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Fifth International Conference on Algebraic Methodology and Software TechnologyAMAST '96, July 1-5, 1996, Munich, GermanyFormal Veri�cation of Signal Programs:Application to a Power Transformer StationController?Michel Le Borgne, Herv�e Marchand, �Eric RuttenIRISA / INRIA - RennesF-35042 RENNES, Francee-mail:fleborgne,hmarchan,rutteng@irisa.fr Mazen SamaanEDF/DER, EP, dept. CCC6 quai Watier, 78401 CHATOU, Francee-mail: Mazen.Samaan@der.edf.frAbstract. We present a methodology for the veri�cation of reactive sys-tems, and its application to a case study. Systems are speci�ed using thesynchronous data ow language Signal. As this language is based on anequational approach (i.e. Signal programs are constraint equations betweensignals), it is natural to translate its Boolean part into a system of poly-nomial equations over three values denoting true, false and absent. Usingoperations in algebraic geometry on the polynomials, it is possible to checkproperties concerning the system, such as liveness, invariance, reachabilityand attractivity. We apply this method to the veri�cation of the automaticcircuit breaking control system of an electric power transformer station. Thissystem handles the reaction to electrical defects on high voltage lines.Keywords: Reactive systems, synchronous language, veri�cation, case study.1 IntroductionThis paper presents a formalmethod for the veri�cation of reactive real-time systemsand its application to the case study of the controller of a power transformer station.The speci�cation of the controller is made in the real-time synchronized data-owlanguage Signal[10]. Its declarative style is based on equations de�ning the valuesand the synchronizations of ows of data called signals. Schematically, processes aresystems of equations, and the compilation of a Signal program involves transform-ing the speci�cation into an executable code solving this system of equations at eachreaction. Compilation performs the checking of the causal and temporal consistencyof the speci�cation. Some statical properties can thus be proved by the compiler (thispart of the veri�cation is only briey mentioned in this paper; see [2] and [10] fordetails). The original equational nature of Signal makes that it relies on a formalmodel in terms of polynomial dynamical equations systems, and the proof methodis based on the theory of algebraic geometry. This way, it is possible to prove a widevariety of dynamical properties, such as liveness, invariance, reachability or attrac-tivity [9, 5]. This paper focuses on the method for veri�cation, based on this model,and on its application to a case study.The formalmethod is applied to the veri�cation of the automatic circuit-breakingcontroller of an electric power transformer station. It concerns the response to electric? This work is supported by �Electricit�e de France (EDF).



defects on the lines traversing it. The functionality of the controller is to handle theinterruption of current, the redirection of supply sources, and the re-establishment ofcurrent following an interruption. The objective is double: protecting the componentsof the transformer itself, and minimizing the defect in the distribution of power interms of duration and size of the interrupted sub-network. This system has beenspeci�ed in Signal and SignalGT _�, which is a extension of the language, with thenotion of time intervals and preemptive tasks [11].The remainder of this paper is organized as follows: Section 2 presents an outlineof the data-ow language Signal, and of its model in polynomial dynamical systems.The algebraic method dedicated to the veri�cation of Signal programs is describedin Section 3. Their application to the veri�cation of the controller of a transformerstation is described in Section 4. Discussion on results and related work is given inSection 5.2 The Signal language and its model2.1 The Signal equational languageSignal [10] is built around a minimal kernel of operators. It manipulates signalsX, which denote unbounded series of typed values (xt)t2T , indexed by time t in atime domain T . An associated clock determines the set of instants at which valuesare present. A particular type of signals called event is characterized only by itspresence, and always has the value true (hence, its negation by not is always false).The clock of a signal X is obtained by applying the operator event X. The constructsof the language can be used in an equational style to specify the relations betweensignals i.e., between their values and between their clocks. Systems of equations onsignals are built using a composition construct, thus de�ning processes. Data owapplications are activities executed over a set of instants in time. At each instant,input data is acquired from the execution environment; output values are producedaccording to the system of equations considered as a network of operations.Kernel of the Signal language. It is based on four operations, de�ning primitiveprocesses or equations, and a composition operation to build more elaborate pro-cesses in the form of systems of equations.{ Functions are transformations on data at an instant t. For example, the de�-nition of a signal Yt by the function f : 8t; Yt = f(X1t ; X2t; : : : ; Xnt) is encodedin Signal: Y := ff X1, X2,: : :, Xng. The signals Y, X1,: : : , Xn are constrainedto have the same clock.{ Selection of a signal X according to a boolean condition C is: Y := X when C.If C is present and true, then Y has the presence and value of X. The clock of Yis the intersection of (i.e., included in) that of X and that of C at the value true.{ Deterministic merge noted: Z:= X default Y has the value of X when it ispresent, or otherwise that of Y if it is present and X is not. Its clock is the unionof (i.e., includes) or contains those of X and Y.{ Delay gives access to past values of a signal. e.g., the equation ZXt = Xt�1,with initial value V0 de�nes a dynamical process. It is encoded by: ZX := X$1with initialization ZX init V0. X and ZX have equal clocks.



{ Composition of processes is noted \|" (for processes P1 and P2, with parenthe-ses: (| P1 | P2 |)). It consists in the composition of the systems of equations;it is associative and commutative. It can be interpreted as parallelism betweenprocesses; communication between them is carried by the broadcasting of signals.Derived processes have been de�ned on the base of the primitive operators, pro-viding programming comfort and modularity, e.g., the instruction synchrofX,Ygspeci�es that signals X and Y are synchronous (i.e., have equal clocks); when B givesthe clock of true-valued occurrences of logical signal B; X cell B memorizes values ofX and also outputs them when B is true. Arrays of signals and of processes have beenintroduced as well. Hierarchy and re-use of the de�nition of processes are supportedby the possibility of de�ning process models that can be invoked by instantiation.Time intervals and preemptive tasks. A recent extension to Signal (SignalGT _�)handles tasks executing on time intervals and their sequencing and preemption [13].The notion of time interval has been introduced: it is entered (takes the valueinside) upon the occurrence of the start event, and is exited (takes the valueoutside) upon the occurrence of an end event, and can then be entered again,iteratively. Intervals have an initial state given by declaration. An interval is con-structed by the statement: I:= ]B,E] init I0 with initial value I0 ( inside oroutside). With this extension, we can de�ne the notion of task on an interval,which is a Signal process active when the interval is inside, and inactive outside.A suspensive task is written P on I: it re-starts at its current state when re-enteringI. An interruptible task is written P each I: it re-starts at its initial state (as de�nedby the declarations of its state variables). Processes can themselves be decomposedinto sub-tasks: this way, the speci�cation of hierarchies of preemptive behaviors ispossible.This extension is implemented as a pre-processor to the Signal compiler, and isfully compatible with the environment, including the veri�cation tools. In particular,the intervals are coded by a boolean state variable, true when the interval is insideand false when outside. Occurrences of a signal X inside an interval I are coded byX when I. The speci�cation of the power transformer station uses this extension [11].This kind of speci�cation, using tasks and intervals, is useful to specify propertiessuch as \two process are not active at the same time". An example is given inSection 4.2.Veri�cation tools for Signal programs. The veri�cation of a Signal program canconcern invariant properties (to be satis�ed at all instants of its execution) or dy-namical properties (to be satis�ed on the histories of the program). The �rst kind isaddressed by the compiler, which checks the consistency of constraints between theclocks and proves these statical properties. Di�erent phases occur during the com-pilation of a Signal program. One of these consists in the resolution of a systemof boolean equations, coding the constraints among the di�erent clocks. This clockcalculus relies on an algebra on sets of instants detailed in [2]. In fact, the compilerhas to check the consistency on the constraints on the clocks of the di�erent signalsof a Signal program. This way, by composing the speci�cation with the expressionin Signal of a statical property (i.e., temporally invariant property), the compiler



checks if they are consistent w.r.t. each other. If so, their composition constitutes acorrect controller that satis�es the property. An example is given in Section 4.2.The second kind of properties is addressed by a formal method, based on a modelof the behavior of the program presented in Section 2.2, and with which dynamicalproperties of the system can be proved.2.2 An equational model of the behaviors of Signal programsThe equational nature of the Signal language leads naturally to the use of a methodbased on systems of polynomial dynamical equations over ZZ=3ZZ as a formal modelof programs behavior. The systems of polynomial equations characterize sets ofsolutions, which are states and events. The method consists in manipulating theequation systems instead of the solutions sets, avoiding the enumeration of the statespace. This paper makes an overview presentation of results without recalling detailsand proofs (see [9, 5, 8]).Signals. In order to model its behaviors, a Signal process is translated into a systemof polynomial equations over ZZ=3ZZ, i.e. integers modulo 3: f-1,0,1g [8]. The principleis to code the three possible states of a boolean signal X (i.e., present and true, orpresent and false, or absent) in a signal variable x by:( present ^ true ! +1present ^ false ! �1absent ! 0For the non-boolean signals, we only code the fact that the signal is present orabsent: � present ! �1absent ! 0 . Note that the square of a present signal is 1, whatever itsvalue. Hence, for a signal X, its clock can be coded by x2. Thus, two synchronoussignals X and Y satisfy the constraint equation: x2 = y2. This fact will be usedextensively in the following.Primitive processes. Each of the primitive processes of Signal can be encoded ina polynomial equation. For example C := A when B, which means "if b = 1 thenc = a else c = 0" can be rewritten in c = a(�b � b2): the solutions of this equationare the set of possible behaviors of the primitive process when.The delay $, which is a dynamical operator, is di�erent because it requiresmemorizing the past value of the signal into a state variable �. In order to encodeY := X$1 init Y0, we have to introduce the three following equations:8<: �0 = x+ (1� x2)� (1)y = �x2 (2)�0 = y0 (3)Equation (1) describes what will be the next value �0 of the state variable. If x ispresent, �0 is equal to x (because (1�x2) = 0), otherwise �0 is equal to the last valueof x, memorized by �. Equation (2) gives to y the last value of x (i.e. the value of �)and constrains the clocks y and x to be equal. Indeed, y2 = �2x4, and in ZZ=3ZZ wehave x3 = x, i.e.x4 = x2, so this leads to y2 = �2x2; as �2 = 1 (because � is always



present), we �nally get y2 = x2. Equation (3) corresponds to the initial value of �,which is the initial value of y.Table 1 shows how all the primitive operators are translated into polynomialequations. Boolean instructionsY := not X y = �xZ := X and Y z = xy(xy� x� y� 1)x2 = y2Z := X or Y z = xy(1� x� y � xy)x2 = y2Z := X default Y z = x+ (1� x2)yZ := X when Y z = x(�y� y2)Y := X $1 (init y0) �0 = x+ (1� x2)�y = x2��0 = y0non-boolean instructionsY := f(X1; : : : ;Xn) y2 = x21 = � � � = x2nZ := X default Y z2 = x2 + y2 � x2y2Z := X when Y z2 = x2(�y � y2)Y := X $1 (init y0) y2 = x2Table 1. Translation of the primitive operators.Processes. By composing the equations representing the elementary processes, anySignal speci�cation can be translated into a set of equations called polynomialdynamical system. Using this encoding, the reaction events of the program, i.e. thevalue of each of the m signal variables and n state variables, are represented by avector in (ZZ=3ZZ)n+m. Formally, a polynomial dynamical system can be reorganizedinto three sub-systems of polynomial equations of the form:8<:Q(X;Y ) = 0X 0 = P (X;Y )Q0(X) = 0where:{ X is a set of n variables, called state variables, represented by a vector in(ZZ=3ZZ)n ;{ Y is a set of m variables, called event variables, represented by a vector in(ZZ=3ZZ)m ;{ X0 = P (X;Y ) is the evolution equation of the system; it can be considered as avectorial function [P1; : : : ; Pn] from (ZZ=3ZZ)n+m to (ZZ=3ZZ)n. It groups all theequations on the state variables, and characterizes the dynamical aspect of thesystem ;



{ Q(X;Y ) = 0 is the constraints equation of the system, it is a vectorial equation[Q1; : : : ; Ql]. It groups all the equations characterizing the statical aspect of thesystem (invariant for all instants t) ;{ Q0(X) = 0 is the initialization equation of the system, it is a vectorial equation[Q01; : : : ; Q0n]. It groups all the equations characterizing the initialization of thesystem.For example the following small process in Signal,process altern ={? event A,B!}(| X := not ZX| ZX := X$1| synchro{A,when X}| synchro{B,when ZX}|)wherelogical X, ZX init falseendis translated in the polynomial dynamical system with variable a, b, X and zxcorresponding to the events A, B and the logical signals X and ZX and a statevariable state introduced by the delay. The system consist of{ an initialization equation : state = �1,{ an evolution equation : state0 = x+ (1� x2) � state{ and a system of constraint equationx = �zx; zx = state � x2; a2 = when x; b2 = when zxA polynomial dynamical system can be seen as a �nite transition system. Theinitial states of this automaton are the solutions of the equation Q0(X) = 0. Whenthe system is in a state x 2 (ZZ=3ZZ)n, any event y 2 (ZZ=3ZZ)m such that Q(x; y) =0 can �re a transition. In this case, the system evolves to a state x0 such thatx0 = P (x; y).Using this kind of representation and the operations explained in the next section,we hope for the reduction of combinatoric explosion experienced with automatacomposition. The number of states of the resulting automata is the product of thenumber of states of each automaton. In contrast, the composition of two polynomialdynamical systems is simply obtained by putting the equation together.We thus have a mathematical model characterizing the behavior of dynamicalsystems. In the perspective of analyzing these behaviors by the evaluation of thesatisfaction of properties, we need operations on polynomial systems, which corre-spond to the manipulation of the sets of their solutions. This way we can expressourselves about sets of behaviors, states and transitions, while still remaining in thedomain of polynomial functions, and not having to enumerate them.



3 Verifying Signal programs3.1 Operations on the polynomial dynamical systemsThe theory of polynomial dynamical systems uses operations in algebraic geometrysuch as varieties, ideals and morphisms. They are used to de�ne the propertiesof systems such as liveness, invariance and invariance under control. This sectionpresents the essential results of an extensive study [9, 8].Description of the basic objects and operations. Let us de�ne the quotient ring ofpolynomial functions A[X;Y ] = ZZ=3ZZ[X;Y ]=(X3�X;Y 3�Y ) 2: it is the set of polyno-mials in ZZ=3ZZ for which the degree in each variable is � 2 because of the fact thatX3 = X. Let E be a set of event and state variables in (ZZ=3ZZ)n+m. The followingset of polynomials:I(E) = fp 2 A[X;Y ] = 8(x; y) 2 E; p(x; y) = 0gis called the ideal of E in A[X;Y ]. This set represents all the polynomials, for whichthe set E is a solution. In terms of dynamical systems, it represents the set ofequations characterizing the states and events in E.Reciprocally, to any set of polynomialsG, we can associate a set in (ZZ=3ZZ)n+m,called the variety of G, de�ned as follows:V (G) = f(x; y) 2 (ZZ=3ZZ)n+m = 8p 2 G; p(x; y) = 0gThis set represents all the solutions for a given set of polynomials. In terms of dynam-ical systems, it represents the set of states and events admissible by the dynamicalsystems in G.The advantage of using ideals is that there exists a direct correspondence betweenan ideal and the associated variety. In fact, we can easily prove that, in the quotientring A[X;Y ]: V (I(E)) = E and I(V (< G >)) =< G >where, for a set of polynomials G, < G > is the set of all linear combinations ofpolynomials in G: this means that their solutions include those of G. This way, wecan translate properties of sets into equivalent properties of associated ideals of poly-nomials. Hence, instead of manipulating explicitly and enumerating the states, thisapproach manipulates the polynomial functions characterizing their sets. An otherimportant aspect is that an ideal can be represented by a single polynomial, calledthe principal generator. This particularity is used in the practical implementation ofthe algorithms on ideals [5].For example, for the constraint equation Q of a polynomial dynamical system:the equation Q(X;Y ) = 0 represents a set of polynomial equations, decomposed asfollows: 8<:Q1(X;Y ) = 0: : :Ql(X;Y ) = 02 X3 �X (resp. Y 3 � Y ) denotes all the polynomials X3i �Xi (resp. Y 3i � Yi).



If E is the set of solutions of this system of equations, it is clear thatE = V (< Q1; ::::; Ql >) and I(E) =< Q1; ::::; Ql > :So instead of manipulating the set of solutions E of the constraint equation, repre-sented in our case by a variety, we can easily convert it into an ideal I(E), whichcan be represented by a single polynomial. Thus, the relations between di�erent sets(e.g. inclusion or projection), can be translated into operations on polynomials.Operations on dynamical behaviors. To capture the dynamical aspect of a polyno-mial dynamical system, we introduce the notion of morphism and comorphism. Amorphism (often called in other community post-condition) is a polynomial func-tion P from (ZZ=3ZZ)n+m to (ZZ=3ZZ)n (the evolution equation X0 = P (X;Y ) of thesystem, for example).With the morphism P , there is an associated comorphism P � from ZZ=3ZZ[X] toZZ=3ZZ[X;Y ], de�ned by:for a polynomial p 2 ZZ=3ZZ[X]:P �(p(X)) = P �(p(X1; ::::; Xn))= p(P1(X;Y ); :::; Pn(X;Y ))where P1; :::; Pn are the components of P . In other words P �(p(X)) is obtained bysubstituting every Xi in p with the corresponding Pi(X;Y ). In fact, the comorphism(which is often called pre-condition) can be seen as a map computing the states fromwhich we can reach the states that are solutions of the evolution equations; it can beused to take the transitions backwards.
E

FP*Fig. 1. Representation of the comorphism P �In Figure 1, F represents all the states from which all the states of E can bereached with only one transition (F represents the set obtained by the applicationof the comorphism on E), where � represents the set of states of the system.This is the basic tool for analyzing transitions between states. But, we do nothave to compute this transition map, which has a very high computing complexity.There are relations between varieties and ideals using morphisms and comorphismsthat are used to perform calculations on the properties of polynomial dynamicalsystems.



3.2 Properties on the polynomial dynamical systemsVarious properties of systems can be evaluated on such models using these oper-ations; in this subsection we de�ne several properties and give their expression interms of algebraic operators, such as they are established in [5].Liveness. We say that a system is alive if and only if it can not be in a state fromwhich no transition can be taken, i.e. no deadlock can occur. This property statesthat every trajectory of the system is in�nite. In terms of polynomial dynamicalsystems, this de�nition can be formalized as follows:De�nition1. { A state x is alive if there exists a signal y such that Q(x; y) = 0(i.e.a transition can be taken) ;{ A set of states V is alive if and only if every state of V is alive ;{ A system is alive, if and only if 8(x; y) such that Q(x; y) = 0, P (x; y) is an alivestate (i.e., from live states, only live states can be reached).Using this de�nition, it can be proved [5] that the property of liveness of a systemcan be stated as follows: P �(< Q > \ ZZ=3ZZ[X]) � < Q >Safety. Informally, whereas a liveness property stipulates that some good things dohappen, a safety property stipulates that some bad things do not happen during anyexecution of the program [1]. In our case this kind of property covers the class ofproperties, describing the set of good states which remains invariant. The de�nitionof an invariant set of states is as follows:De�nition2. A subset E of states is invariant for a dynamical system, if and onlyif for every state x 2 E and for every event y admissible in the state x, the statex0 = P (x; y) is in E.This way, if we describe a property by an equivalent set of states which verify it, theproperty is always veri�ed if and only if this equivalent set of states is invariant forthe dynamical system.Using this de�nition, it has been proved [5] that the invariance of a property,represented by a set of states E, considering a polynomial dynamical system, can bestated as: < P �(I(E)) > � < Q > + I(E)ZZ=3ZZ [X;Y ]. This notion is illustratedin Figure 2(a). � is the set of the states of the system; the set E0 is the set of initialstates, and E represents the set of states, which verify the property. The arrowscorrespond to the di�erent possible trajectories of the system, which remain insidethe set E, because it is invariant.It may happen that the property, represented by an equivalent set of states isnot invariant. In this case, it is interesting to compute the largest invariant sub-set included in the set of states E . This property is evaluated using a �x-pointcomputation.De�nition3. A subset E of states is control-invariant for a dynamical system, ifand only if for every state x 2 E, there exists an event y admissible in the state x,the state x0 = P (x; y) is in E.



(a) E0

E (b) E0

EFig. 2. Invariance (a) and invariance under control (b) of E (from E0)Using De�nition 3, it has been proved [5] that a sub-set E is control-invariant fora dynamical system, if and only if: (< Q > + P �(I(E))) \ ZZ=3ZZ[X] � I(E). Thisnotion is illustrated in Figure 2(b). The dotted arrows correspond to the trajectoriesof the system, which should be forbidden or inhibited by a controller in order toobtain invariance. It is also possible to compute the largest control invariant sub-setincluded in a given set E of states.Other kinds of properties may be derived from the liveness, invariance and controlinvariance properties.Reachability and attractivity.De�nition4. A subset F of states is reachable for a dynamical system, if and onlyif every state x 2 F can be reached from the initial states E0 of the considereddynamical system i.e., there exists a trajectory initialized in E0 that reaches x.To prove this property, we use the largest invariant sub-set of a set, as describedbefore. Thus, a set of states F is reachable from the initial states of a polynomialdynamical system if and only if the initial states are not included in the largestinvariant sub-set of the complement of F (i.e., from the initial states, one is notcompelled to stay in states not verifying the property).This notion is illustrated in Figure 3(b). The black arrows represent the trajec-tories of the system, which reach the set of states F , whereas the dotted arrowscorrespond to the trajectories, which never reach the set of states F .
(a) E F (b) E F0Fig. 3. Attractivity (a) and reachability (b) and of F w.r.t. E



De�nition5. A set of states F is attractive for a set of states E, if and only if,every trajectory initialized in E reaches F .Using the de�nition above, we can prove that F is attractive for E if the setE is not included in the greatest control-invariant of the complement of F (i.e., atrajectory can not lead to an invariant set, which does not contain the set F , andfrom which it is impossible to reach F ). This notion is illustrated in Figure 3(a).This section made an overview of the method for the veri�cation of properties,with its basic operators: set theoretic operators, �x-point computation, quanti�erselimination. Using the algebraic methods, explained before, it is also possible toexpress CTL formulae. The reader interested in the theoretical foundation of thisapproach is referred to [9, 5, 8].4 Application to a power transformer station4.1 Speci�cation of the power transformer stationThe transformer stations on the power network. The French national power network,operated by �Electricit�e de France (EDF), counts a large number of transformerstations. For each high voltage line, a transformer lowers the voltage, so that it canbe distributed in urban centers to end-users [11]. In the course of exploitation of thissystem, several kinds of electrical defects can occur, due to causes internal or externalto the station. Three types of electrical defects are considered: phase (PH), homopolar(H), or wattmetric (W). In order to protect the device and the environment, severalcircuit breakers are placed in di�erent parts of the station. These circuit breakersare alerted by sensors at di�erent locations, and controlled by local control systemscalled cells (arrival cell, link cells, and departure cells, see Figure 4) and by anoperator in a remote control center.
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Functional description of a departure cell. We will focus on one of these types ofcell: the departure cell, because it features all the interesting aspects of the con-trollers behavior. It is decomposed in a con�rmation process, which sequentiallytests for the di�erent types of defect, followed by a treatment phase, consisting inattempts at making the defect disappear. These behaviors feature sub-tasks whichare interrupted, in a nested way, and are repeated on series of activity intervals;their speci�cation makes use of the corresponding constructs of SignalGT _� [11].We only describe here the details necessary for the understanding of the veri�cationpresented further.The con�rmation phase consists in detecting the �rst defect occurrence (eventFirst Defect) and from then on, for each of the defect types (PH, H, or W), and intaking the time to let transient defects cease naturally, or else assess their persistentpresence. They are tested in sequence: from First Defect, interval I PH is entered.Associated with this interval, the con�rmation task �rst waits until Delay PH iselapsed, and then enters interval I H in which a task �rst waits until Delay H iselapsed, and then enters interval I W in which a task waits until Delay W is elapsed.If in the meantime a defect is con�rmed (i.e., PH, H or W is present at the end of thecorresponding delay), the sequence is interrupted (interval I PH is ended), and thedefect is con�rmed by emission of the boolean Def Conf with value true. It is alsoexited if the defect disappears: the last delay elapses without defect (with Def Confat value false)emission of event Ext Def)A �rst property to be veri�ed is that if adefect is detected after the end of its corresponding delay then the defect is actuallycon�rmed (i.e., in the example of a PH-defect, if PH is present in the interval I H,then Def Conf is actually emitted). A second property is that the con�rmation isnever active at the same time as the treatment (i.e. the controller can not be instates where both intervals I PH and I Treat are inside). A third property is thatif a defect appears then the controller will necessarily evolve in such a way thateither the defect is con�rmed, or it disappears, or an external defect occurs (i.e. thecontroller necessarily evolves towards states where one of these is true).The treatment phase begins when the defect is con�rmed: the interval I Treatis entered on the occurrence of Def Conf. The task alternates breaking the circuitduring varying delays, and closing it again to check whether the defect has disap-peared, for a certain number of cycles. At the end of the last cycle, if the defect ispresent the circuit breaker is de�nitely cut o�: the signal Def Break is emitted, andthe management is left to a remote control operator. A property to be veri�ed hereis that if a defect is con�rmed, then either it disappears and the circuit-breaker isclosed, or it does not and Def Break is emitted.4.2 Formal veri�cation of the power transformer stationIn this section, we apply the di�erents tools we have presented to check variousproperties on our Signal implementation of the power transformer station. After thetranslation of our Signal program, we obtain a dynamical system (This translationhas been made in 10s. During this same time, we have also checked the causaland temporal concurrency of our program and produced an executable code). Thepolynomial dynamical system obtained is represented by 12 state variables and 22event variables; that is to say, our system can be represented by an automaton of



500.000 possibles states. In fact, we must just consider the number of reachablestates. For that, we just have to compute the orbit of the system, correspondingto the set of all the states which can be reached from the initial states. Using ourrepresentation in ideals and varieties, this set is represented by a single polynomial.Then to obtain the number of di�erent states, we have to count the number ofsolutions of our polynomial.In our case, the system can involve in 7000 di�erentreachable states.We will now describe the di�erent properties, which have been proved.1. if a defect PH is detected after the end of its corresponding delay, in interval I H,then the defect is con�rmed by the emission of Def Conf.To check this property, we use the Signal compiler, which proves statical prop-erties (i.e., invariant over time instants) as explained in Section 2. We expressthe property in Signal as an inclusion between clocks as follows:synchrof(when PH when I H), ((when PH when I H) when Def Conf)g(where A � B is expressed in the formA = A\B, with when as intersection, andsynchro as equality for clocks). We compose this constraint with the controller.The compilation of the whole checks the consistency of all the constraints onclocks in the speci�cation. The fact that our composed speci�cation is consistentmeans that this new constrained controller veri�es the property.2. the controller can not be in states where both intervals I PH and I Treat areinside.This property can be established by proving that the set of states correspondingto the situation where the treatment phase and the con�rmation phase are bothactive, can not be reached from the initial states of the controller (given by thedeclarations in the program).For that, we consider the two intervals I Treat and I PH, encoded by logicalswhich are true when the system is in the treatment phase, respectively in thecon�rmation phase. After the translation of the Signal program into the corre-sponding polynomial dynamical system over ZZ=3ZZ, we compute the set of stateswhere I Treat=1 and I PH=1. Then, the method consists in verifying that thisset of states is not reachable from the initial states of the polynomial dynamicalsystem. Reachability can be computed as described in Section 3.2 by a functionof the proof system: in our example the result obtained is false.3. If First Defect occurs,then the controller will necessarily evolve in such a waythat:(a) either Def Conf will be emitted with value true(b) or Def Conf will be emitted with value false.(c) or event Ext Def occurs.The method for verifying this property is to build an observer, which is a processcomposed with the controller, and which evaluates a boolean signal OUT, whichis present when one of these possibilities occurs, true when the conditions (a)or (c) are veri�ed, and false, when the condition (b) is veri�ed. The propertycan be proved by checking the attractivity of the set of states F , where OUTis present, from the set of states E, where the defect appears (i.e. there is anoccurrence of the event First Defect: First Defect=1). By applying the proof



system function computing attractivity as described by De�nition 5, we provethat F is attractive from E (i.e. when a defect appears, all the trajectories ofthe system lead to the state where OUT is present).4. If Def Conf occurs, then the controller will necessarily evolve in such a way that:(a) either the defect does not disappear and the signal Def Break will be emitted,(b) or the defect does disappear, with the circuit-breaker closed.The method used to prove this property is the same as that used to prove theproperty (3). We compute the set of states E, where the defect is con�rmed(i.e. Def Conf=1), and the set of states F , corresponding to the union of thestates where the condition (a) is veri�ed and the states where the condition (b)is veri�ed. Using the function computing attractivity, we prove that F is anattractive set of states from the set of states E.5 ConclusionThis paper presents the veri�cation method associated with the Signal reactivelanguage, and its application to the controller of a power transformer station, thatwas speci�ed and implemented in Signal and its extention with nested preemptivetasks SignalGT _� [11]. The veri�cation is based on the model underlying Signal,i.e. systems of polynomial dynamical equations over ZZ=3ZZ [9]. The systems of poly-nomial equations characterize a set of solutions which encode states and events. Thetechniques used in the method consist in manipulating the equation systems insteadof the solutions sets, which can avoid the enumeration of the state space. Opera-tions used on equations systems belong to the theory of algebraic geometry, such asvarieties, ideals and morphisms. They enable the treatment of properties of safety,liveness, reachability and attractivity. The Signal approach to the veri�cation ofcontrol systems has also been experimented on other applications, such as a roboticproduction cell [3].The equational nature of the Signal language makes it natural to use an equa-tional framework for modeling behaviors and proving properties on them. This de-scription of dynamical systems using equations is quite common in the �elds ofcontrol theory and digital circuits, but not in veri�cation and model-checking. Thisaspect is an originality of the Signal approach compared to others using transi-tion systems. For example, the reactive languages Esterel [4] and Lustre [7] arecompiled into �nite state automata; hence they naturally interface with tools basedon these formalisms like Auto and Autograph. In principle the two methods areequivalent, but in practice they might be better suited each to a certain class of prob-lems; in particular, the compactness of the implicit representation by a system ofequations can help avoiding the combinatorial explosion of explicit state-based repre-sentations. Both models support veri�cation by the methods of model-checking andcomparison (bisimulation or behavioral equivalence), and as in the case of Lustre,some properties or observers can be speci�ed in the language. Given that polynomialdynamical systems are an implicit description of transition systems, it is possible togive a semantics of temporal logic formulae (for example the Computational TreeLogic CTL) in terms of the algebraic operators [5], and perform symbolic model
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