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Abstract

We investigate the singular limit, as ε→ 0, of the Allen-Cahn equa-
tion uε

t = ∆uε +ε−2f(uε), with f a balanced bistable nonlinearity. We
consider rather general initial data u0 that is independent of ε. It is
known that this equation converges to the generalized motion by mean
curvature — in the sense of viscosity solutions— defined by Evans,
Spruck and Chen, Giga, Goto. However the convergence rate has not
been known. We prove that the transition layers of the solutions uε

are sandwiched between two sharp “interfaces” moving by mean curva-
ture, provided that these “interfaces” sandwich at t = 0 an O(ε| ln ε|)
neighborhood of the initial layer. In some special cases, which allow
both extinction and pinches off phenomenon, this enables to obtain
an O(ε| ln ε|) estimate of the location and the thickness measured in
space-time of the transition layers. A result on the regularity of the
generalized motion by mean curvature is also provided in the Appendix.

Key Words: Allen-Cahn equation, singular perturbation, generalized
motion by mean curvature, viscosity solutions, localization and thick-
ness of the transition layers. 1 2

1 Introduction

In this paper we study the behavior, as ε→ 0, of the solution uε(x, t) of the
Allen-Cahn type equation

(P ε)




uεt = ∆uε +

1

ε2
f(uε) in R

N × (0,∞)

uε(x, 0) = u0(x) in R
N ,

1AMS Subject Classifications: 35K55, 35B25, 35D40, 53C44.
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where N ≥ 2. Here, the nonlinearity is given by f(u) := −W ′(u), where
W (u) is a double-well potential with equal well-depth, taking its global
minimum value at u = α∗, u = β∗. More precisely we assume that f is C2

and has exactly three zeros α∗ < a < β∗ such that

f ′(α∗) < 0, f ′(a) > 0, f ′(β∗) < 0 (bistable nonlinearity) , (1.1)

and that ∫ β∗

α∗

f(u) du = 0 (balanced case) . (1.2)

The condition (1.1) implies that the potential W (u) attains its local minima
at u = α∗, u = β∗, and (1.2) implies that W (α∗) = W (β∗). In other words,
the two stable zeros of f , namely α∗ and β∗, have “balanced” stability. A
typical example is the cubic nonlinearity f(u) = u(1 − u2).

As for the initial data u0, we assume that it is bounded and of class C2

on R
N . Furthermore we define the “initial interface” Γ0 by

Γ0 := {x ∈ R
N : u0(x) = a} ,

and suppose that




Γ0 is a smooth hypersurface without boundary of R
N ,

∇u0(x) 6= 0 for all x ∈ Γ0 ,

u0 > a in Ω0 and u0 < a in (Ω0 ∪ Γ0)
c ,

(1.3)

where Ω0 denotes the region enclosed by Γ0. The non-zero gradient assump-
tion in (1.3) is needed to obtain fine estimates for the development of steep
transition layers at the very beginning period.

The evolution equations we consider decrease the following interfacial
free energy of the Ginzburg-Landau type

E(u) =

∫

RN

1

2
|∇u|2 +

1

ε2
W (u) ,

where ε > 0 is a small parameter related to the thickness of a diffuse in-
terfacial layer. Taking the gradient flow of E with respect to the L2 inner
product leads to (P ε) whose solutions fulfill

d

dt
E(uε) = −

∫

RN

(uεt )
2 ≤ 0 .

Heuristics. As ε→ 0, a formal asymptotic analysis shows the following: in
the very early stage, the diffusion term ∆uε is negligible compared with the
reaction term ε−2f(uε) so that, in the rescaled time scale τ = t/ε2, the equa-
tion is well approximated by the ordinary differential equation uετ = f(uε).
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Hence, in view of the profile of f , the value of uε quickly becomes close to
either β∗ or α∗ in most part of R

N , creating a steep interface (transition
layer) between the regions {uε ≈ α∗} and {uε ≈ β∗} (Generation of in-
terface). Once such an interface develops, the diffusion term becomes large
near the interface, and comes to balance with the reaction term. As a result,
the interface ceases rapid development and starts to propagate in a much
slower time scale (Motion of interface).

Convergence to classical motion by mean curvature. The singular
limit of the Allen-Cahn equation was first studied in the pioneering work of
Allen and Cahn [2] and, slightly later, in Kawasaki and Ohta [19] from the
point of view of physicists. They derived the interface equation by formal
asymptotic analysis, thereby revealing that the interface moves by its mean
curvature. More precisely, the limit solution ũ(x, t) turns out to be a step
function taking the value β∗ on one side of the interface, and α∗ on the other
side. This sharp interface, which we will denote by Γt, obeys the following
law of motion:

(P 0
classical)

{
Vn = −(N − 1)κ on Γt

Γt
∣∣
t=0

= Γ0 ,

where Vn is the normal velocity of Γt in the exterior direction, κ the mean
curvature at each point of Γt (chosen to be positive when Γt encloses a convex
domain). If Γ0 is smooth enough, it is well known that Problem (P 0

classical)
possesses locally in time a unique smooth solution. For more details, we
refer to [12] and the references therein.

These early observations triggered a flow of mathematical studies aiming
at rigorous justification of the above limiting procedure; see, for example,
[20, 21], [9] and [10, 11] for results on the convergence of the partial differ-
ential equation (P ε) to the free boundary Problem (P 0

classical). Later, in [1],
the authors prove an improved estimate for this convergence for solutions
with general initial data. By performing a rigorous analysis of both the gen-
eration and the motion of interface, they show that the solution develops a
steep transition layer within the time scale of O(ε2| ln ε|), and that the layer
obeys the law of motion that coincides with the formal asymptotic limit
(P 0

classical) within an error margin of O(ε) (previously, the best thickness
estimate in the literature was of O(ε| ln ε|), [10]).

Generalized motion by mean curvature. Nevertheless, it is well-known
that the classical motion by mean curvature may develop singularities in
finite time, even if Γ0 is smooth. In R

2, an embedded curve evolving by its
curvature can develop singularities only at the time of “shrinking to a point”
[18]. In R

3, singularities may even occur before “shrinking to a point”: for
instance, the boundary of a “dumbbell-shaped” region pinches off in finite
time, if the neck is narrow enough. Therefore the classical framework is not
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sufficient for dealing with such phenomena. Thus, one has to introduce a
generalized notion of the motion by mean curvature (MMC in short). This
enables us to define the MMC past the developments of singularities and
then to study the singular limit of reaction-diffusion equations for all t ≥ 0.

To define such a generalized MMC, the level set approach is quite con-
venient: one represents Γt as the level set of an auxiliary function which
solves (in the viscosity sense) a nonlinear partial differential equation. This
direct partial differential equation approach has been developed by Evans
and Spruck [16], and, independently, by Chen, Giga and Goto [13]. In this
framework, the involved partial differential equation is the degenerate, and
even singular in the points where Dv = 0, parabolic problem given by

(P 0)

{
vt − tr

[
(I − D̂v ⊗ D̂v)D2v

]
= 0 in R

N × (0,∞)

v = d0 in R
N × {t = 0} ,

with p̂ := p
|p| , and d0 the truncated signed distance function to Γ0, which

is positive in the set {u0 > a} and negative in the set {u0 < a}. If v is a
viscosity solution of (P 0), then each level set of v evolves according to the
mean curvature in a certain generalized sense, and also in the classical sense
whenever Dv does not vanish. Note that the equation can be written

vt − ∆v +D2vD̂v · D̂v = 0 ,

or

vt = |Dv|div

(
Dv

|Dv|

)
. (1.4)

We refer to Section 3 for a short overview of the techniques and results of
[16] and [13].

Convergence to generalized motion by mean curvature. Let us make
a brief overview of known results on the convergence of the Allen-Cahn equa-
tion to generalized MMC. Evans, Soner and Souganidis [15] prove that, as
ε → 0, the solution of (P ε) converges to β∗ locally uniformly in {v > 0}
and to α∗ locally uniformly in {v < 0}, where v is the solution of (P 0).
Since Γt := {x ∈ R

N : v(x, t) = 0} moves, in a weak sense, by mean curva-
ture, this result is the natural generalization of the convergence to classical
MMC mentioned above. Barles, Bronsard and Souganidis [5], Barles, Soner
and Souganidis [7] generalized the result of [15] by allowing (x, t)-dependent
nonlinearities and/or considering the unbalanced case instead of (1.2). Nev-
ertheless, these early results consider only a very restricted class of initial
data, namely those having a specific profile with well-developed transition
layer. In other words the generation of interface from arbitrary initial data
is not studied there.

Later, Soner [22, 23], Barles and Souganidis [8], Barles and Da Lio [6]
study both the generation and the motion of interface; they prove the conver-
gence of a large class of reaction-diffusion equations. By using the so-called
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“open set approach”, the authors in [8] and [6] also provide a new defini-
tion for the global in time propagation of fronts; this definition turns out
to be equivalent to the level set approach when there is no fattening of the
interface.

From the above results, we know that the transition layers of uε converge
to a level set of v, the solution of (P 0), as ε → 0, for all t ≥ 0. However,
none of these papers achieves a fine estimate of the convergence rate nor
the thickness of the transition layers of the solutions to (P ε), for all t ≥ 0.
This is in contrast to the classical framework, for which O(ε| ln ε|) or O(ε)
estimates are known, as long as the limit interface remains smooth. The
goal of the present paper is to obtain such fine estimates on the transition
layers of solutions uε to Problem (P ε), as ε→ 0, for all t ≥ 0.

Organization of the paper. In Section 2, we give our main results and
make some comments, underlying the novelties. In Section 3, we recall
the basic ideas of the level set approach together with some useful known
properties. Section 4 is devoted to the construction of refined barriers (sub-
and super-solutions) for the Allen-Cahn equation. By quoting a generation
of interface result from [1] and using these barriers, we prove Theorem 2.1.
In Section 5, we prove Theorem 2.5. In Appendix, we present some results on
the regularity of the generalized MMC which, to the best of our knowledge,
are not explicitly stated in the literature. They are related to our singular
limit problem but are also interesting by themselves.

2 Main results and comments

2.1 Results

We consider the solution uε of the Allen-Cahn equation (P ε) with initial
data u0 independent of ε. As mentioned before, uε quickly develops a steep
transition layer. The time needed for such a generation (see Section 4) is

tε := f ′(a)−1ε2| ln ε| (generation time) , (2.1)

after which the transition layer starts to move approximately by the mean
curvature. Theorem 2.1 is a first fine description of this motion of the Allen-
Cahn transition layer: we show that it can be sandwiched between two sharp
“interfaces” moving by mean curvature, provided that these “interfaces”
sandwich at t = 0 an O(ε| ln ε|) neighborhood of the initial layer.

In the sequel, we take two families of (not necessarily smooth) hypersur-
faces without boundaries (γ−ε,0)ε>0, (γ+

ε,0)ε>0, which sandwich an O(ε| ln ε|)
neighborhood of Γ0, and such that

γ−ε,0 << Γ0 << γ+
ε,0 ,
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where Γ1 << Γ2 means that Γ1 is enclosed by Γ2 and Γ1 ∩ Γ2 = ∅. More
precisely, we consider two families of open sets (ω−

ε,0)ε>0, (ω+
ε,0)ε>0, such that

{x ∈ R
N : dist(x, ω−

ε,0) ≤ C0ε| ln ε|} ⊂ Ω0 , (2.2)

and
{x ∈ R

N : dist(x,Ω0) ≤ C0ε| ln ε|} ⊂ ω+
ε,0 , (2.3)

for some constant C0 > 0 not depending on ε and to be specified in (4.37).
Then we define

γ±ε,0 := ∂ω±
ε,0 ,

{γ±ε,t}t≥0 := the generalized MMC starting from γ±ε,0 ,

(see Section 3). In the same way as we define Ωt as the “inside at time t”
of Γt in (3.5), we define ω±

ε,t as the “space-time inside” of γ±ε,t by replacing

Γ0 in (3.1) by γ±ε,0.

Theorem 2.1 (“Sandwiching” the Allen-Cahn layers). Let f ∈ C2(R) sat-
isfy (1.1) and (1.2), and let u0 ∈ C2

b (R
N ) be such that (1.3) holds. Let

(ω−
ε,0)ε>0, respectively (ω+

ε,0)ε>0, be any family of open sets satisfying (2.2),

respectively (2.3). Let {ω−
ε,t}t≥0 and {ω+

ε,t}t≥0 be defined as above. Fix
ζ ∈ (0,min(a− α∗, β∗ − a)) arbitrarily. Then, for ε > 0 small enough,





α∗ − ζ ≤ uε(x, t) ≤ β∗ + ζ for all x ∈ R
N

β∗ − ζ ≤ uε(x, t) ≤ β∗ + ζ for all x ∈ ω−
ε,t ∪ γ−ε,t

α∗ − ζ ≤ uε(x, t) ≤ α∗ + ζ for all x /∈ ω+
ε,t ,

(2.4)

for all t ≥ tε, where tε is as in (2.1).

In the sequel, for α ∈ (α∗, β∗), we define the sets

Ωε
t (α) := {x ∈ R

N : uε(x, t) > α} ,

Ω̃ε
t (α) := {x ∈ R

N : uε(x, t) ≥ α} .
Roughly speaking, given α < β in (α∗, β∗), Γεt (α, β) := Ω̃ε

t (α) \Ωε
t (β) repre-

sents the transition layer of the Allen-Cahn solution uε, namely the “zone”
α ≤ uε ≤ β. As an immediate consequence of Theorem 2.1 we can localize
these sets in terms of ω−

ε,t, γ
−
ε,t and ω+

ε,t.

Corollary 2.2 (“Sandwiching” the Allen-Cahn layers). Let the assumptions
of Theorem 2.1 hold. Fix α < β in (α∗, β∗) arbitrarily. Then, for ε > 0
small enough,

(ω−
ε,t ∪ γ−ε,t) ⊂ Ωε

t (β) ⊂ Ω̃ε
t (α) ⊂ ω+

ε,t , (2.5)

for all t ≥ tε, where tε is as in (2.1).
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The statement (2.5) gives lower and upper estimates for the Allen-Cahn
layer Γεt (α, β), but it does not necessarily give fine estimate for the location
nor the thickness of the layer. To explain this, let {Γt}t≥0 denote the gener-
alized MMC starting from Γ0 = ∂Ω0 (see Section 3) and define, as in (3.5),
Ωt as the “inside at time t” of Γt. Assume (which is natural) that (2.2) and
(2.3) are sharp — in the sense that γ−ε,0 and γ+

ε,0 actually lie in an O(ε ln ε)
neighborhood of Γ0. Then, for every t ≥ 0 the property

lim
ε→0

(ω−
ε,t ∪ γ−ε,t) = Ωt and lim

ε→0
ω+
ε,t = Ωt ∪ Γt , (2.6)

follows as an immediate consequence of the continuity of the viscosity so-
lution of (P 0) with respect to the initial data (see [16] or [3]). Thus (2.5)
implies, in particular, that, for any α < β in (α∗, β∗),

lim sup
ε→0

Γεt (α, β) ⊂ Γt . (2.7)

However, no precise estimate of the convergence rate in (2.6) is known in
general. Therefore Theorem 2.1 does not give good convergence rate for
(2.7). Note that this is the case even if all the motions around Γt are regular
— see (A.1) in Appendix. Nevertheless, as we explain below, explicit fine
estimates can be derived for admissible initial domains.

Definition 2.3 (Admissible domains). Let Ω0 be a bounded domain in R
N

whose boundary Γ0 := ∂Ω0 is a smooth hypersurface without boundary. We
say that Ω0 is admissible if there exist a1 ≥ 0, a2 ≥ 0 and a skew-symmetric
matrix Z such that (a1, a2) 6= (0, 0) and that, for all x ∈ Γ0,

(−a1x+ Zx− a2H(x)n(x)) · n(x) < 0 , (2.8)

where, for each x ∈ Γ0, H(x) denotes the sum of the principal curvatures
(hence N−1 times the mean curvature) at x, and n(x) the unit outer normal
to Γ0 at x.

Remark 2.4. Assume Ω0 is admissible. For t ≥ 0, define the evolution
operator Φt : Γ0 7→ Γt, where {Γt}t≥0 denotes the generalized MMC starting
from Γ0 = ∂Ω0. Then, for ν ≥ 0, define

ψν(Γ0) := eνZ [e−a1νΦa2ν(Γ0)] ,

obtained by letting Γ0 evolve by its mean curvature for the time a2ν, then di-
lating by factor e−a1ν , and rotating by the matrix eνZ ∈ SOn(R). Since eνZ ,
e−a1ν , Φa2ν are commutative, one can check that the collection (ψν(Γ0))ν≥0

forms a semigroup whose infinitesimal generator evaluated at x ∈ Γ0 is

G(x) := −a1x+ Zx− a2H(x)n(x) .
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In view of (2.8) and the compactness of Γ0, there exists δ > 0 such that, for
all x ∈ Γ0,

G(x) · n(x) ≤ −δ .
If follows that, by choosing ν0 > 0 small if necessary,

0 ≤ ν < ν ′ ≤ ν0 =⇒ ψν′(Γ0) << ψν(Γ0) , (2.9)

and that there exists Ĉ0 > 0 such that, for all 0 ≤ ν ≤ ν0,

dist(ψν(Γ0),Γ0) ≥ Ĉ0ν . (2.10)

Before proceeding further, let us emphasize one important difference
between the classical MMC and the generalized one. In the classical frame-
work, one first defines [0, Tmax) to be the maximal time-interval on which Γt
remains smooth, and then picks up an arbitrary closed sub-interval 0 ≤ t ≤
T < Tmax, on which the derivatives of Γt remain uniformly bounded. In this
time range one can get a good convergence rate for (2.6) for each 0 ≤ t ≤ T ,
because of the smoothness of Γt. And we even have an optimal estimate
as dH

RN
(Γεt (α, β),Γt) = O(ε), where dH

RN
denotes the Hausdorff distance

(see [1], as mentioned before). However, in the generalized framework, such
fine estimates collapse whenever Γt develops a singularity. For example,
consider two dumbbell-shaped hypersurfaces γ−ε,0 << Γ0 whose Hausdorff

distance dH
RN

(γ−ε,0,Γ0) is very small, say of O(ε| ln ε|). Within finite time

the “neck” of the smaller dumbbell γ−ε,t pinches off, splitting the hypersur-
face into two parts. Shortly after this moment, before Γt also pinches off, the
Hausdorff distance dH

RN
(γ−ε,t,Γt) is rather large compared with the distance

at t = 0.
Therefore, in order to get fine quantitative estimates in the presence of

singularities, the spatial distance at each fixed time slice is not the right
measurement to use. It turns out that, by using the space-time distance, we
can overcome this difficulty, at least for admissible initial domains. For this
purpose, we define the “space-time insides”

ω±
ε := ∪t≥0(ω

±
ε,t × {t}) , Ω := ∪t≥0(Ωt × {t}) ,

and the “space-time interface”

Γ := {(x, t) ∈ R
N × [0,∞) : v(x, t) = 0} , (2.11)

with v the viscosity solution of (P 0).
When Ω0 is admissible, there exists a constant C > 0 such that, for

the approximating domains (ω−
ε,0)ε>0, (ω+

ε,0)ε>0 satisfying (2.2), and (2.3)
respectively, we have

dH
RN+1

(γ±ε ,Γ) ≤ CdH
RN

(γ±ε,0,Γ0) ,
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where dH
RN+1

denotes the Hausdorff distance in the space-time R
N+1 (see

Section 5 for details). Combining this and Theorem 2.1, we can obtain
the following fine description of the Allen-Cahn layers for admissible initial
domains.

Theorem 2.5 (Fine estimates for admissible initial domains). Let f ∈
C2(R) satisfy (1.1) and (1.2), and let u0 ∈ C2

b (R
N ) be such that (1.3) holds.

Assume moreover that Ω0 is admissible. Fix ζ ∈ (0,min(a − α∗, β∗ − a))
arbitrarily. Then, there exists C > 0 such that, for ε > 0 small enough, for
all x ∈ R

N and all t ≥ tε,

uε(x, t) ∈





[α∗ − ζ, β∗ + ζ] if (x, t) ∈ R
N × [tε,∞)

[β∗ − ζ, β∗ + ζ] if (x, t) ∈ Ω \ NCε| ln ε|(Γ)

[α∗ − ζ, α∗ + ζ] if (x, t) ∈ (Ω ∪ Γ)c \ NCε| ln ε|(Γ)

(2.12)

where Nr(A) := {(x, t) ∈ R
N × [0,∞) : dist((x, t),A) < r} denotes the

r-neighborhood of the set A in R
N × [0,∞), and tε is as in (2.1).

Now, for α < β in (α∗, β∗), we define the “zone” α ≤ uε ≤ β by

Γε(α, β) := {(x, t) ∈ R
N × [tε,∞) : α ≤ uε(x, t) ≤ β} ,

which more or less represents the transition layer of the Allen-Cahn solu-
tion uε in space-time. Then the following holds as a direct consequence of
Theorem 2.5.

Corollary 2.6 (Location and thickness of the layers). Let f ∈ C2(R) satisfy
(1.1) and (1.2), and let u0 ∈ C2

b (R
N ) be such that (1.3) holds. Assume

moreover that Ω0 is admissible. Fix α < β in (α∗, β∗) arbitrarily. Then
there exists C > 0 such that, for ε > 0 small enough,

Γε(α, β) ⊂ NCε| ln ε|(Γ) . (2.13)

Note that (2.13) does not only give fine estimates for the location of the
Allen-Cahn layer Γε(α, β), but it also gives fine estimates for its thickness.
Indeed, under the assumption of Ω0 being admissible, Γ is known to have no
interior [7, Theorem 4.3]; in other words, the so-called fattening phenomenon
does not occur for Γ. Therefore (2.13) provides an O(ε| ln ε|) estimate of the
thickness of the Allen-Cahn layer.

Incidentally, if Ω0 is admissible, not only Γ is known to have no interior,
but it is also known to be regular from inside, that is, ClRN+1 [Ω] = Ω ∪ Γ,
where ClRN+1 [A] denotes the closure of the set A in R

N+1 [17, Corollary
4.5.11]. In fact, one can also prove that Γ is regular both from inside and
from outside if the initial domain is admissible (see Appendix).

Note that Theorem 2.5 allows Ωt to pinch off, as will be clear from Ex-
ample 2.9 below. Note also that Theorem 2.5 holds even after the extinction

9



time t∗ of the solution of the MMC starting from the initial interface Γ0.
Therefore, in the admissible case, we can provide an answer to the question:
how quickly does uε approach α∗ after the extinction of the interface Γt?

Corollary 2.7 (Behavior after the extinction time). Let f ∈ C2(R) satisfy
(1.1) and (1.2), and let u0 ∈ C2

b (R
N ) be such that (1.3) holds. Assume

moreover that Ω0 is admissible. Fix ζ ∈ (0,min(a− α∗, β∗ − a)) arbitrarily.
Then, there exists C > 0 such that, for ε > 0 small enough,

|uε(x, t) − α∗| ≤ ζ , (2.14)

for all x ∈ R
N and all t ≥ t∗ + Cε| ln ε|, with t∗ > 0 the extinction time

defined in (3.9).

2.2 Examples of admissible domains

Here are some examples of admissible domains. In what follows Ω0 is always
assumed to be a bounded domain in R

N with smooth boundary Γ0.

Example 2.8 (Strongly star-shaped domains). A domain Ω0 is called strongly
star-shaped with respect to the origin 0, if it is star-shaped with respect to
0, and if every ray emanating from 0 intersects Γ0 transversely. The above
condition is equivalent to x · n(x) > 0, for all x ∈ Γ0. Thus, any strongly
star-shaped domain is admissible with (a1, a2, Z) = (1, 0, 0).

Example 2.9 (Dumbbell-shaped domains). For N ≥ 3, let Ω0 consist of a
pair of disjoint domainsD1, D2 and a narrow channelD3 connecting D1, D2.
For simplicity, we assume that Ω0 is rotationally symmetric around the x1-
axis and given in the form Ω0 := {0 ≤ r < g(x1)}, r = (x2

2 + · · ·+ xN
2)1/2,

where g is a function satisfying

g > 0 on (−L,L) , g(±L) = 0 , g′(±L) = ∓∞ .

Furthermore, for some 0 < L1 < L2 < L and 0 < a < 1,




g(x1) = 1 if |x1| ≤ L1

g(x1) = cosh(a(|x1| − L1)) if L1 ≤ |x1| < L2

g′′(x1) < 0 if L2 ≤ |x1| < L .

We then modify g slightly around |x1| = L1 and |x1| = L2 so that g is
smooth for |x1| < L and that Γ0 is a smooth hypersurface (see Figure 1).
Then we can easily check that, for a ∈ (0, 1) small enough,

H(x) =
1

(1 + (g′(x))2)1/2

(
N − 2

g(x)
− g′′(x)

1 + (g′(x))2

)
≥ δ ,

for some constant δ > 0. Hence Ω0 is admissible with (a1, a2, Z) = (0, 1, 0).
It is well known (see Angenent [4]) that the generalized MMC starting from

10



Figure 1: Dumbbell.

such Γ0 pinches off and splits into two parts if L1 and D1, D2 are large
enough — thus creating a singularity .

A different type of dumbbell-shaped domain, which we call a diabolo,
can be constructed within the class of strongly star-shaped domains, that is
(a1, a2, Z) = (1, 0, 0), see Figure 2. The difference from the previous domain

Figure 2: Diabolo.

is that the center neck, namely D3, cannot be too long; on the other hand,
the outer end of D1, D2 need not to be of convex shape. This domain also

11



leads to pinching off if the center neck is narrow enough.

Example 2.10 (Galaxies). Here Ω0 is a domain in R
3 having the shape as in

Figure 3. This is constructed by appropriately fattening the 2-dimensional

Figure 3: Galaxy.

skeleton in Figure 4, which consists of a disk at the center and two arms
both of which are a portion of the logarithmic spiral of the form r = eβ(θ−θi)

(i = 1, 2), where β > 0, θ1, θ2 are some constants and r =
√
x2 + y2. It is

easily seen that Ω0 is admissible with

a1 = 1 , a2 = 0 , Z =




0 −β−1 0
β−1 0 0

0 0 0


 .

Example 2.11 (Gearwheels). Here, Ω0 is a smooth 3-dimensional, but
nearly flat, domain whose profile is as in Figure 5, with the origin 0 be-
ing the center of the inner circular hole, and with the z-axis perpendicular
to this circle. The inner part of the boundary Γ0 has positive mean cur-
vature because of the large positive sectional curvature in the z direction,
compared with the small negative sectional curvature in the rotational direc-
tion around the z-axis. The outer part is strongly star-shaped with respect
to 0. With an appropriate combination of the outer shape and the size of
the sectional curvature around the inner part, we see that Ω0 is admissible
with a suitable choice of a1 > 0, a2 > 0 and Z = 0.

12



Figure 4: Skeleton of the galaxy.

Figure 5: Gearwheel.

3 Generalized motion by mean curvature

For the convenience of the reader, we briefly recall here the level set approach
which enables to define uniquely a generalized MMC. We also recall some
useful properties of the associated signed distance function. For more details
and proofs, we refer to Evans and Spruck [16], Chen, Giga and Goto [13],

13



Evans, Soner and Souganidis [15] (from whom we borrow the notations) and
the references therein.

Given a compact set Γ0 ⊂ R
N , we choose a continuous function g :

R
N → R, constant outside some ball and such that

Γ0 = {x ∈ R
N : g(x) = 0} . (3.1)

Then, we consider the mean curvature evolution partial differential equation

vt − tr
[
(I − D̂v ⊗ D̂v)D2v

]
= 0 in R

N × (0,∞) , (3.2)

which is nonlinear, degenerate and even undefined in the points where Dv
vanishes (we recall that p̂ := p

|p|). Nevertheless, Problem

(P 0)





vt − tr
[
(I − D̂v ⊗ D̂v)D2v

]
= 0 in R

N × (0,∞)

v = g in R
N × {t = 0} ,

admits a unique viscosity solution v ∈ C(RN × [0,∞)), constant outside
some large enough ball, and each level set of v evolves according to the
mean curvature in a generalized sense. As far as viscosity solutions are
concerned, we refer the reader to the User’s guide of Crandall, Ishii and
Lions [14] and the references therein.

Now, for each t ≥ 0, we define the “interface at time t” by

Γt := {x ∈ R
N : v(x, t) = 0} , (3.3)

which is a compact set in R
N . Then the collection {Γt}t≥0 does not depend

on the choice of the function g. The family {Γt}t≥0 is called the generalized
motion by mean curvature starting from Γ0. The “space-time interface” Γ,
which is defined in (2.11), can be expressed as Γ = ∪t≥0(Γt × {t}).

Assume moreover that Γ0 is the boundary of a bounded open set Ω0 ⊂
R
N , and choose a continuous function g such that

g(x) > 0 if x ∈ Ω0 , g(x) < 0 if x ∈ (Ω0 ∪ Γ0)
c . (3.4)

If v denotes the solution of (P 0), we then define, for each t ≥ 0, the “inside
at time t” by

Ωt := {x ∈ R
N : v(x, t) > 0} , (3.5)

which is an open set in R
N . We also define the “space-time inside” by

Ω := {(x, t) ∈ R
N × [0,∞) : v(x, t) > 0} = ∪t≥0(Ωt × {t}) . (3.6)
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For the generalized MMC, the following comparison principle is known
to holds (see [16] or [3, Lemma 3.2]):

γ0 << γ̃0 =⇒ (ωt ∪ γt) ⊂ ω̃t ,∀t ≥ 0 . (3.7)

Here {γt}t≥0, respectively {γ̃t}t≥0, denotes the generalized MMC starting
from γ0, respectively γ̃0, and ωt, respectively ω̃t, denotes the “inside at time
t” of γt, respectively γ̃t. As a consequence,

γ0 << γ̃0 =⇒ (ω ∪ γ) ⊂ ω̃ , (3.8)

where ω, respectively ω̃, denotes the “space-time inside” associated with γt,
respectively γ̃t, and γ the “space-time interface”.

Next, let t∗ denote the extinction time, namely

t∗ := inf{t > 0 : Γt = ∅} . (3.9)

Finally, we let d(x, t) be the signed distance function to Γt, defined by

d(x, t) =





dist(x,Γt) if x ∈ Ωt

0 if x ∈ Γt

−dist(x,Γt) if x ∈ (Ωt ∪ Γt)
c ,

(3.10)

for all x ∈ R
N , 0 ≤ t ≤ t∗. Note that d is well-defined at time t = t∗

(because of the continuity of v), and that d may be not continuous in time
(for instance, if Γt is made of two pieces, one “disappearing” before the
other).

As proved in [15], the signed distance function d is a viscosity super-
solution, sub-solution, of the heat equation in the set {d > 0}, {d < 0}
respectively. More precisely, the following holds.

Lemma 3.1. We have

dt − ∆d ≥ 0 in Ω ∩ (RN × (0, t∗]) , (3.11)

and
dt − ∆d ≤ 0 in (Ω ∪ Γ)c ∩ (RN × (0, t∗]) , (3.12)

these inequalities being understood in the viscosity sense.

4 Refined Allen-Cahn barriers

The goal of this section is to show that, for any generalized MMC {γt}t≥0,
there exist a super-solution of (P ε) whose transition layer lies inside of γt
within distance of O(ε| ln ε|), and a sub-solution of (P ε) whose transition
layer lies outside of γt within distance of O(ε| ln ε|). The results are stated
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in the two following propositions which are fundamental for our analysis.
Combining these propositions with a generation of interface result proved in
[1], we will prove Theorem 2.1 in subsection 4.3.

Note that the constant λ > 0 which appears below is completely deter-
mined by the underlying travelling wave solution (see Lemma 4.4).

Proposition 4.1 (Super-solutions). Let (γ0, ω0) be an arbitrary pair with γ0

the boundary of the bounded open set ω0 ⊂ R
N . Denote by {γt}t≥0, {ωt}t≥0

the associated “interface at time t”, “inside at time t” respectively. Denote
by d(x, t) the signed distance function to γt (see Section 3). Fix ζ > 0
arbitrarily small and T > 0 arbitrarily. Then, for all ε > 0 small enough,
there exists a function w+

ε (x, t) such that

(i) w+
ε is a viscosity super-solution of the Allen-Cahn equation on R

N ×
(0, T ]

(ii) w+
ε has, for all t ≥ 0, the following upper bounds:

{
w+
ε (x, t) ≤ β∗ + ζ for all x ∈ R

N

w+
ε (x, t) ≤ α∗ + ζ for all x /∈ ωt

(4.1)

(iii) w+
ε (·, 0) has the following lower bounds:

{
α∗ + ζ

3 ≤ w+
ε (x, 0) for all x ∈ R

N

β∗ + ζ
3 ≤ w+

ε (x, 0) for all x such that d(x, 0) ≥ 8
λε| ln ε| .

(4.2)

Proposition 4.2 (Sub-solutions). Let the notations of Proposition 4.1 hold.
Fix ζ > 0 arbitrarily small and T > 0 arbitrarily. Then, for all ε > 0 small
enough, there exists a function w−

ε (x, t) such that

(i) w−
ε is a viscosity sub-solution of the Allen-Cahn equation on R

N×(0, T ]

(ii) w−
ε has, for all t ≥ 0, the following lower bounds:

{
α∗ − ζ ≤ w−

ε (x, t) for all x ∈ R
N

β∗ − ζ ≤ w−
ε (x, t) for all x ∈ ωt ∪ γt

(4.3)

(iii) w−
ε (·, 0) has the following upper bounds:
{
w−
ε (x, 0) ≤ β∗ − ζ

3 for all x ∈ R
N

w−
ε (x, 0) ≤ α∗ − ζ

3 for all x such that d(x, 0) ≤ − 8
λε| ln ε| .

(4.4)

One of the role of such a pair of sub- and super-solution shall be to
control the solution uε to (P ε) during the latter time range — after the
generation of interface— when the motion of interface occurs. In the sequel
we prove Proposition 4.1, the proof of Proposition 4.2 being similar. We
begin with some preparations.
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Figure 6: Graph of η.

4.1 Some preliminaries

A modified signed distance function. Let d be the signed distance
function to an arbitrary generalized MMC. In order to construct super-
solutions of (P ε) involving the signed distance function, it is necessary to
cut-off d in the set {d < 0}, where it is a sub-solution of the heat equation
(Lemma 3.1). To that purpose, we slightly improve the cut-off argument
used in [15].

In the following, θ(ε) is a positive function defined for ε ∈ (0, ε0), ε0 > 0
small enough; its possible explicit forms will be indicated later. Consider a
smooth auxiliary function η = ηε : R → R satisfying





η(z) = −θ(ε) for all −∞ < z ≤ 1
4θ(ε)

η(z) = z − θ(ε) for all z ≥ 1
2θ(ε)

0 ≤ η′ ≤ C

|η′′| ≤ C

θ(ε)
,

(4.5)

where C is a constant independent of ε. Rather than d we shall use η(d),
for the construction of our super-solutions.

From [15, Lemma 3.1], there exists a constant C > 0 such that, for all
ε ∈ (0, ε0),

η(d)t − ∆η(d) ≥ − C

θ(ε)
in R

N × (0, t∗] , (4.6)
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and

η(d)t − ∆η(d) ≥ 0 in

{
d >

1

2
θ(ε)

}
⊂ R

N × (0, t∗] , (4.7)

in the viscosity sense (which, in particular, contains the fact that η(d) is
lower semi continuous). For our results to hold after the extinction time, we
need to extend η(d(x, t)) to all times. By abusing the notations slightly, we
define

η(d(x, t)) =

{
η(d(x, t)) if t ≤ t∗

−θ(ε) if t > t∗ .
(4.8)

Let us notice that, from the definition of t∗, d(x, t∗) ≤ 0 for all x ∈ R
N .

But, as proved in [15], d is continuous from below (with respect to time) on
R
N × (0, t∗]; therefore there exists a neighborhood of (x, t∗) in R

N × (0, t∗]
on which η(d) ≡ −θ(ε). As a consequence, it is obvious that (4.6)—(4.7)
still hold for t > t∗, for the extension (4.8).

Lemma 4.3. There exists a constant C > 0 such that, for all ε ∈ (0, ε0),

η(d)t − ∆η(d) ≥ − C

θ(ε)
in R

N × (0,∞) , (4.9)

and

η(d)t − ∆η(d) ≥ 0 in

{
d >

1

2
θ(ε)

}
⊂ R

N × (0,∞) , (4.10)

in the viscosity sense.

A standing wave. We shall also need U0(z) the unique solution of the
stationary problem

{
U0

′′ + f(U0) = 0

U0(−∞) = α∗ U0(0) = a U0(+∞) = β∗ .
(4.11)

This solution represents the first approximation of the profile of a transition
layer around the interface observed in the stretched coordinates; it naturally
arises when performing a formal asymptotic expansion of the solution (see [1]
and the references therein). Note that the “balanced stability assumption”,
namely the integral condition (1.2), guarantees the existence of a solution
of (4.11). In the simple case where f(u) = u(1−u2), we know that U0(z) =
tanh(z/

√
2). In the general case, the following standard estimates hold.

Lemma 4.4. There exist positive constants C and λ such that

0 < β∗ − U0(z) ≤ Ce−λ|z| for z ≥ 0

0 < U0(z) − α∗ ≤ Ce−λ|z| for z ≤ 0 .

In addition, U0 is a strictly increasing function and, for j = 1, 2,

|DjU0(z)| ≤ Ce−λ|z| for z ∈ R . (4.12)
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4.2 Construction of super-solutions

We look for super-solutions w+
ε for Problem (P ε) in the form

w+
ε (x, t) = U0

(
η(d(x, t)) + εp(t)

ε

)
+ q(t) , (4.13)

for all (x, t) ∈ R
N × [0,∞), where

p(t) = −e−βt/ε2 + eLt +K

q(t) = σ
(
βe−βt/ε

2
+ ε2LeLt

)
,

(4.14)

and where d is the signed distance function to an arbitrary generalized MMC
{γt}t≥0. Note that by η(d(x, t)) we understand the extension (4.8).

Let us first specify the choice of β and σ and give a useful inequality. Note
that these choices are reminiscent of the ones in [1] where the convergence
to a classical solution of the MMC is studied. By assumption (1.1), there
exist positive constants b, m such that

f ′(U0(z)) ≤ −m if U0(z) ∈ [α∗, α∗ + b] ∪ [β∗ − b, β∗] . (4.15)

On the other hand, since the region {z ∈ R : U0(z) ∈ [α∗ + b, β∗ − b] } is
compact and since U0

′ > 0 on R, there exists a constant δ1 > 0 such that

U0
′(z) ≥ δ1 if U0(z) ∈ [α∗ + b, β∗ − b] . (4.16)

We set
β :=

m

4
, (4.17)

and

σ :=
ζ

2β
. (4.18)

By reducing ζ > 0 if necessary, we can assume σ ≤ min (σ0, σ1, σ2), where

σ0 :=
δ1

m+ F1
σ1 :=

1

β + 1
σ2 :=

4β

F2(β + 1)

F1 := ‖f ′‖L∞(α∗,β∗) F2 := ‖f ′′‖L∞(α∗−1,β∗+1) .

Combining (4.15) and (4.16), and considering that σ ≤ σ0, we obtain

U0
′(z) − σf ′(U0(z)) ≥ σm for −∞ < z <∞ . (4.19)

We now turn to the proof of Proposition 4.1 (i).

Proof. For ease of notation we here denote w+
ε by w. Let K > 1 be

arbitrary. What we shall prove is that, for all ε ∈ (0, ε0), the inequality

Lw := wt − ∆w − 1

ε2
f(w) ≥ 0 in R

N × (0, T ] (4.20)
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holds in the viscosity sense, provided that the constants ε0 > 0 and L > 0
are appropriately chosen. Note that the remaining freedom for the choice of
K > 1 is crucial for the proof of Proposition 4.1 (iii).

We recall that α∗ < U0 < β∗ and go on under the following assumption

ε20Le
LT ≤ 1 . (4.21)

Then, given any ε ∈ (0, ε0), since σ ≤ σ1, we have 0 ≤ q(t) ≤ 1, so that

α∗ ≤ w(x, t) ≤ β∗ + 1 . (4.22)

In order to prove (4.20), choose φ ∈ C∞(RN × (0,∞)) such that

w − φ has a minimum at (x0, t0) ∈ R
N × (0, T ] . (4.23)

Subtracting if necessary a constant from φ we can assume that

w − φ = 0 at point (x0, t0) . (4.24)

What we have to prove is

Lφ = φt − ∆φ− 1

ε2
f(φ) ≥ 0 at point (x0, t0) , (4.25)

for all ε ∈ (0, ε0), with ε0 small enough, L large enough, both independent
on φ. In view of (4.24), we have

φ(x0, t0) − q(t0) = U0

(
η(d(x0, t0)) + εp(t0)

ε

)
∈ (α∗, β∗) ,

and one can define a smooth function ψ in a neighborhood of (x0, t0) by

ψ(x, t) := εU0
−1(φ(x, t) − q(t)) , (4.26)

so that (4.23), (4.24) transfer to

η(d) − (ψ − εp) has a minimum at (x0, t0) , (4.27)

and
η(d) − (ψ − εp) = 0 at point (x0, t0) . (4.28)

It follows from Lemma 4.3 applied to test functions ψ − εp that

ψt − ∆ψ ≥ εpt −
C

θ(ε)
at point (x0, t0) , (4.29)

and

ψt − ∆ψ ≥ εpt at point (x0, t0) if d(x0, t0) >
1

2
θ(ε) holds . (4.30)
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Using φ = U0(
ψ
ε ) + q, we have the expansion

f(φ) = f(U0(
ψ

ε
)) + qf ′(U0(

ψ

ε
)) +

1

2
q2f ′′(θ) ,

for some U0 < θ < U0 + q. In view of the ordinary differential equation
(4.11), some straightforward computations yield, at point (x0, t0),

Lφ = E1 + E2 + E3 ,

with

E1 = − 1

ε2
q

(
f ′(U0) +

1

2
qf ′′(θ)

)
+ U0

′pt + qt

E2 =
U0

′′

ε2
(1 − |∇ψ|2)

E3 =
U0

′

ε
(ψt − ∆ψ − εpt) .

The term E1. Plugging the expressions (4.14) for p and q in E1, we obtain

E1 =
β

ε2
e−βt/ε

2
(I − σβ) + LeLt(I + ε2σL) ,

where

I = U0
′ − σf ′(U0) −

σ2

2
f ′′(θ)(βe−βt/ε

2
+ ε2LeLt) .

In virtue of (4.19) and (4.22), we have

I ≥ σm− σ2

2
F2(β + ε2LeLT ) .

Combining this, (4.21) and the inequality σ ≤ σ2, we obtain I ≥ 2σβ.
Consequently, we have

E1 ≥ σβ2

ε2
e−βt/ε

2
+ 2σβLeLt .

The term E2. First, assume d(x0, t0) >
1
2θ(ε). From the definition of η,

we have η(d) = d − θ(ε) in a neighborhood of (x0, t0). Arguing as in the
proof of [15, Theorem 2.2], we see that

|∇ψ(x0, t0)| = 1 , (4.31)

so that E2 = 0.
Now assume d(x0, t0) ≤ 1

2θ(ε), which implies η(d(x0, t0)) ≤ −1
2θ(ε). In

view of statement (4.27) and the definition of η, we have |∇ψ| ≤ C at point
(x0, t0). We deduce from Lemma 4.4 that

|E2| ≤
C

ε2
e−λ|η(d)+εp|/ε ≤ C

ε2
e−λ( 1

2
θ(ε)−εp)/ε .
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We remark that 0 < K − 1 ≤ p ≤ eLT +K. Consequently, if we assume

eLT +K ≤ θ(ε)

4ε
, (4.32)

then

|E2| ≤
C

ε2
e−λ

θ(ε)
4ε .

The term E3. If d(x0, t0) > 1
2θ(ε) it directly follows from (4.30) that

E3 ≥ 0.
Now assume d(x0, t0) ≤ 1

2θ(ε), which implies η(d)(x0, t0) ≤ −1
2θ(ε). It

follows from (4.29) that

E3 ≥ − C

θ(ε)

U0
′

ε
.

Using again Lemma 4.4 and arguing as above for the term E2, we see that

E3 ≥ − C

θ(ε)

1

ε
e−λ

θ(ε)
4ε .

Assumptions on θ(ε). We now specify a possible choice for θ(ε). We
assume that, as ε→ 0,

θ(ε)| ln ε| ≤ C , (4.33)

and
1

ε2
e−λ

θ(ε)
4ε ≤ C , (4.34)

for some constant C > 0; we remark that the latter assumption implies that
θ(ε)
ε → ∞ and that 1

θ(ε)
1
εe

−λ
θ(ε)
4ε is also bounded (so that E3 is bounded from

below). In the following we select

θ(ε) =
8

λ
ε| ln ε| , (4.35)

so that (4.33) and (4.34) hold. As easily understood, the above possible
choice is related to our improved estimate of the convergence rate of the
Allen-Cahn equation to generalized MMC (see Section 2).
Completion of the proof. Collecting all these estimates gives

Lφ ≥ σβ2

ε2
e−βt/ε

2
+ 2σβLeLt − C ≥ 2σβL− C .

Now we set

L :=
1

T
ln
θ(ε0)

8ε0
.

If ε0 is chosen small enough, the assumptions on θ(ε) combined with the
above choice for L validate assumptions (4.21) and (4.32) and insure Lφ ≥ 0.
The proof of Proposition 4.1 (i) is now complete.

22



To conclude this subsection, we now prove Proposition 4.1 (ii) and (iii).

Proof. For ease of notation we here denote w+
ε by w.

In view of σβ = ζ/2 and (4.21), we have, for ε > 0 small enough, q(t) ≤ ζ
for all t ≥ 0. Hence w(x, t) ≤ β∗ + ζ holds true for all x ∈ R

N . Next, choose
x ∈ R

N such that x /∈ ωt, that is d(x, t) ≤ 0. In view of the graph of η we
then have η(d(x, t)) = −θ(ε) = − 8

λε| ln ε|. Therefore, for t ≥ 0, we have

w(x, t) = U0

(
− 8
λ | ln ε| + p(t)

)
+ q(t)

≤ U0

(
− 8
λ | ln ε| + eLT +K

)
+ σ(β + ε2LeLT ) .

Then it follows from σβ = ζ/2 and from U0(−∞) = α∗ that, for ε > 0 small
enough (not depending on x /∈ ωt), the inequality w(x, t) ≤ α∗ + ζ holds
true. The proof of Proposition 4.1 (ii) is now complete.

We now prove (iii). Since

w+
ε (x, 0) = U0

(
η(d(x, 0))

ε
+K

)
+
ζ

2
+ σε2L , (4.36)

is is immediate that w+
ε (x, 0) ≥ α∗ + ζ/3 for all x ∈ R

N . Last, choose
K > 1 large enough so that U0(K) ≥ β∗ − ζ

6 . If x is such that d(x, 0) ≥
8
λε| ln ε| = θ(ε), the graph of η shows that η(d(x, 0)) ≥ 0 so that w+

ε (x, 0) ≥
U0(K) + ζ

2 ≥ β∗ + ζ
3 . Proposition 4.1 (iii) is proved.

Remark 4.5. As a matter of fact, our super-solutions w+
ε prove a bit more

than (4.1) since w+
ε (x, t) ≤ α∗ + ζ is valid not only for d(x, t) ≤ 0, but also

for d(x, t) ≤ 8
λε| ln ε| − Cε, with C > 0 large enough (because, in this case,

η(d(x, t)) ≤ −Cε); see Figure 8.

4.3 Proof of Theorem 2.1

Let (ω+
ε,0)ε>0 be any family of open sets satisfying (2.3), with

C0 >
8

λ
, (4.37)

where λ > 0 is the constant that appears in Lemma 4.4. Fix ζ ∈ (0,min(a−
α∗, β∗ − a)) arbitrarily. The strategy is the following. By quoting a gen-
eration of interface result from [1] and then using the super-solutions w+

ε

associated with the pair (γ+
ε,0, ω

+
ε,0) := (∂ω+

ε,0, ω
+
ε,0) (see Proposition 4.1), we

will show that
{
uε(x, t) ≤ β∗ + ζ for all x ∈ R

N

uε(x, t) ≤ α∗ + ζ for all x /∈ ω+
ε,t ,

(4.38)

for all t ≥ tε, with tε the generation time that appears in (2.1). Since sub-
solutions w−

ε can be used in an analogous way, this will be enough to prove
the theorem.
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Γ0 (i.e. d0 = 0)

H−

d0
M1ε−M1ε

β∗

α∗

x 7→ uε(x, f ′(a)−1ε| ln ε|)

H+

Figure 7: Prepared initial condition.

The rapid formation of internal layers that takes place in a neighborhood
of Γ0 = {x ∈ R

N : u0(x) = a} is studied in [1]: from an arbitrary initial
data u0 ∈ C2

b (R
N ) satisfying (1.3), an interface is fully developed at time

tε := f ′(a)−1ε2| ln ε|. In particular, there exists a positive constant M1 such
that, for ε > 0 small enough,

H−(x) ≤ uε(x, tε) ≤ H+(x) , (4.39)

for all x ∈ R
N , where the functions H+(x), H−(x) are given by

H+(x) =

{
β∗ + ζ

3 if d0(x) > −M1ε

α∗ + ζ
3 if d0(x) ≤ −M1ε

H−(x) =

{
β∗ − ζ

3 if d0(x) ≥ M1ε

α∗ − ζ
3 if d0(x) < M1ε ,

with d0(x) := d(x, 0) the signed distance function associated with the hy-
persurface Γ0 (see Figure 7).

For T > 0, we denote by w+
ε the super-solution associated with the

pair (γ+
ε,0, ω

+
ε,0) in the sense of Proposition 4.1. We denote by dε the signed

distance function associated with {γ+
ε,t}t≥0, the generalized MMC starting

from γ+
ε,0 := ∂ω+

ε,0 (see Figure 8).
We claim that, for ε > 0 small enough,

H+(x) ≤ w+
ε (x, 0) , (4.40)

for all x ∈ R
N . In the range where d0(x) ≤ −M1ε this follows from (4.2).

Now assume d0(x) > −M1ε. Since the constant C0 which appears in (2.3)
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Ωt

ω+
ε,t

d > 0

dε < 0

dε(·, t) = θ(ε) − Cε

d < 0

dε > 0

Figure 8: Ωt, ω
+
ε,t and related signed distances.

is such that C0 >
8
λ , we see that dε(x, 0) ≥ θ(ε) = 8

λε| ln ε|, for ε > 0 small
enough. Therefore, (4.2) implies (4.40).

From (4.40) and the comparison principle, we have

uε(x, t+ tε) ≤ w+
ε (x, t) for 0 ≤ t ≤ T − tε . (4.41)

From this and (4.1) (with ω+
ε,t playing the role of ωt) we immediately infer

that, for all T > 0, (4.38) is true on the time interval [tε, T ]. If we choose
T > 0 large enough so that ω+

ε,t = ∅ for all t ≥ T (that is the generalized

MMC starting from γ+
ε,0 have become extinct), we see that uε(x, T ) ≤ α∗+ζ

for all x ∈ R
N ; the comparison principle then shows that this inequality

persists for all t ≥ T and thus that (4.38) remains true on the time interval
[tε,∞).

5 Proof of Theorem 2.5

In this section, we prove Theorem 2.5. Assume Ω0 is admissible in the
sense of Definition 2.3. Fix ζ > 0 arbitrarily small. After making two key
observations in subsection 5.1, we split the proof into the lower bounds and
the upper bounds appearing in Theorem 2.5.
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5.1 Two key observations

A first observation is that the mean curvature evolution partial differential
equation is invariant under time-shifts, dilations, rotations. More precisely
if v(x, t) solves

vt = |Dv|div

(
Dv

|Dv|

)
, (5.1)

so do v(x, t + s) with s ≥ 0, v(λx, λ2t) with λ > 0 and v(Rx, t) with R ∈
SOn(R).

Next, for ν ≥ 0, define the invertible map Πν : R
N × R → R

N × R by

Πν((x, t)) :=
(
eνZe−a1νx, e−2a1ν(t− a2ν)

)
. (5.2)

For a given compact set K ⊂ R
N ×R it is obvious that there exists CK > 0

such that, for all ν ≥ 0,

sup
(x,t)∈K

‖(Πν − Id)(x, t)‖ ≤ CKν , (5.3)

sup
(x,t)∈K

‖(Πν
−1 − Id)(x, t)‖ ≤ CKν . (5.4)

5.2 The lower bounds

We first prove the lower bounds that appear in Theorem 2.5.
For ε ≥ 0 small enough, we construct “inner approximations of Γ0” by

γ−ε,0 := ψε| ln ε|(Γ0) = eε| ln ε|Z
[
e−a1ε| ln ε|Φa2ε| ln ε|(Γ0)

]
, (5.5)

see Remark 2.4. Here we remark that

γ−ε,0 = P
(
Πε| ln ε|(Γ0)

)
, (5.6)

where
P : (x, t) 7→ x

is the projection from R
N+1 onto R

N . We then define ω−
ε,0 as the domain

enclosed by γ−ε,0. From Remark 2.4, we deduce that

0 ≤ ε < ε′ =⇒ γ−ε′,0 << γ−ε,0 , (5.7)

and
dist(γ−ε,0 , Γ0) ≥ Ĉ0ε| ln ε| , (5.8)

for some constant Ĉ0 > 0. By replacing if necessary ψε| ln ε|(Γ0) in (5.5) by

ψCε| ln ε| with C >> 1, we can assume Ĉ0 >
8
λ , so that (2.2) is satisfied with

C0 = Ĉ0. Therefore the lower bounds in Theorem 2.1 hold.
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Next, it follows from (5.7) and the comparison principle (3.8) that (ω−
ε ∪

γ−ε ) ⊂ Ω. Since (see proof below)

dH
RN+1

(γ−ε ,Γ) ≤ Cε| ln ε| , (5.9)

for some C > 0, it follows that

Ω \ NCε| ln ε|(Γ) ⊂ (ω−
ε ∪ γ−ε ) , (5.10)

so that the lower bounds in Theorem 2.5 follow from the ones in Theorem
2.1. More precisely, if (x, t) ∈ Ω \ NCε| ln ε|(Γ), we deduce from (5.10) and
the lower bounds in Theorem 2.1 that uε(x, t) ≥ β∗ − ζ.

It remains to prove (5.9). We use the observations made in subsection
5.1. The function

v−ε (x, t) := v
(
Πε| ln ε|

−1(x, t)
)

(5.11)

solves (5.1), and v−ε (x, 0) = 0 if and only if x ∈ γ−ε,0. Hence v−ε “describes”

the generalized MMC {γ−ε,t}t≥0 starting from γ−ε,0. Therefore the “space-time
interface” γ−ε is given by

γ−ε = {(x, t) ∈ R
N × [0,∞) : v−ε (x, t) = 0} .

In view of (5.11) this yields (see Figure 9)

γ−ε = Πε| ln ε|(Γ) ∩ (RN × [0,∞)) . (5.12)

Therefore (5.9) follows from (5.12) and (5.3).

5.3 The upper bounds

We now prove the upper bounds that appear in Theorem 2.5. Since the
evolution operator Φt : Γ0 7→ Γt is not invertible, the argument is more
involved.

First, choose ε > 0 small enough so that the MMC starting from Γ0

remains smooth on the time interval [0, τ ε], where

τ ε := a2ε| ln ε| .

From the classical framework analysis [1, Theorem 1.3], there exists M > 0
such that, for all tε ≤ t ≤ τ ε,

uε(x, t) ∈





[α∗ − ζ
3 , α

∗ + ζ
3 ] if d(x, t) ≤ −Mε

[α∗ − ζ
3 , β

∗ + ζ
3 ] if −Mε < d(x, t) < Mε

[β∗ − ζ
3 , β

∗ + ζ
3 ] if d(x, t) ≥Mε ,

(5.13)

with d(x, t) the signed distance function to Γt defined in (3.10). We recall
that tε := f ′(a)−1ε2| ln ε| denotes the generation time.
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γ−
ε,0Γ0

Γτε γ+
ε,τε

x ∈ R
N

t ∈ R

Γ

γ−
ε = Πε| ln ε|(Γ) ∩ (RN ∩ [0,∞))

γ+
ε := Πε| ln ε|

−1(Γ)

t = τ ε

Figure 9: Sets used in the proof of Theorem 2.5.

Next, using the map Πε| ln ε|
−1, we define the space-time sets (see Figure

9)
γ+
ε := Πε| ln ε|

−1(Γ) , and ω+
ε := Πε| ln ε|

−1(Ω) .

From (5.4) we deduce that there exists C > 0 such that

dH
RN+1

(γ+
ε ,Γ) ≤ Cε| ln ε| . (5.14)

Since the function
v+
ε (x, t) := v

(
Πε| ln ε|(x, t)

)
(5.15)

solves (5.1) for t ≥ τ ε, and v+
ε (x, τ ε) = 0 if and only if x ∈ e−ε| ln ε|Zea1ε| ln ε|Γ0,

the set γ+
ε is actually the “space-time interface” associated with the gener-

alized MMC {γ+
ε,t}t≥τε starting from

γ+
ε,τε := e−ε| ln ε|Zea1ε| ln ε|Γ0 . (5.16)

Hence Proposition 4.1 provides an Allen-Cahn super-solution w+
ε on (τ ε, T ]

such that, for all t ≥ τ ε,

w+
ε (x, t) ≤ α∗ + ζ for all x /∈ ω+

ε,t , (5.17)

with ω+
ε,t the “inside at time t” associated with γ+

ε,t, and
{
α∗ + ζ

3 ≤ w+
ε (x, τ ε) for all x ∈ R

N

β∗ + ζ
3 ≤ w+

ε (x, τ ε) for all x such that dε(x, τ ε) ≥ 8
λε| ln ε| ,

(5.18)
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with dε(x, t) the signed distance function to γ+
ε,t.

From (5.5) and (5.16) we have eε| ln ε|Ze−a1ε| ln ε|Γτε = γ−ε,0 and γ+
ε,τε =

[eε| ln ε|Ze−a1ε| ln ε|]−1Γ0, and thus

dist(Γτε , γ+
ε,τε) ≥ cε dist(γ−ε,0 , Γ0) ,

where cε → 1, as ε → 0. In view of (5.8) it follows that, for ε > 0 small
enough, dist(Γτε , γ+

ε,τε) ≥ C̃0ε| ln ε|, with C̃0 >
8
λ . It follows that, for ε > 0

small enough,

d(x, τ ε) ≥ −Mε =⇒ dε(x, τ ε) ≥ 8

λ
ε| ln ε| .

Combining this with (5.13) and (5.18), we infer that

uε(x, τ ε) ≤ w+
ε (x, τ ε) ,

for all x ∈ R
N . The comparison principle now implies

uε(x, τ ε + t) ≤ w+
ε (x, τ ε + t) , (5.19)

for all x ∈ R
N , all t ∈ [0, T − τ ε].

Finally, for C > 0 as in (5.14), we take

(x, t) ∈ (Ω ∪ Γ)c \ NCε| ln ε|(Γ) , (5.20)

with t ≥ tε, and prove that uε(x, t) ≤ α∗+ζ. If t ≥ τ ε, we deduce from (5.20)
and (5.14) that x /∈ ω+

ε,t so that conclusion follows from (5.17). If tε ≤ t ≤ τ ε,
(5.20) shows that d(x, t) ≤ −Cε| ln ε| ≤ −Mε and the conclusion follows
from (5.13).

A On the generic regularity of generalized MMC

Let Ω0 be a bounded domain in R
N , whose boundary Γ0 := ∂Ω0 is a smooth

hypersurface without boundary. Let {Γt}t≥0 be the generalized MMC (mo-
tion by mean curvature) starting from Γ0, and let Ωt denote the “inside at
time t” as defined in (3.5). We denote by Γ the “space-time interface” and
by Ω the “space-time inside”. Let us recall some classical definitions in the
“generalized MMC literature” (see [7] for instance). We say that the motion
is regular from inside if ClRN+1 [Ω] = Ω ∪ Γ, and regular if

ClRN+1 [Ω] = Ω ∪ Γ and ClRN+1 [(Ω ∪ Γ)c] = (Ω ∪ Γ)c ∪ Γ . (A.1)

It is clear that regularity (or regularity from inside) implies non fattening.

We take the opportunity of this Appendix to state a result on the regu-
larity, Proposition A.2, which does not seem to exist in the literature. We
start with the following simple lemma. It is well-known in general topology,
but for the convenience of the reader we give a proof.
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Lemma A.1. Assume S ⊂ (0,∞) is an uncountable set. Then

∃a > 0 ,∀b > a , S ∩ [a, b) is uncountable . (A.2)

Proof. Since (0,∞) = ∪p≥1[p
−1, p), there exists an integer p ≥ 2 such that

S ∩ [p−1, p) is uncountable. (A.3)

Assume that (A.2) does not hold. Then

∀a ∈ [p−1, p) ,∃ba ∈ (a, p] , S ∩ [a, ba) is countable. (A.4)

Define

P :=
{
c ∈ (p−1, p] : S ∩ [p−1, c) is at most countable

}
.

Since bp−1 ∈ P , this set is non empty. We can therefore define c∗ := supP ≤
p. Take a sequence (cn) of elements of P such that cn ր c∗. Since [p−1, c∗) =
∪n≥1[p

−1, cn), and since S∩ [p−1, cn) is at most countable for n ≥ 1, we have
c∗ ∈ P . Now if c∗ < p, then

[p−1, bc∗) = [p−1, c∗) ∪ [c∗, bc∗)

contains at most countably many elements of S, which implies bc∗ ∈ P .
Since bc∗ > c∗ = supP , this is impossible. Therefore c∗ = p; hence [p−1, p)
contains at most countably many elements of S. This contradicts (A.3),
therefore (A.4) is false. The lemma is proved.

We now state our result on the regularity.

Proposition A.2 (Generic regularity). Let (ων,0)ν>0 be a family of bounded
open sets such that γν,0 := ∂ων,0 is a hypersurface without boundary. Assume
that

0 < ν < ν ′ =⇒ ClRN [ων′,0] ⊂ ων,0 . (A.5)

For ν > 0, denote by {γν,t}t≥0 the generalized MMC starting from γν,0. We
denote by γν and ων the associated “space-time interface” and “space-time
inside”. Then the sets

J − := {ν > 0 : ClRN+1 [ων ] 6= ων ∪ γν}

J + := {ν > 0 : ClRN+1 [(ων ∪ γν)c] 6= (ων ∪ γν)c ∪ γν}
are at most countable.

Proof. We only prove the assertion for J − since that for J + can be shown
in the same manner. First note that it follows from assumption (A.5) and
the comparison principle (3.8) that

0 < ν < ν ′ =⇒ (ων′ ∪ γν′) ⊂ ων . (A.6)
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For ν > 0, define

δν := sup
(y,τ)∈γν

dist ((y, τ),ClRN+1 [ων ]) .

Since ClRN+1 [ων ] ⊂ (ων ∪γν) always holds, we have J − = {ν > 0 : δν > 0}.
Assume by contradiction that J − is uncountable. Then there exists an
integer n0 such that the set

J −
0 := {ν > 0 : δν ≥ 1

n0
} is uncountable.

From Lemma A.1, there exists ν∗ > 0 such that, for all ν > ν∗, the set J −
0 ∩

[ν∗, ν) is uncountable. Therefore we can construct a decreasing sequence
(νn) of elements of J −

0 which tends to ν∗. From the definition of J −
0 , we

deduce the existence of (xn, tn) ∈ γνn
such that

dist ((xn, tn),ClRN+1 [ωνn
]) ≥ 1

n0
. (A.7)

On the one hand, if j < k, the decreasing of the sequence (νn) and (A.6)
imply that (xj , tj) ∈ ωνk

. Therefore (A.7) yields

d ((xk, tk), (xj , tj)) ≥
1

n0
.

But, on the other hand, (A.6) implies that (xn, tn) ∈ ων∗ so that we can
extract a convergent subsequence of (xn, tn). This is a contradiction and the
proposition is proved.

As stated in Section 2, it is known that, for an admissible initial domain
Ω0, the evolution {Γt}t≥0 starting from Γ0 = ∂Ω0 is regular from inside [17,
Corollary 4.5.11]. Proposition A.2 provides a simple proof of the regularity
both from inside and from outside. More precisely, the following holds.

Corollary A.3. Let Ω0 be an admissible domain in the sense of Definition
2.3. Then the generalized MMC starting from Γ0 := ∂Ω0 is regular.

Proof. For 0 ≤ ν ≤ ν0, define, as in Remark 2.4,

γν,0 := ψν(Γ0) = eνZ
[
e−a1νΦa2ν(Γ0)

]
,

and denote by ων,0 the domain enclosed by γν,0. It is clear from (2.9) that
the family of bounded open sets (ων,0)0<ν<ν0 satisfies the assumption (A.5)
of Proposition A.3. Therefore, for almost all ν ∈ (0, ν0), the generalized
MMC {γν,t}t≥0 starting from γν,0 is regular, that is,

ClRN+1 [ων ] = ων ∪ γν , (A.8)
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ClRN+1 [(ων ∪ γν)c] = (ων ∪ γν)c ∪ γν . (A.9)

Since

ων = Πν(Ω) ∩ (RN × [0,∞)) = Πν

(
Ω ∩ (RN × [a2ν,∞))

)
,

with Πν as in (5.2), we have

Ω ∩ (RN × [a2ν,∞)) = Πν
−1(ων) .

Since Πν is a homeomorphism on R
N+1, we see from (A.8) that, for almost

all ν ∈ (0, ν0),

ClRN+1 [Ω ∩ (RN × [a2ν,∞))] = (Ω ∪ Γ) ∩ (RN × [a2ν,∞)) .

Letting ν → 0, we obtain

(Ω ∪ Γ) ∩ (RN × (0,∞)) ⊂ ClRN+1 [Ω ∩ (RN × (0,∞))] .

Combining this and ClRN [Ω0] = Ω0 ∪ Γ0, we obtain ClRN+1 [Ω] = Ω ∪ Γ.
Similarly, from (A.9), we obtain ClRN+1 [(Ω ∪ Γ)c] = (Ω ∪ Γ)c ∪ Γ. The
proposition is proved.
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