of [START_REF] Kahn | Zeta functions and motives[END_REF] or [6] to try and prove the generalised Tate conjecture for N 1 H 4 ( X), we end up with a Tate cycle in H 6 ( X × Ā)(3). This Tate cycle is exotic in the sense that it is not a linear combination of products of Tate cycles of degree 2 (cf. [5, p. 136]), because the relation α 1 α 2 α 3 α c 4 (β 2 ) c = q 3 cannot be reduced to relations of degree 2. I have no idea if the Tate conjecture can be proven for X × A. Can the methods of [START_REF] Milne | The Tate conjecture for certain abelian varieties over finite fields[END_REF] be used to answer this question?
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