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ON THE GENERALISED TATE CONJECTURE FOR

PRODUCTS OF ELLIPTIC CURVES OVER FINITE

FIELDS

BRUNO KAHN

Abstract. We prove the generalised Tate conjecture for H
3 of

products of elliptic curves over finite fields, by slightly modifying
the argument of M. Spiess [5] concerning the Tate conjecture. We
prove it fully if the elliptic curves run among at most 3 isogeny
classes. We also show how things become more intricate from H

4

onwards, for more that 3 isogeny classes.

Let Fq be a finite field. It is known that the Tate conjecture for
all smooth projective varieties over Fq implies the generalised Tate
conjecture for all smooth projective varieties over Fq ([3, Rk. 10.3 2)],
[4, §1]); however, the proofs in these two references are non-effective.
It is therefore of interest to ask if one can prove the generalised Tate
conjecture for certain explicit classes of Fq-varieties.
In [5], Michael Spiess proved the Tate conjecture for products of

elliptic curves over a finite field: this provides a natural candidate for
such a class. In this note, we show that a slight modification of his
argument does yield the generalised Tate conjecture, in cohomological
degree 3 or if the elliptic curves run over at most 3 distinct isogeny
classes.
We also illustrate the non-effectiveness of the arguments from [3] and

[4] for H4 of a well-chosen product of 4 elliptic curves : it is directly
related to the delicate combinatorics of Weil numbers.

Theorem 1. Let X be a product of elliptic curves over Fq. Then the

generalised Tate conjecture holds for H3(X̄,Ql): the subspace of Tate

coniveau 1 coincides with the first step of the coniveau filtration.

Let q = pr for p be a prime number and r ≥ 1. As in [5, Def. 1], we
say that a Weil q-number α is elliptic if it arises from the Frobenius
endomorphism of an elliptic curve over Fq. There are two kinds of
elliptic Weil q-numbers: the supersingular ones, of the form ±pr/2 (r
even) and the ordinary ones, which generate a quadratic extension of
Q in which p is totally decomposed. In the latter case, if [p] = p1p2,
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then

(1) [α] = p
r
1 or pr2

(compare [5, Lemma 2].)
As in [5], we write [ρ] for the ideal generated by an algebraic integer

ρ. The main lemma is:

Lemma 2. Let α1, α2, α3 be 3 elliptic Weil q-numbers, generating a

multiquadratic number field K/Q. Suppose that

[α1α2α3] = [qβ]

with β an algebraic integer. Then there exist i 6= j such that

[αiαj ] = [q].

Proof. If two of the αi are supersingular the assertion is obvious. Thus
we may assume that at least two of the αi are ordinary.
Case 1: one of the αi, say α3, is supersingular. If [α1α2] 6= [q],

one sees that [α1α2] is not divisible by [p]. (Using (1) as in [5, proof
of Lemma 3], either α1 and α2 generate the same quadratic field and
then [α1] = [α2], or α1 and α2 generate a biquadratic extension K/Q in
which [p] = q1q2q3q4 and then without loss of generality, [α1] = (q1q2)

r

and [α2] = (q1q3)
r.) Since r is even, hence > 1, we get a contradiction.

Case 2: all the αi are ordinary. We assume again that the conclusion
of the lemma is violated, and show that [α1α2α3] is then not divisible
by [p].
If (say) α1 and α2 generate the same quadratic field, then as seen

in Case 1, [α1] = [α2] and [α1α2α3] is not divisible by [p]. Suppose
now that the αi generate three distinct imaginary quadratic fields. In
particular, [K : Q] ≥ 4. If [K : Q] = 4, then K = Q(α1, α2) (say) and
α1, α2 generate two distinct biquadratic subextensions of K. Then α3

must generate the third biquadratic subextension: but this is impossi-
ble because the latter is real. Thus [K : Q] = 8.
We now set up some notation. Let G = Gal(K/Q) ≃ (Z/2)3, and

let X(G) be the character group of G. The quadratic subextensions
generated by α1, α2, α3 correspond to characters χ1, χ2, χ3 forming a
basis of X(G). Let (σ1, σ2, σ3) be the dual basis of G. Finally, let
c ∈ G be the complex conjugation: since χi(c) = 1 for all i, we find
that c = σ1σ2σ3. Note that, since the αi are Weil q-numbers, we have
αiα

c
i = q.

Since p is totally decomposed in all Q(αi), it is totally decomposed
in K. Pick a prime divisor p of [p]. We then have

[p] = p
∑

σ∈G σ.
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Since α1 is invariant under σ2 and σ3, we find from (1), up to changing
α1 to αc

1:
[α1] = p

r(1+σ2)(1+σ3)

and similarly:

[α2] = p
r(1+σ1)(1+σ3), [α3] = p

r(1+σ1)(1+σ2).

We now compute: [α1α2α3] = prm, with

m = (1 + σ2)(1 + σ3) + (1 + σ1)(1 + σ3) + (1 + σ1)(1 + σ2)

= 3 + 2(σ1 + σ2 + σ3) + σ2σ3 + σ1σ3 + σ1σ2.

This shows that prm is not divisible by [p] (the summand σ1σ2σ3 is
missing). Similarly, [α1α2α

c
3] = prm

′

with

m′ = (1 + σ2)(1 + σ3) + (1 + σ1)(1 + σ3) + c(1 + σ1)(1 + σ2)

= 2 + σ1 + σ2 + 3σ3 + 2σ1σ3 + 2σ2σ3 + σ1σ2σ3

and prm
′

is not divisible by [p] (the summand σ1σ2 is missing). The
other possible products reduce to those by permutation of the αi and
conjugation by c: the proof is complete. �

Proof of Theorem 1. It is sufficient to prove the equality after tensoring
with a large enough number field K, Galois over Q. We first observe
that the Frobenius action on H∗(X̄) := H∗(X̄,Ql)⊗K is semi-simple
since X is an abelian variety (compare [2, Lemma 1.9]). Let v be an
eigenvector of Frobenius, with eigenvalue ρ. Since H3(X̄) = Λ3H1(X̄),
v is of the form v1 ∧ v2 ∧ v3 where vi ∈ H1(X̄) is an eigenvector with
Frobenius eigenvalue αi. Since X is a product of elliptic curves, each
αi corresponds to an elliptic curve Ei with each vi coming from Ei.
Suppose ρ is divisible by q. By Lemma 2, up to renumbering we have

[α1α2] = [q]. As in [5, Corollary p. 288], there is an integer N ≥ 1 such
that (α1α2)

N = qN .
By the Tate conjecture in codimension 1 for E1 × E2 (Deuring, cf.

Tate [6]), v1 ∧ v2 ⊗Ql(1) ∈ H2(Ē1 × Ē2)(1) is of the form cl(γ) where
γ is a cycle of codimension 1 on Ē1 × Ē2 and cl is the cycle class map.
Hence v⊗Ql(1) = cl(π∗γ)·v3, with π : X → E1×E2 the projection. �

Theorem 3. Let X be a product of elliptic curves, belonging to at most

3 distinct isogeny classes. Then the generalised Tate conjecture holds

for X in all degrees.

The proof is a variant of the one above: in the proof of Lemma 2,
Case 2, the computation showing that [α1α2α3] and [α1α2α

c
3] are not

divisible by [p] extends to show that [αn1

1 αn2

2 αn3

3 ] and [αn1

1 αn2

2 (αc
3)

n3]
are not divisible by [p] for any nonnegative integers n1, n2, n3. This
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generalises Lemma 2 to any product of Weil q-numbers involved in the
cohomology of X . �

Finally, we show what problems arise when one tries to replace 3 by
4 in Theorem 1 or 3. Start again with three non isogenous ordinary
elliptic curves E1, E2, E3, with Weil numbers α1, α2, α3. We retain the
notation from Case 2 in the proof of Lemma 2. Apart from χ1, χ2 and
χ3,

χ1χ2χ3

is the unique character which does not vanish on c. In the corre-
sponding quadratic subfield of K, there is the possibility of a new Weil
q-number α4 with

[α4] = p
r(1+σ1σ2)(1+σ1σ3).

This can actually be achieved provided r is large enough. Since the
class group Cl(OK) is finite, we may choose r such that pr is principal,
say pr = [λ]. Then NK/Q(λ) = q (since K is totally imaginary) and we

choose α4 = λ(1+σ1σ2)(1+σ1σ3).
Up to increasing r, we may assume that the similar formulas hold

for α1, α2 and α3.
By Honda’s theorem [1], α4 corresponds to a 4th (isogeny class of)

elliptic curve E4. Now α1α2α3α
c
4 = λm′′

with

m′′ = m+ c(1 + σ1σ2)(1 + σ1σ3)

= 3 + 2(σ1 + σ2 + σ3) + σ2σ3 + σ1σ3 + σ1σ2

+ σ1σ2σ3(1 + σ1σ2 + σ1σ3 + σ2σ3)

= N + 2(1 + σ1 + σ2 + σ3)

with N =
∑

σ∈G σ. Thus α1α2α3α
c
4 = qβ2, with

β = λ(1+σ1+σ2+σ3).

This β is a new Weil q number; it generates K since the isotropy
group of [β] in G is trivial. By the Honda-Tate theorem, it corresponds
to the isogeny class of a simple Fq-abelian variety A of dimension 4
(see [7, p. 142 formula (7)]).
Let γ be a Weil q-number contained in K. Since γγc = q, the divisor

of γ is of the form prmγ , where mγ ∈ Z[G] is the sum of elements in
a section of the projection G → G/〈c〉. These sections form a torsor
under the group of maps from G/〈c〉 to 〈c〉, so there are 16 of them.
Up to conjugation by c, we get 8. Among these 8, 4 are given by the
kernels of the characters χ1, χ2, χ3 and χ1χ2χ3, recovering α1, α2, α3

and α4. Among the 4 remaining ones, there is the one defining β; since
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the isotropy group of [β] is trivial, the other ones are conjugate to it.
We have exhausted the Weil q-numbers contained in K.
Let X =

∏4
i=1Ei. If we run the technique of proof of [3] or [4] to

try and prove the generalised Tate conjecture for F 1H4(X̄), we end up
with a Tate cycle in H8(X̄ × Ā)(4). This Tate cycle is exotic in the
sense that it is not a linear combination of products of Tate cycles of
degree 2 (cf. [7, p. 82]), because the relation

α1α2α3α
c
4(β

2)c = q2

cannot be reduced to relations of degree 2. I have no idea if the Tate
conjecture can be proven for X × A.
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