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Abstract

“3ω” experiments aim at measuring thermal conductivities and diffusivities. Data analysis relies

on integral expressions of the temperature. In this paper, we derive new explicit analytical formu-

lations of the solution of the heat diffusion equation, using Bessel, Struve and Meijer-G functions,

in the 3ω geometry for bulk solids. These functions are available in major computational tools.

Therefore numerical integrations can be avoided in data analysis. Moreover, these expressions

enable rigorous derivations of the asymptotic behaviors. We also underline that the diffusivity

can be extracted from the phase data without any calibration while the conductivity measurement

requires a careful one.
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The so-called 3ω method is a well-known method for the measurement of thermal conduc-

tivity in bulk and thin film solids [1] [2] [3] [4] [5]. A finite-width metallic strip is designed

on the surface of the sample and acts both as a heater and a temperature sensor. It is fed

with an AC-current. The heating power has an AC component which generates a thermal

pseudo-wave in the sample, at double frequency. The temperature of the strip and, con-

sequently, its resistance are then modulated at double frequency. An harmonic voltage at

triple frequency results in and is used to measure both amplitude and phase of the pseudo-

thermal wave, at the surface. For that purpose, a careful calibration of the setup is required.

From these values, recorded as a function of frequency, both thermal conductivity and dif-

fusivity can in principle be derived. The theoretical basis for the analysis of the data relies

on an integral expression of the temperature. Approximate expressions have been derived in

the low frequency [2] and high frequency regimes [6]. Series expansions and semianalytical

solutions of the temperature have been put forward recently in the case of a finite thickness

strip on a finite solid [7] [8]. In the present paper, we consider a semi-infinite solid and

we derive analytical expressions for the temperature distribution at the surface and for the

mean temperature of the metallic strip (neglecting the strip thickness and thermal boundary

resistance). This formulation uses analytical functions which are all convenient for compu-

tation. This greatly simplifies the fitting of experimental data and extraction of thermal

parameters since numerical integration is avoided. Moreover, a rigorous derivation of the

asymptotic behaviors can be performed and constants which are usually derived numerically

are expressed as a function of fundamental mathematical constants.

The theoretical analysis of the “3ω” method stems from the infinitely narrow line source

of heat, located on the planar surface of a semi-infinite medium [2, 9]. In that case, the

temperature reads:

T0(r) =
P

πΛ
K0(qr) (1)

where q =
√

iω/D. Λ and D are the thermal conductivity and diffusivity of the solid,

respectively. P is the magnitude of the power supplied per unit length, at angular frequency

ω (twice the current angular frequency). r is the distance from the line. K0 is the zeroth-

order modified Bessel functions of second kind.

T0 (r) can be considered as a Green function for the problems of surface heating invariant

along one axis of the surface. For the 3ω method, let us consider such a source, homogeneous

in an infinite strip parallel to the y-axis and located at the surface (−b < x < b) (see figure
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FIG. 1: (Color online) Heat source geometry (red strip) and coordinate axis.

1). The temperature on the surface reads:

T (x) =
P

2bπΛ

∫

+b

−b

K0 (q|x − ξ|) dξ (2)

This expression is usually written as a convolution product and is calculated thanks to

Fourier transforms [2]. This leads to an integral expression of the temperature at the surface:

T (x) =
P

2bπΛ

∫

+∞

−∞

sin(bλ)

λ
√

λ2 + iω/D
e+iλxdλ (3)

3ω experiments are sensitive to the mean temperature 〈T 〉 of the strip. 〈T 〉 can be estimated

by averaging the previous expression across the line [2]. We get:

〈T 〉 =
P

πΛ

∫

+∞

0

sin2 y

y2

1
√

y2 + iΩ
dy (4)

where Ω is the reduced circular frequency:

Ω =
b2ω

D
(5)

Indeed, the integral expression (3) can be replaced with an analytical expression. Equa-

tion (2) can be written using Bessel and Struve functions, thanks to the following relation

derived from recurrence relations on Bessel functions and from an integral tabulated in [10]:
∫

K0(z)dz =
πz

2
[K0(z)L−1(z) + K1(z)L0(z)] (6)

Kn is the nth-order modified Bessel functions of second kind. Ln is the nth-order modified

Struve function. We define the Ξ function as:

Ξ(z) = K0(z)L−1(z) + K1(z)L0(z) (7)

We get:

T (x) =
P

4Λ

[

(1 − X) Ξ
(

√

iΩ(1 − X)2

)

(8)

+ (1 + X) Ξ
(

√

iΩ(1 + X)2

)]
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FIG. 2: (Color online) Temperature of the strip: Magnitude of (4Λ/P )T (x) versus the reduced

coordinate x/b, for different reduced circular frequencies Ω. Equation (8).

FIG. 3: Temperature of the strip: Phase of T (x) versus the reduced coordinate x/b, for different

reduced circular frequencies Ω. Equation (8).

where X is the reduced coordinate.

X =
x

b
(9)

At the center of the strip (x = 0):

T (0) =
P

2Λ
Ξ

(√
iΩ

)

(10)

Figures 2 and 3 display the magnitude and phase of T (x), computed with equation (8)

[11]. Indeed, we have plotted the reduced magnitude (4Λ/P )T (x) and the phase of T (x)

versus the reduced coordinate X, for different values of the reduced circular frequency Ω.

The integral expression (4) of the mean temperature can also be replaced with an ana-

lytical expression. Starting from equation (2), the average temperature of the line can be
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FIG. 4: (Color online) Strip mean temperature versus reduced circular frequency Ω. In-phase and

out-of-phase components of (4Λ/P ) < T >. Solid line: full expression. Equation (14). Dashed line:

low frequency approximation. Equation (15).

written as:

〈T 〉 =
P

4b2πΛ

∫

2b

0

∫

2b

0

K0 (q|u − v|) dudv (11)

The integrand is invariant under u and v interchange. By symmetry, the integral is twice

the integral evaluated on a rectangular triangle:

〈T 〉 =
P

2b2πΛ

∫

2b

0

du

∫ u

0

K0 (q(u − v)) dudv (12)

After variables substitutions (t = u/2b and z = (u − v)/u), we get:

〈T 〉 =
2P

πΛ

∫

1

0

∫

1

0

tK0(rzt)dtdz (13)

where r = 2qb = 2
√

iΩ. This double integral is related to a Meijer G-function [12]. We get:

〈T 〉 = − iP

4πΛΩ
G22

24

(

iΩ
∣

∣

∣

1, 3
2

1,1, 1
2
,0

)

(14)

Solid lines in figures 4 and 5 display the in-phase component, out-of-phase component,

amplitude and phase of the reduced mean temperature (4Λ/P )〈T 〉, versus reduced circular

frequency, computed with equation (14) [11].

Phase frequency dependance can be of interest since this measurement does not require

any absolute calibration of the setup but provides an easy way to measure the sample

diffusivity. Indeed, as it is clear from the temperature expressions above, phase of the

temperature is a universal function of the only reduced frequency Ω. Therefore, the sample
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FIG. 5: (Color online) Strip mean temperature versus reduced circular frequency Ω. Solid line:

phase of < T >. Dashed line: amplitude of (4Λ/P ) < T >. Equation (14).

diffusivity can be extracted with a simple logarithmic shift of the phase curve in figure 5,

along the abscissae, to fit the experimental data.

In both low and high frequency regimes, we can derive useful approximate expressions for

T (x) and 〈T 〉, using asymtotic expansions of the the Bessel and Struve functions. Asymptotic

analysis of equation (13) gives:

〈T 〉 ≃ P

πΛ

[

−1

2
ln Ω +

3

2
− γ − i

π

4

]

(15)

for ω → 0 (i.e ω << D/b2), and

〈T 〉 ≃ P

2Λ
√

2Ω
(1 − i) (16)

for ω → +∞ (i.e. ω >> D/b2).

γ ≃ 0.5772 is the Euler constant. Equation (15) is well known and is extensively used

to measure thermal conductivities. However, we notice the real constant term (3/2 − γ ≃
0.9228) which is here derived explicitly for the first time. To the best of our knowledge, its

approximate value was derived previously numerically.

In the high frequency limit, we may notice that the thermal diffusion length
√

2D/ω

becomes much smaller that the heater width. Then, the above result is equivalent to the

surface temperature of a uniformly heated semi-infinite medium [9]. However, in this fre-

quency region, thermal behavior can be affected by the thermal load of the heater [7].

We have revisited the theoretical backgrounds of the so-called “3ω” method, in the case of

a semi-infinite medium with a finite width but vanishing thickness heater. We have derived

analytical expressions of the surface temperature and of the mean temperature of the strip
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line. The main benefits are: (1) simplification of experimental data analysis since numerical

integration is avoided; the involved Bessel, Struve and Meijer-G functions are implemented

in major calculation software and can be easily computed (2) rigorous derivation of the

asymptotic regimes at both low and high frequencies.
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