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Abstract. We present a methodology for the verification of reactive sys-
tems, and its application to a case study. Systems are specified using the
synchronous data flow language SIGNAL. As this language is based on an
equational approach (i.e. SIGNAL programs are constraint equations between
signals), it is natural to translate its Boolean part into a system of poly-
nomial equations over three values denoting true, false and absent. Using
operations in algebraic geometry on the polynomials, it is possible to check
properties concerning the system, such as liveness, invariance, reachability
and attractivity. We apply this method to the verification of the automatic
circuit breaking control system of an electric power transformer station. This
system handles the reaction to electrical defects on high voltage lines.

Keywords: Reactive systems, synchronous language, verification, case study.

1 Introduction

This paper presents a formal method for the verification of reactive real-time systems
and 1ts application to the case study of the controller of a power transformer station.
The specification of the controller is made in the real-time synchronized data-flow
language SIGNAL[10]. Its declarative style is based on equations defining the values
and the synchronizations of flows of data called signals. Schematically, processes are
systems of equations, and the compilation of a SIGNAL program involves transform-
ing the specification into an executable code solving this system of equations at each
reaction. Compilation performs the checking of the causal and temporal consistency
of the specification. Some statical properties can thus be proved by the compiler (this
part of the verification is only briefly mentioned in this paper; see [2] and [10] for
details). The original equational nature of SIGNAL makes that it relies on a formal
model in terms of polynomial dynamical equations systems, and the proof method
is based on the theory of algebraic geometry. This way, it is possible to prove a wide
variety of dynamical properties, such as liveness, invariance, reachability or atirac-
tivity [9, 5]. This paper focuses on the method for verification, based on this model,
and on 1ts application to a case study.

The formal method is applied to the verification of the automatic circuit-breaking
controller of an electric power transformer station. It concerns the response to electric
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defects on the lines traversing it. The functionality of the controller is to handle the
interruption of current, the redirection of supply sources, and the re-establishment of
current following an interruption. The objective is double: protecting the components
of the transformer itself, and minimizing the defect in the distribution of power in
terms of duration and size of the interrupted sub-network. This system has been
specified in SIGNAL and SIGNALGTE, which is a extension of the language, with the
notion of time intervals and preemptive tasks [11].

The remainder of this paper is organized as follows: Section 2 presents an outline
of the data-flow language SIGNAL, and of its model in polynomial dynamical systems.
The algebraic method dedicated to the verification of SIGNAL programs is described
in Section 3. Their application to the verification of the controller of a transformer
station is described in Section 4. Discussion on results and related work is given in
Section 5.

2 The SIGNAL language and its model

2.1 The SIGNAL equational language

SIGNAL [10] is built around a minimal kernel of operators. It manipulates signals
X, which denote unbounded series of typed values (x¢):er, indexed by time ¢ in a
time domain 7. An associated clock determines the set of instants at which values
are present. A particular type of signals called event is characterized only by its
presence, and always has the value true (hence, its negation by not is always false).
The clock of a signal X is obtained by applying the operator event X. The constructs
of the language can be used in an equational style to specify the relations between
signals i.e., between their values and between their clocks. Systems of equations on
signals are built using a composition construct, thus defining processes. Data flow
applications are activities executed over a set of instants in time. At each instant,
input data i1s acquired from the execution environment; output values are produced
according to the system of equations considered as a network of operations.

Kernel of the SIGNAL language. It is based on four operations, defining primitive
processes or equations, and a composition operation to build more elaborate pro-
cesses 1n the form of systems of equations.

— Functions are transformations on data at an instant ¢. For example, the defi-
nition of a signal Y3 by the function f: V¢, ¥; = f(X1,, Xa,,..., Xp,) is encoded

in SIGNAL: Y := f{ X1, X2,..., Xn}. The signals Y, X1,..., Xn are constrained
to have the same clock.
— Selection of a signal X according to a boolean condition C is: Y := X when C.

If C is present and frue, then Y has the presence and value of X. The clock of Y
is the intersection of (i.e., included in) that of X and that of C at the value true.

— Deterministic merge noted: Z:= X default Y has the value of X when it is
present, or otherwise that of Y if it is present and X is not. Its clock is the union
of (i.e., includes) or contains those of X and Y.

— Delay gives access to past values of a signal. e.g., the equation ZX; = X;_1,
with initial value Vy defines a dynamical process. It 1s encoded by: ZX := X$1
with initialization ZX init V0. X and ZX have equal clocks.



— Composition of processes is noted “|” (for processes Py and Pa, with parenthe-
ses: (I Py | P2 1)). Tt consists in the composition of the systems of equations;
it is associative and commutative. It can be interpreted as parallelism between
processes; communication between them is carried by the broadcasting of signals.

Derived processes have been defined on the base of the primitive operators, pro-
viding programming comfort and modularity, e.g., the instruction synchro{X,Y}
specifies that signals X and Y are synchronous (i.e., have equal clocks); when B gives
the clock of true-valued occurrences of logical signal B; X cell B memorizes values of
X and also outputs them when B is true. Arrays of signals and of processes have been
introduced as well. Hierarchy and re-use of the definition of processes are supported
by the possibility of defining process models that can be invoked by instantiation.

Time intervals and preemptive tasks. A recent extension to SIGNAL (SIGNALGTV)
handles tasks executing on time intervals and their sequencing and preemption [13].
The notion of time interval has been introduced: it is entered (takes the value
inside) upon the occurrence of the start event, and is exited (takes the value
outside) upon the occurrence of an end event, and can then be entered again,
iteratively. Intervals have an initial state given by declaration. An interval is con-
structed by the statement: I:= 1B,E] init IO with initial value I0 ( inside or
outside). With this extension, we can define the notion of task on an interval,
which is a SIGNAL process active when the interval is inside, and inactive outside.
A suspensive taskis written P on I:it re-starts at its current state when re-entering
I. An interruptible taskis written P each I:it re-starts at its initial state (as defined
by the declarations of its state variables). Processes can themselves be decomposed
into sub-tasks: this way, the specification of hierarchies of preemptive behaviors is
possible.

This extension 1s implemented as a pre-processor to the SIGNAL compiler, and is
fully compatible with the environment, including the verification tools. In particular,
the intervals are coded by a boolean state variable, true when the interval is inside
and false when outside. Occurrences of a signal X inside an interval I are coded by
X when I.The specification of the power transformer station uses this extension [11].
This kind of specification, using tasks and intervals, is useful to specify properties
such as “two process are not active at the same time”. An example is given in
Section 4.2.

Verification tools for SIGNAL programs. The verification of a SIGNAL program can
concern invariant properties (to be satisfied at all instants of its execution) or dy-
namical properties (to be satisfied on the histories of the program). The first kind is
addressed by the compiler, which checks the consistency of constraints between the
clocks and proves these statical properties. Different phases occur during the com-
pilation of a SIGNAL program. One of these consists in the resolution of a system
of boolean equations, coding the constraints among the different clocks. This clock
calculus relies on an algebra on sets of instants detailed in [2]. In fact, the compiler
has to check the consistency on the constraints on the clocks of the different signals
of a SIGNAL program. This way, by composing the specification with the expression
in SIGNAL of a statical property (i.e., temporally invariant property), the compiler



checks if they are consistent w.r.t. each other. If so, their composition constitutes a
correct controller that satisfies the property. An example is given in Section 4.2.

The second kind of properties is addressed by a formal method, based on a model
of the behavior of the program presented in Section 2.2, and with which dynamical
properties of the system can be proved.

2.2 An equational model of the behaviors of SIGNAL programs

The equational nature of the SIGNAL language leads naturally to the use of a method
based on systems of polynomial dynamical equations over Z/37 as a formal model
of programs behavior. The systems of polynomial equations characterize sets of
solutions, which are states and events. The method consists in manipulating the
equation systems instead of the solutions sets, avoiding the enumeration of the state
space. This paper makes an overview presentation of results without recalling details
and proofs (see [9, 5, 8]).

Signals. In order to model its behaviors, a SIGNAL process is translated into a system
of polynomial equations over Z /57, i.¢. integers modulo 3: {-1,0,1} [8]. The principle
is to code the three possible states of a boolean signal X (i.e., present and true, or
present and false, or absent) in a signal variable x by:

present A false — —1

present A true — +1
absent — 0

For the non-boolean signals, we only code the fact that the signal is present or

absent: {parbesseenvit : :l(:)l . Note that the square of a present signal is 1, whatever its
value. Hence, for a signal X, its clock can be coded by x2. Thus, two synchronous
signals X and Y satisfy the constraint equation: £ = y?. This fact will be used

extensively in the following.

Primitive processes. Each of the primitive processes of SIGNAL can be encoded in
a polynomial equation. For example C := A when B, which means ”¢f b = 1 then
¢ =a else ¢ = 0”7 can be rewritten in ¢ = a(—b — b?): the solutions of this equation
are the set of possible behaviors of the primitive process when.

The delay $, which is a dynamical operator, i1s different because it requires
memorizing the past value of the signal into a state variable &. In order to encode

Y := X$1 init YO, we have to introduce the three following equations:
& =r+(1-2%)E(1)
y= & (2
§o = Yo (3)

Equation (1) describes what will be the next value £ of the state variable. If z is
present, £ is equal to z (because (1 —x?) = 0), otherwise ¢’ is equal to the last value
of #, memorized by &. Equation (2) gives to y the last value of z (i.e. the value of &)
and constrains the clocks y and z to be equal. Indeed, y* = £22?, and in Z/sg we
have 3 = z, i.e.x® = 22| so this leads to y? = £%2?; as €2 = 1 (because ¢ is always



present), we finally get y*> = 2%, Equation (3) corresponds to the initial value of &,

which is the initial value of y.

Table 1 shows how all the primitive operators are translated into polynomial

equations.

Boolean instructions
Y :=not X y = —x
z =ay(zy—z—y—1)
Z:=X and Y 2 5
=y
Z:=XorY z2:x§/(l—x—y—xy)
=y
Z :=X default Y = z+(1- x2)y
Z:=X when Y = a(—y—¢°)
& =a+(1—2%)¢
Y:=X $1 (init yo) y = z2¢
§o =¥o
non-boolean instructions
Yi=f(X1,...,.Xn) |9 = 55 == 2
Z :=X default Y 22 = 22 4 y2 — x2y2
Z:=X when Y 22 = 2 (—y —y?)
Y:=X $1 (init yo)|y® =

Table 1. Translation of the primitive operators.

Processes. By composing the equations representing the elementary processes; any
SIGNAL specification can be translated into a set of equations called polynomial
dynamical system. Using this encoding, the reaction events of the program, i.e. the
value of each of the m sitgnal variables and n state variables, are represented by a
vector in (Z/3Z)”+m. Formally, a polynomial dynamical system can be reorganized
into three sub-systems of polynomial equations of the form:

QY= 0
X' =P(X,Y)
QO(X) = 0

where:

— X is a set of n variables, called state variables, represented by a vector in
(Z/37)" ;

— Y is a set of m variables, called event variables, represented by a vector in
(Z/37)" ;

— X' = P(X,Y) is the evolution equation of the system; it can be considered as a
vectorial function [Py, ..., P,] from (Z/37)" "™ to (Z/37)". It groups all the
equations on the state variables, and characterizes the dynamical aspect of the
system ;



— Q(X,Y) = 0 is the constraints equation of the system, it is a vectorial equation
[@1,...,Qi]. It groups all the equations characterizing the statical aspect of the
system (invariant for all instants ¢) ;

— Qo(X) = 0is the initialization equation of the system, it is a vectorial equation
[Qo,, - -, Qo,]. It groups all the equations characterizing the initialization of the
system.

For example the following small process in SIGNAL,

process altern =
{? event A,B
'}
(I X := not ZX
| ZX := X$1
| synchro{A,when X}
| synchro{B,when ZX}
1)
where
logical X, ZX init false
end

is translated in the polynomial dynamical system with variable a, b, X and zx
corresponding to the events A, B and the logical signals X and ZX and a state
variable state introduced by the delay. The system consist of

— an initialization equation : state = —1,
— an evolution equation : state’ = x + (1 — 2?) * state
— and a system of constraint equation

v = —zx,ze = statexz? a® = when x,b> = when zx

A polynomial dynamical system can be seen as a finite transition system. The
initial states of this automaton are the solutions of the equation @¢(X) = 0. When
the system is in a state © € (Z/37)", any event y € (Z/37)" such that Q(z,y) =
0 can fire a transition. In this case, the system evolves to a state z’ such that
¥ = P(x,y).

Using this kind of representation and the operations explained in the next section,
we hope for the reduction of combinatoric explosion experienced with automata
composition. The number of states of the resulting automata is the product of the
number of states of each automaton. In contrast, the composition of two polynomial
dynamical systems is simply obtained by putting the equation together.

We thus have a mathematical model characterizing the behavior of dynamical
systems. In the perspective of analyzing these behaviors by the evaluation of the
satisfaction of properties, we need operations on polynomial systems, which corre-
spond to the manipulation of the sets of their solutions. This way we can express
ourselves about sets of behaviors, states and transitions, while still remaining in the
domain of polynomial functions, and not having to enumerate them.



3 Verifying SIGNAL programs

3.1 Operations on the polynomial dynamical systems

The theory of polynomial dynamical systems uses operations in algebraic geometry
such as varieties, ideals and morphisms. They are used to define the properties
of systems such as liveness, invariance and invariance under control. This section
presents the essential results of an extensive study [9, 8].

Description of the basic objects and operations. Let us define the quotient ring of
polynomial functions A[X,Y] = Z/37[X,Y]/(x5_x,ys_y) *: it is the set of polyno-
mials in Z /37 for which the degree in each variable is < 2 because of the fact that
X? = X. Let E be a set of event and state variables in (Z/37)"*™. The following
set of polynomials:

I(B)={pe A[X,Y] /¥(z,y) € E, p(z,y) = 0}

is called the ideal of E in A[X,Y]. This set represents all the polynomials, for which
the set E i1s a solution. In terms of dynamical systems, it represents the set of
equations characterizing the states and events in F.

Reciprocally, to any set of polynomials G, we can associate a set in (Z/3Z)”+m,
called the variety of G, defined as follows:

V(G) ={(z,y) € (Z/37)"™™ | Vp € G, plx,y) = 0}

This set represents all the solutions for a given set of polynomials. In terms of dynam-
ical systems, it represents the set of states and events admissible by the dynamical
systems in G.

The advantage of using ideals is that there exists a direct correspondence between
an ideal and the associated variety. In fact, we can easily prove that, in the quotient
ring A[X,Y]:

VII(E)) = Fand I(V(< G >)) =< G >

where, for a set of polynomials G, < G > is the set of all linear combinations of
polynomials in G: this means that their solutions include those of G. This way, we
can translate properties of sets into equivalent properties of associated 1deals of poly-
nomials. Hence, instead of manipulating explicitly and enumerating the states, this
approach manipulates the polynomial functions characterizing their sets. An other
important aspect is that an ideal can be represented by a single polynomial, called
the principal generator. This particularity is used in the practical implementation of
the algorithms on ideals [5].

For example, for the constraint equation @ of a polynomial dynamical system:
the equation Q(X,Y") = 0 represents a set of polynomial equations, decomposed as
follows:

Ql(X,Y) =0
QiX,Y) =0

2 X? — X (resp. Y? — Y) denotes all the polynomials X7 — X; (resp. Y — Yi).



If F is the set of solutions of this system of equations, it is clear that
E=V(<Q1,...,Q>)and I(F) =< Q1,...., Q1 > .

So instead of manipulating the set of solutions £ of the constraint equation, repre-
sented in our case by a variety, we can easily convert it into an ideal I(E), which
can be represented by a single polynomial. Thus, the relations between different sets
(e.g. inclusion or projection), can be translated into operations on polynomials.

Operations on dynamical behaviors. To capture the dynamical aspect of a polyno-
mial dynamical system, we introduce the notion of morphism and comorphism. A
morphism (often called in other community post-condition) is a polynomial func-
tion P from (Z/37)"t" to (Z/37)" (the evolution equation X' = P(X,Y) of the
system, for example).

With the morphism P, there is an associated comorphism P* from Z /37[X] to
Z/s71X,Y], defined by:

for a polynomial p € Z/47[X]:

P*(p(X)) = P*(p(X1, ... X))
= p(P(X,Y), ooy Pa(X,Y))

where Py, ..., P, are the components of P. In other words P*(p(X)) is obtained by
substituting every X; in p with the corresponding P;(X,Y"). In fact, the comorphism
(which is often called pre-condition) can be seen as a map computing the states from
which we can reach the states that are solutions of the evolution equations; it can be
used to take the transitions backwards.

Fig. 1. Representation of the comorphism P*

In Figure 1, F represents all the states from which all the states of E can be
reached with only one transition (F represents the set obtained by the application
of the comorphism on E), where X represents the set of states of the system.

This is the basic tool for analyzing transitions between states. But, we do not
have to compute this transition map, which has a very high computing complexity.
There are relations between varieties and ideals using morphisms and comorphisms
that are used to perform calculations on the properties of polynomial dynamical
systems.



3.2 Properties on the polynomial dynamical systems

Various properties of systems can be evaluated on such models using these oper-
ations; in this subsection we define several properties and give their expression in
terms of algebraic operators, such as they are established in [5].

Liveness. We say that a system is alive if and only if it can not be in a state from
which no transition can be taken, i.e. no deadlock can occur. This property states
that every trajectory of the system is infinite. In terms of polynomial dynamical
systems, this definition can be formalized as follows:

Definition1. — A state x is alive if there exists a signal y such that Q(z,y) =0
(i.e.a transition can be taken) ;
— A set of states V is alive if and only if every state of V' is alive ;
— A system is alive, if and only if V(#, y) such that Q(x,y) = 0, P(x,y) is an alive
state (i.e., from live states, only live states can be reached).

Using this definition, it can be proved [5] that the property of liveness of a system
can be stated as follows: P*(< Q@ > N Z/37[X]) C <Q>

Safety. Informally, whereas a liveness property stipulates that some good things do
happen, a safety property stipulates that some bad things do not happen during any
execution of the program [1]. In our case this kind of property covers the class of
properties, describing the set of good states which remains invariant. The definition
of an invariant set of states is as follows:

Definition 2. A subset F of states is invariant for a dynamical system, if and only
if for every state © € F and for every event y admissible in the state z, the state
¥ = P(z,y)isin E.

This way, if we describe a property by an equivalent set of states which verify it, the
property is always verified if and only if this equivalent set of states is invariant for
the dynamical system.

Using this definition, it has been proved [5] that the invariance of a property,
represented by a set of states E/, considering a polynomial dynamical system, can be
stated as: < P*(I(E)) > C < Q> + I(£)Z/g7[X,Y]. This notion is illustrated
in Figure 2(a). X is the set of the states of the system; the set Fy is the set of initial
states, and F represents the set of states, which verify the property. The arrows
correspond to the different possible trajectories of the system, which remain inside
the set F, because it 1s invariant.

It may happen that the property, represented by an equivalent set of states is
not invariant. In this case, it is interesting to compute the largest invariant sub-
set included in the set of states £ . This property is evaluated using a fix-point
computation.

Definition 3. A subset F of states is control-invariant for a dynamical system, if
and only if for every state © € F, there exists an event y admissible in the state x,
the state ' = P(x,y) is in E.



Fig. 2. Invariance (a) and invariance under control (b) of £ (from Ep)

Using Definition 3, it has been proved [5] that a sub-set F is control-invariant for
a dynamical system, if and only if: (< @ > + P*(I(F))) N Z/gz[X] C I(F). This
notion is illustrated in Figure 2(b). The dotted arrows correspond to the trajectories
of the system, which should be forbidden or inhibited by a controller in order to
obtain invariance. It 1s also possible to compute the largest control invariant sub-set
included in a given set F of states.

Other kinds of properties may be derived from the liveness, invariance and control
invariance properties.

Reachability and attractivity.

Definition4. A subset F' of states is reachable for a dynamical system, if and only
if every state © € F' can be reached from the initial states Ey of the considered
dynamical system 1.e., there exists a trajectory initialized in Ey that reaches z.

To prove this property, we use the largest invariant sub-set of a set, as described
before. Thus, a set of states I’ is reachable from the initial states of a polynomial
dynamical system if and only if the initial states are not included in the largest
invariant sub-set of the complement of F' (i.e., from the initial states, one is not
compelled to stay in states not verifying the property).

This notion is illustrated in Figure 3(b). The black arrows represent the trajec-
tories of the system, which reach the set of states F', whereas the dotted arrows
correspond to the trajectories, which never reach the set of states F'.

(a)

Fig. 3. Attractivity (a) and reachability (b) and of F w.r.t. £



Definition 5. A set of states F' is attractive for a set of states F, if and only if,
every trajectory initialized in F reaches F'.

Using the definition above, we can prove that F' 1s attractive for E if the set
FE is not included in the greatest control-invariant of the complement of F' (i.e., a
trajectory can not lead to an invariant set, which does not contain the set F', and
from which it is impossible to reach F'). This notion is illustrated in Figure 3(a).

This section made an overview of the method for the verification of properties,
with 1ts basic operators: set theoretic operators, fix-point computation, quantifiers
elimination. Using the algebraic methods, explained before, it is also possible to
express CTL formulae. The reader interested in the theoretical foundation of this
approach is referred to [9, 5, 8].

4 Application to a power transformer station

4.1 Specification of the power transformer station

The transformer stations on the power network. The French national power network,
operated by FElectricité de France (EDF), counts a large number of transformer
stations. For each high voltage line, a transformer lowers the voltage, so that it can
be distributed in urban centers to end-users [11]. In the course of exploitation of this
system, several kinds of electrical defects can occur, due to causes internal or external
to the station. Three types of electrical defects are considered: phase (PH), homopolar
(H), or wattmetric (W). In order to protect the device and the environment, several
circuit breakers are placed in different parts of the station. These circuit breakers
are alerted by sensors at different locations, and controlled by local control systems
called cells (arrival cell, link cells, and departure cells, see Figure 4) and by an
operator in a remote control center.

Higher Power

@/

arrival arrival
cell *’ circuit breaker

Transformer

cell ‘ " link circuit breaker
~N
departure departure
cell / circuit breaker

R B A

Distribution of the power to the users

Fig. 4. Topology of a power transformer station



Functional description of a departure cell. We will focus on one of these types of
cell: the departure cell, because it features all the interesting aspects of the con-
trollers behavior. It 1s decomposed in a confirmation process, which sequentially
tests for the different types of defect, followed by a treatment phase, consisting in
attempts at making the defect disappear. These behaviors feature sub-tasks which
are interrupted, in a nested way, and are repeated on series of activity intervals;
their specification makes use of the corresponding constructs of SIGNALGT: [11].
We only describe here the details necessary for the understanding of the verification
presented further.

The confirmation phase consists in detecting the first defect occurrence (event
First Defect) and from then on, for each of the defect types (PH, H, or W), and in
taking the time to let transient defects cease naturally, or else assess their persistent
presence. They are tested in sequence: from First Defect, interval I_PH is entered.
Associated with this interval, the confirmation task first waits until Delay PH is
elapsed, and then enters interval I_H in which a task first waits until Delay H is
elapsed, and then enters interval I_W in which a task waits until Delay_W is elapsed.
If in the meantime a defect is confirmed (i.e., PH, H or W is present at the end of the
corresponding delay), the sequence is interrupted (interval I_PH is ended), and the
defect is confirmed by emission of the boolean Def _Conf with value true. It is also
exited if the defect disappears: the last delay elapses without defect (with Def _Conf
at value false)emission of event Ext Def)A first property to be verified is that if a
defect is detected after the end of its corresponding delay then the defect is actually
confirmed (i.e., in the example of a PH-defect, if PH is present in the interval I_H,
then Def _Conf is actually emitted). A second property is that the confirmation is
never active at the same time as the treatment (i.e. the controller can not be in
states where both intervals I_PH and I_Treat are inside). A third property is that
if a defect appears then the controller will necessarily evolve in such a way that
either the defect is confirmed, or it disappears, or an external defect occurs (i.e. the
controller necessarily evolves towards states where one of these is true).

The treatment phase begins when the defect is confirmed: the interval I_Treat
is entered on the occurrence of Def _Conf. The task alternates breaking the circuit
during varying delays, and closing it again to check whether the defect has disap-
peared, for a certain number of cycles. At the end of the last cycle, if the defect is
present the circuit breaker is definitely cut off: the signal Def Break is emitted, and
the management is left to a remote control operator. A property to be verified here
is that if a defect is confirmed, then either it disappears and the circuit-breaker is
closed, or it does not and Def Break is emitted.

4.2 Formal verification of the power transformer station

In this section, we apply the differents tools we have presented to check various
properties on our SIGNAL implementation of the power transformer station. After the
translation of our SIGNAL program, we obtain a dynamical system (This translation
has been made in 10s. During this same time, we have also checked the causal
and temporal concurrency of our program and produced an executable code). The
polynomial dynamical system obtained is represented by 12 state variables and 22
event variables; that is to say, our system can be represented by an automaton of



500.000 possibles states. In fact, we must just consider the number of reachable
states. For that, we just have to compute the orbit of the system, corresponding
to the set of all the states which can be reached from the initial states. Using our
representation in ideals and varieties, this set is represented by a single polynomial.
Then to obtain the number of different states, we have to count the number of
solutions of our polynomial.In our case, the system can involve in 7000 different
reachable states.
We will now describe the different properties, which have been proved.

1. if a defect PH is detected after the end of its corresponding delay, in interval I_H,
then the defect 1s confirmed by the emission of Def Conf.
To check this property, we use the SIGNAL compiler, which proves statical prop-
erties (i.e., invariant over time instants) as explained in Section 2. We express
the property in SIGNAL as an inclusion between clocks as follows:

synchro{(when PH when I H), ((when PH when I H) when Def Conf)}

(where A C B is expressed in the form 4 = AN B, with when as intersection, and
synchro as equality for clocks). We compose this constraint with the controller.
The compilation of the whole checks the consistency of all the constraints on
clocks in the specification. The fact that our composed specification is consistent
means that this new constrained controller verifies the property.

2. the controller can not be in states where both intervals I PH and I_Treat are
inside.
This property can be established by proving that the set of states corresponding
to the situation where the treatment phase and the confirmation phase are both
active, can not be reached from the initial states of the controller (given by the
declarations in the program).
For that, we consider the two intervals I_Treat and I_PH, encoded by logicals
which are true when the system is in the treatment phase, respectively in the
confirmation phase. After the translation of the SIGNAL program into the corre-
sponding polynomial dynamical system over Z /47, we compute the set of states
where I_Treat=1 and I_PH=1. Then, the method consists in verifying that this
set of states 1s not reachable from the initial states of the polynomial dynamical
system. Reachability can be computed as described in Section 3.2 by a function
of the proof system: in our example the result obtained is false.

3. IfFirst Defect occurs,then the controller will necessarily evolve in such a way
that:
(a) either Def _Conf will be emitted with value true
(b) or Def _Conf will be emitted with value false.
(¢) or event Ext Def occurs.
The method for verifying this property is to build an observer, which is a process
composed with the controller, and which evaluates a boolean signal OUT, which
is present when one of these possibilities occurs, true when the conditions (a)
or (c) are verified, and false, when the condition (b) is verified. The property
can be proved by checking the attractivity of the set of states F', where OUT
is present, from the set of states F, where the defect appears (i.e. there is an
occurrence of the event First Defect: First Defect=1). By applying the proof



system function computing attractivity as described by Definition 5, we prove
that I is attractive from E (i.e. when a defect appears, all the trajectories of
the system lead to the state where OUT is present).

4. IfDef _Conf occurs, then the controller will necessarily evolve in such a way that:

(a) either the defect does not disappear and the signal Def Break will be emitted,
(b) or the defect does disappear, with the circuit-breaker closed.

The method used to prove this property is the same as that used to prove the
property (3). We compute the set of states E, where the defect is confirmed
(i.e. Def_Conf=1), and the set of states F', corresponding to the union of the
states where the condition (a) is verified and the states where the condition (b)
is verified. Using the function computing attractivity, we prove that F' is an
attractive set of states from the set of states F.

5 Conclusion

This paper presents the verification method associated with the SIGNAL reactive
language, and its application to the controller of a power transformer station, that
was specified and implemented in SIGNAL and its extention with nested preemptive
tasks SIGNALGTU [11]. The verification is based on the model underlying SIGNAL,
i.e. systems of polynomial dynamical equations over Z /g7 [9]. The systems of poly-
nomial equations characterize a set of solutions which encode states and events. The
techniques used in the method consist in manipulating the equation systems instead
of the solutions sets, which can avoid the enumeration of the state space. Opera-
tions used on equations systems belong to the theory of algebraic geometry, such as
varieties, ideals and morphisms. They enable the treatment of properties of safety,
liveness, reachability and attractivity. The SIGNAL approach to the verification of
control systems has also been experimented on other applications, such as a robotic
production cell [3].

The equational nature of the SiGNAL language makes it natural to use an equa-
tional framework for modeling behaviors and proving properties on them. This de-
scription of dynamical systems using equations is quite common in the fields of
control theory and digital circuits, but not in verification and model-checking. This
aspect is an originality of the SIGNAL approach compared to others using transi-
tion systems. For example, the reactive languages ESTEREL [4] and LUSTRE [7] are
compiled into finite state automata; hence they naturally interface with tools based
on these formalisms like AUTO and AUTOGRAPH. In principle the two methods are
equivalent, but in practice they might be better suited each to a certain class of prob-
lems; in particular, the compactness of the implicit representation by a system of
equations can help avoiding the combinatorial explosion of explicit state-based repre-
sentations. Both models support verification by the methods of model-checking and
comparison (bisimulation or behavioral equivalence), and as in the case of LUSTRE,
some properties or observers can be specified in the language. Given that polynomial
dynamical systems are an implicit description of transition systems, it is possible to
give a semantics of temporal logic formulae (for example the Computational Tree
Logic CTL) in terms of the algebraic operators [5], and perform symbolic model



checking by evaluating them on a polynomial model. We can notice that the lan-
guage LUSTRE uses the same methodology for the verification of their programs,
using Binary Decisions Diagrams to encode their formulas [7].

A perspective for a different use of the polynomial model is the automated syn-
thesis of controllers, where algebraic methods are used for the derivation, from a
model of a system, of a controller statisfying given properties and objectives such as
invariance or attractivity [6, 12]. In our application, the method will be used for the
synthesis of the controller of the interactions between the various cells composing
the transformer station controller. Another perspective concerns the possibility of
proving properties that depend on the behavior of numerical variables, or in general
on data other than presence/absence and Boolean which are handled currently.
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