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Distributed Implementation of SIGNAL: Scheduling & Graph Clustering ?

This paper introduces the scheduling strategy and some key tools which have been designed for the distributed implementation of Signal, a real-time synchronous data ow language. First, we motivate a scheduling strategy with respect to the reactivity and time-predictability requirements bound to real-time computing. Then, several key tools to implement this scheduling strategy are described. These tools are acting on the concept of Synchronous-Flow Dependence Graph (SFD Graph) which de nes a generalization of Directed Acyclic Graph and constitutes the abstract representation of Signal programs. The tools presented in this paper are: (a) the abstraction of SFD graphs which enables grain-size tuning according to the target architecture, (b) the notion of scheduling over SFD graphs and (c) qualitative clustering tools based on the notion of Compositional Deadlock Consistency.

Introduction

Although distributed architectures are becoming increasingly popular, implementing large-scale applications onto them still remains a very di cult challenge. The problem of implementing a program onto a distributed architecture is often stated as: partitioning and scheduling the nodes of a Directed Acyclic Graph (DAG) < N; > onto a set of potentially heterogeneous processors fP i j i = 1; : : :; pg. In the abstract representation < N; > of the application, N is a set of nodes (tasks) which stand for indivisible 3 program computations, and is a set of arcs which represent the precedence constraints (including the data paths). If the scheduling goal is the minimization of the program completion time, the associated scheduling problem is NP-complete even if the number of processors is unbounded 18]. Since the optimal solution of this scheduling problem can only be computed by exponential complexity algorithms (unless P=NP), the purpose is to de ne fast heuristic techniques which e ciently compute optimal or near-optimal solutions for restricted scheduling problems, i.e. fast heuristic techniques acting on a previously stated scheduling strategy.

In this paper, we present the scheduling strategy and some key tools we designed for the distributed implementation of Signal 13], a real-time synchronous dataow language. The scheduling strategy we chose is presented in section 2; it takes into account responsiveness, robustness, e ciency and time-predictability requirements that real-time implementations must satisfy.

The tools implementing this scheduling strategy are acting on a generalization of the notion of Directed Acyclic Graphs called Synchronous-Flow Dependence Graphs (SFD Graphs). These graphs, which have been initially designed to represent abstractly Signal programs, constitute now the graph format shared by the languages Esterel 5], Argos 17], Lustre 8] and Signal; SFD graphs are presented in section 3.

The following three sections de ne three key tools over SFD graphs to implement our scheduling strategy: (a) the abstraction of SFD graphs enabling grain-size variations in section 4, (b) the notion of compile-time scheduling over SFD graphs in section 5 and, (c) clustering tools based on a new qualitative criterion, namely the compositional deadlock consistency, in section 6.

Scheduling Strategy

The possible scheduling strategies go from fully dynamic up to fully static. In the fully dynamic scheduling strategy, the assignment of the tasks to the processors and their ring time are determined at run-time. In contrast, the fully static approach realizes these two actions at compile time. Static or dynamic task assignment is the rst criterion which motivates the choice of a scheduling strategy. A dynamic assignment scheduling strategy induces e cient parallel program executions if the target architecture has relatively low communication costs compared with the processor performance; a fully dynamic scheduling strategy performs well for shared-memory architectures with few processors but not for large-scale distributed memory architectures. Due to the relatively weak scalability of the dynamic assignment scheduling strategies, we chose a scheduling strategy with a static assignment of the tasks.

Related Work

Many works on static assignment scheduling strategies have been achieved but they often consider only particular target architectures (the processors are homogeneous, the network topology is a ring, etc.) or particular application graphs (chains, trees, etc.) 3] for which polynomial optimal algorithms can be found.

One relevant approach for a general purpose multiprocessor scheduling strategy has been proposed by Kim & Browne 9]. Their scheduling strategy decomposes the application graph into a set of linear clusters. A linear cluster is a set of nodes in which, for every couple of nodes, one precedes the other. The clustering algorithm merges iteratively the nodes on the critical path. After some clustering re nements, each cluster is mapped to one processor of the target architecture.

In 18], Sarkar has proposed a similar scheduling strategy: a clustering phase (called internalization prepass) followed by a mapping phase. His clustering algorithm considers the arcs of the application graph in a descending order with respect to their communication weight. It iteratively merges the extremity nodes of the rst arc in the list if this clustering does not increase the parallel completion time; this clustering algorithm performs non linear clustering. When the arc list has been exhausted, the mapping phase is achieved using a list scheduling algorithm.

Another relevant approach has been de ned by Gerasoulis & Yang in 7]. This approach, implemented in the PYRROS environment 20], uses a clustering algorithm which merges the extremity nodes of the highly weighted arc on the Dominant Sequence path. The Dominant Sequence path is the longest (i.e. critical) path in the estimated static scheduling 4 . Like in Sarkar's approach, this algorithm performs non-linear clustering.

The SIGNAL Approach

To implement Signal programs on a distributed architecture with p processors, we advocate a slightly di erent scheduling strategy:

(a). Gather the nodes of the application graph into u clusters (u p). (b). Merge the u clusters into p connected virtual processors. (c). Map the p virtual processors onto the p physical processors. (d). Partition each virtual processor i in v i clusters. (e). Compute a static schedule for each cluster; the resulting sequences of code will be dynamically scheduled. In contrast with the other scheduling strategies which are fully static, our strategy envisages mixed static/dynamic scheduling at the processor level (step (e)). This modi cation has been motivated by the kind of applications we have to cope with: reactive instead of transformational systems 16]. In transformational systems, the inputs are de ned before the execution of the system. Therefore, an implementation of this system may schedule the reading of its inputs at compile time; a fully static scheduling strategy may induce e cient implementations for transformational systems. As we consider real-time systems, a timely kind of reactive systems, the inputs are supplied at run-time and we have to cope with robustness, responsiveness and time-predictability. Therefore, a scheduling strategy with some dynamic scheduling is more suitable for the implementation of real-time systems since it enables some exibility in task ring. The dynamic scheduling is intended to provide the implementation with responsiveness and robustness to the variations in time of the input occurrences. But, this dynamic scheduling must be strictly con ned to satisfy the time-predictable requirement.

Note that, in our scheduling strategy, we have extended the notion of cluster. Usually, a cluster is de ned as a set of tasks which are executed on the same processor. In the expression of our scheduling strategy, we only consider a cluster as a set of tasks which are treated as a whole in the next non-clustering steps. In the distribution steps (steps (a), (b) and (c)), this induces that all the tasks of a cluster will be implemented on the same processor. In the implementation steps (steps (d) and (e)), it signi es that dynamic scheduling will be only considered between the clusters, a sequence of code being associated with each cluster v i .

In the sequel of this paper, we do not pretend to provide a complete set of tools to implement our scheduling strategy, but only to present some key qualitative tools:

{ abstraction of SFD graphs in section 4. With this abstraction, SFD graphs may constitute the only modeling along the inference of a parallel implementation;

{ compile-time scheduling of SFD graphs in section 5. With this notion, a rst step towards the inference of parallel implementations over SFD graphs is achieved.

{ clustering tools based on new qualitative scheduling criterion: compositional deadlock consistency in section 6. These clustering tools may be used in the implementation of steps (a) and (d) of our scheduling strategy. Before presenting all these tools, let us present shortly the notion of Synchronous-Flow Dependence Graph (SFD Graph).

Synchronous-Flow Dependence Graphs

Let us illustrate the notion of Synchronous-Flow Dependence Graph (SFD Graph) over a simple Signal example, a counter with reset:

(| ZV:= V $1 | V:= ( 1 when RST )default( ZV+1 ) |)
The $ operator is used to recall past values: the process ZV:= V $1 means that ZV carries the previous value of V. The when operator lters data according to a boolean condition and the default is a merge with priority:

V:= ( 1 when RST )default( ZV+1 )
speci es that V is reset to 1 when RST holds true; otherwise it increments its previous value. Sequences of values that RST, ZV and V may take are: RST : t ZV : 5 6 7 8 9 1 2 3 4 5 V :

6 7 8 9 1 2 3 4 5 6 This behavior is abstractly represented in two connected structures: an equation system which translates the relations among the occurrences of data, and a dependence graph which represents the ows of data.

An Equational Control Modeling

The equation system is expressed over a set C of characteristic functions called clocks: for any signal V, its clock b v is equal to 1 if V is carrying a data at the considered instant, it is equal to 0 if no data is present on V. The logical relations among the occurrences of data, which are implicit in Signal processes, are translated into equations over clocks. For instance, the counter example is translated as:

ZV:= V $1 c zv = b v (i) V:= ( 1 when RST )default( ZV+1 ) b v = c rst _ c zv (ii)
As expressed in equation (i), each time V is holding a value, ZV is carrying a value (in fact the previous value of V). Equation (ii) expresses that V carries a value whenever a reset occurs or ZV holds a value. Formally, the equation system which encodes the occurrence relations evolves in a boolean algebra B =< C; _; ^;b 0; b 1 > where:

C is a set of clocks; B is called a clock algebra; b 0 denotes the least element of B which stands for the never present clock;

it is used to denote something that never happens; b 1 is the greatest element of B, the always present clock.

As boolean algebras are lattices, an alternative representation of the clock algebra B is achieved through a partial order: < C; > with In Fig. 1-a where RST occurs ( c rst = 1), ONE (a constant signal) is assigned to V, the value of ZV is not used. Otherwise, V is de ned 5 by the value of ZV as depicted in Fig. 1-b. When b v = 0 (the counter is not counting), nothing happens as it is accurately presented in Fig. 1-c. The abstract representation of the ows of data using Synchronous-Flow Dependence Graphs (SFD Graphs) is de ned by superimposing all the possible data-dependence graphs. Superimposing all the data-dependence graphs drawn in Fig. 1 induces the SFD graph depicted in Fig. 2. The paths taken by the data according to the control states are described over SFD graphs by means of two mappings f N and f . These two mappings respectively label its nodes and its vertices:

{ f N (one) = c
rst means that ONE is only present when RST occurs 6 ;

{ f (zv; v) = c
rst means that V is de ned from ZV when RST does not occur. { f : ! C is a mapping labeling each edge with a clock; it speci es the existence condition of the edges. 6 Note that the clock of a constant signal is de ned in a demand-driven way. 7 

c

rst is not equivalent to c rst which is the complementary of c rst: c rst = b 1 c rst Directed Acyclic Graphs (DAGs) are a very common abstract program representation 1] of the ows of data which may occur in a program. A SFD graph is nothing but a set of directed graphs packed together, the way these graphs are packed being described by a boolean labeling of the elements of this graph. For this reason, we say that SFD graphs are a generalization of DAGs. In contrast with DAGs, the clock labeling provides SFD graphs with a dynamical feature.

To express precedence constraints, this clock labeling imposes two constraints which are implicit for DAGs:

{ an edge cannot exist if one of its extremity nodes does not exist.

This property translated into the clock algebra, the image set of the mappings, is: As Signal is a data ow language, SFD graphs de ne naturally a ne-grain parallel representation of programs. Implementing Signal programs onto a parallel architecture needs to tune the grain of the abstract program representation according to the target parallel architecture. For this purpose, we present in the next section the notion of abstraction over SFD graphs. This notion of abstraction frees SFD graphs from the ne-grain representation they were initially bound.

8(x; y) 2 f (x; y) f N (x) ^fN (y) { a cycle of

Abstraction of Synchronous-Flow Dependence Graphs

A key concept in software engineering is the concept of abstraction 10] which supplies the su cient information to compose processes leaving aside any internal feature: it is the key concept for modularity. In programming languages, an abstracted process if often con ned to an identi er and a set of input/output nodes. In some high-level languages, process abstraction may include (a) formal parameter to introduce some program genericity or (b) some high-order inputs like the procedure entry level in ADA 19]. More generally, the concept of abstraction is designed for the veri cation of global properties by the composition of synthesized representations. If R 1 and R 2 are two representations with some semantics and j is a composition operator, the Abs synthesizing mechanism for the compositional veri cation of the property P must verify the following relation:

P(R 1 ) ^P(R 2 ) ^P(Abs(R 1 )jAbs(R 2 )) =) P(R 1 jR 2 )
According to their mixed nature, abstraction of SFD graphs involves two synthesizing mechanisms to verify deadlock freedom and to perform control consistency 15] by composition:

{ A synthesis of the internal dependencies This synthesis, required to verify deadlock by composition, is achieved through the transitive closure of the dependence graph and its projection (sub-graph) upon the input and output nodes. The transitive closure of SFD graphs is simply computed with the two following rules.

rule of series x ! b c y ! b d z ) x ! b c ^b d z rule of parallel x ! b c y x ! b d y ) ) x ! b c _ b d y { A clock equation projection.
This control projection synthesizes the relations (equivalence, inclusion, exclusion) among the clocks which label (a) the edges of the synthesized graph to enable compositional deadlock detection and (b) the input-output nodes to perform control consistency 15] by composition. The counter example is too small to illustrate the abstraction of SFD graphs. The reader interested in such an example is referred to [START_REF] Ma | Combining dependability with architectural adaptability by means of the Signal language[END_REF][START_REF] Ma E S | Ordonnancements de graphes de ots synchrones[END_REF].

In contrast with a lot of common abstract representations of programs, the abstraction over SFD graphs provides them not with black box abstractions but rather with grey box abstractions since it even synthesizes the control. Moreover, as abstractions of SFD graphs are SFD graphs, all the tools previously de ned for SFD graphs are reusable modularly: modularity may be introduced in the whole compilation process. With this notion of abstraction, steps (a) and (d) of our scheduling strategy can be achieved without giving up the SFD graph modeling. This modeling homogeneity warrants a greater reliability (every modeling change constitutes a possible source of error) which is a critical requirement for realtime systems. In the next section, we go one step further towards the inference of time-predictable parallel implementations by means of the notion of compiletime scheduling over abstractions of SFD graphs.

Compile-Time Scheduling

Compile-time scheduling, that is programming at compile-time the execution of tasks, can be considered at two levels: at the logical level, compile-time scheduling is to set the precedence constraints veri ed at run-time among the tasks; at the physical level, compile-time scheduling is to de ne the exact ring time of the tasks. In this section, we only consider compile-time scheduling at the logical level since we do not want to introduce quantitative data as required for physical compile-time scheduling.

When an application is abstractly represented as a directed acyclic graph < N; >, scheduling at compile-time a set N of tasks is speci ed by adding precedence constraints to while making sure that no deadlock is introduced. If we call reinforcement the addition of precedence constraints, and deadlock consistency the action of \making sure that no deadlock is introduced", a scheduling of < N; > is de ned as a deadlock-consistent a reinforcement it. Let us transpose this de nition from DAGS to SFD graphs: { reinforcement: < N; 0 > is a reinforcement of < N; > i 0 Transposing the reinforcement de nition to SFD graphs implies:

x ! b k y is a reinforcement of x ! b h y i b h b k
Note that the absence of dependency between two nodes can be equivalently represented over SFD graphs by a dependence labeled with the null clock b 0.

As for DAGs, reinforcement provides a set of SFD graphs based on the same node set with an order relation.

{ deadlock consistency: < N; 0 > is deadlock-consistent for < N; > i < N; > deadlock free =)< N; 0 > deadlock free Transposing the notion of deadlock consistency to SFD graphs implies: As for DAGs, deadlock consistency provides a set of deadlock-free SFD graphs based on the same node set with an order relation.

A compile-time scheduling of a graph is de ned as a deadlock-consistent reinforcement of it. Let us focus on what precisely means the combination of these two properties over the SFD graph abstraction depicted in Fig. 3. In this gure, x and y stand for any two nodes, they may be internal, input or output nodes.

S(x; y

) y x f + f Fig.3. A Basic SFD Graph Abstraction
The clock which labels the dependency from x to y is denoted f + , its converse is denoted f . S(x; y) stands for a logical Scheduling of x before y. As a scheduling is a deadlock-consistent reinforcement, S(x; y) must ensure that the cycle x ! S(x; y) y ! f x does not represent a deadlock. Therefore, it must satisfy the condition (1). S(x; y) ^f = b 0 (1) By combining reinforcement with deadlock consistency, we demonstrate that S(x; y) de nes a compile-time scheduling i the condition (2) holds.

f + S(x; y) b x ^b y ^(b 1 f ) (2) 
Proof : the lowerbound of scheduling is the straightforward expression of the reinforcement property which is attached to the notion of compile-time scheduling. The upperbound of scheduling is induced from the conjunction of the deadlock consistency condition with the inclusion condition. The inclusion condition bound to SFD graph imposes that an arc cannot exist if one of its extremity node does not. Over the notations of Fig. 3, this inclusion condition is translated as: S(x; y) b

x ^b y.

By means of elementary clock calculus, the deadlock consistency property is rewritten as an inequation: S(x; y) ^f = b 0 , S(x; y) ^(b 1 f ) = S(x; y) , S(x; y) ( b 1 f )

The intuitive meaning of this formally proven upperbound of scheduling is:

x may be schedule before y at most when b

x ^b y

x and y are present, ^(b 1 f ) and y does not precede x By means of clock expressions, di erent kinds of scheduling may be expressed at compile-time. If S(x; y) is equal to b x ^b y, it expresses that x is scheduled before y as soon as x and y are de ned: the underlying scheduling is static. The existence of cycle such that S(x; y) ^S(y; x) = b 0 denotes a scheduling depending on boolean conditions evaluated at run-time, it induces pre-constrained dynamic scheduling. The lack of dependency between x and y, which occurs when S(x; y) and S(y; x) are both equal to b 0, induces a dynamic scheduling.

Since scheduling is de ned as the conjunction of reinforcement with deadlock consistency, it provides a set of deadlock free SFD graphs based on the same node set with an order relation. Therefore, an execution schema can be designed progressively by successive reinforcement of a graph. Moreover, this design can be performed at any level of abstraction since this scheduling is applicable over SFD graph abstractions.

Besides the proper de nition of the notion of compile-time scheduling over SFD graphs, the purpose of this section was to illustrate the way to express by clock expressions the control of the execution of processes. The same technique is used in the next section to de ne the notion of compositional deadlock consistency on which our clustering algorithms are based.

Compositional Deadlock Consistency

The general problem of partitioning/mapping an application graph onto a set of processors while minimizing the maximal completion time is NP-complete 18]. Bypassing this complexity can be achieved through clustering heuristics which detect properties of sub-graphs that are considered as atomic unit for the mapping process. A clustering phase is intended to increase the granularity of the graph thereby reducing the size of the mapping problem without compromising the implementation e ciency. Then, on this size-reduced application graph, mapping algorithms with higher complexities can be reasonably used.

With respect to subtle variations of the scheduling goals, several clustering heuristics have been de ned in the literature |see 6] for a survey of these heuristics. The clustering sub-goals that are used can be split in two classes: the quantitative goals (called performance goals in 6]) and the qualitative ones. Two di erent quantitative data are usually added to the application graph < N; > for quantitative scheduling: the execution time e ik of the task n i (n i 2 N) on the processor P k , and the communication cost c ij between the tasks n i and n j when they are mapped on two directly connected processors (null communication time is assumed if n i and n j are mapped on the same processor). According to these two kinds of quantitative data, the two extreme sub-goals are: the maximization of the execution e ciency and the minimization of the communication volume. In contrast with the quantitative goals which are architecture dependent, the qualitative goals focus on the shape of the clusters. The qualitative goals which have been used for clustering include: { linearity 9]. A linear cluster is a set of nodes in which, for every couple of nodes, one precedes the other; the nodes of a linear cluster belong to a single path in the dependence graph. As linear clustering merges only sequentially executable nodes, it preserves the parallelism embedded in the graphs; { convexity 18]. Sarkar de nes the convexity as the property that ensures that a macro-actor can run to completion once all its input are available. In other words, its execution can be split into three periods sequentially performed: waiting for all the inputs; computing; emitting all the outputs. Therefore, we say that the execution of convex macro-actors is function-like at the I/O level. A graph-theoretic approach to convexity has been studied in 12].

In this section, we de ne a new qualitative criterion, namely Compositional Deadlock Consistency, which allows one to encompass linear as well as convex clustering in a single framework. This extension has been motivated by the reactive feature of real-time systems which imposes to consider the environment of the real-time systems at all their design stages.

Example

Let us consider the graph in Fig. 4 which depicts the abstraction of a process with two input signals I1 and I2, and two outputs O1 and O2. In this graph, the solid arrows (i1 ! o1, i1 ! o2 and i2 ! o1) represent the dependencies induces from the abstraction of the speci cation of the process. i2 . This deadlock is present at the implementation level but not at the speci cation level since it includes a dashed arrow. As the scheduling i2 o2 may create a deadlock with an environment which is correct with respect to the process speci cation, this scheduling is said not compositionally deadlock-consistent.

In contrast, the scheduling o2 o1 is compositionally deadlock-consistent since it does not create a deadlock with the environment in Fig. 4-c, and this environment is the only one which can read outputs and emit inputs of the process without creating a deadlock with it at the speci cation level.

De nition

Let us focus on what precisely means the notion of compositional deadlock consistency over the generic SFD graph abstraction depicted in Fig. 5. In this gure, i1 ip represent the input nodes, o1 oq the output ones and, x and y stand for any two nodes which may be internal nodes as well interface nodes 8 . Translated over the notations in Fig. 5, the notion of compositional deadlock consistency imposes that S(x; y) must verify: 8ik; ol f kX ^S(x; y) ^fY l ^Fenv = b 0

S(x; y)

(3) In this equivalence, F env denotes a dependency from ol to ik outcoming from the composition with an environment. This environment is acceptable if it is not deadlocked with the speci cation of the process. Thus, the following condition must be veri ed: 8 If x is the input node ik, it is equivalent to consider for the sequel of this paper that fkX is equal to b

x. A symmetric remark can be expressed if y is the output node ol.

Fully Deadlock Consistent Compile-Time Scheduling

By combining the compile-time scheduling characterization (formula (2)) with inequality (4), we de ne the criterion of fully deadlock consistent compile-time scheduling (fdc scheduling) which is formally characterized by: S(x; y) is de nes a fully deadlock consistent compile-time scheduling of

x before y i f + S(x; y) S > (x; y) with: S > (x; y) = b

x ^b y ^(b

1 f ) ^k;l ( b 1 f kX ^fY l ^(b 1 f kl )) (5) 
The proof of this inequality is straighforward. The complex clock expression which speci es the upperbound of scheduling may be intuitively read as:

x may be scheduled before y i x does not precede y and : b

x ^b y ^(b 1 f )î f a scheduling path ik; x; y; ol is created :

k;l ( b 1 f kX ^fY l then ik precedes ol by speci cation

( b 1 f kl ))
The two main promising properties of this scheduling criterion are: (a) it may induce architecture independent clustering since it is a qualitative scheduling criterion; (b) as it is based on the abstraction of SFD graphs, it may be applied to any subset of nodes: it de nes an any level scheduling criterion. Exploiting these properties to perform clustering needs to use this criterion accurately to avoid the NP-complete problems that its general use will encounter. The practical uses of this new scheduling criterion for clustering are presented in the next section.

Clustering

By applying the fdc scheduling criterion to a set of nodes, the associated process may constitute a cluster by: { Linear Clustering if all the nodes may belong to a single path of fdc scheduling. Note that, as a fdc scheduling is a reinforcement of a graph, any linear clustering over a graph (as performed in 9]) is a linear clustering over a fdc scheduling of this graph. But, in contrast with Kim & Browne's linear clustering, linear clustering over fdc scheduled graphs may reduce the parallelism embedded in the initial graph;

{ Convex Clustering if all the nodes may belong to a single path of fdc scheduling where inputs and outputs are not alternating. Therefore, any convex cluster is a linear cluster. The practical use of the fdc scheduling criterion to do linear and convex clustering will encounter NP-problems at two levels:

{ complex calculi in a boolean algebra lead to NP-complete problems. This rst obstacle has been overcome with the heuristic algorithm that implements the clock calculus 2]. Despite the breakthrough achieved by this heuristic algorithm, the boolean calculi submitted to it must be as simple as possible.

{ optimal partitioning/clustering of general graphs with respect to non trivial criteria is a NP-complete problem. To cope with this obstacle, we can use optimal algorithms with exponential complexity on very small (sub-)graphs, polynomial but often sub-optimal algorithms on large graphs, or a combination of both. The rst optimization achieved by both the convex and the linear clustering algorithms is to do clustering in two steps. Firstly, only a size-reducted problem is considered by restricting the scope of fdc scheduling from any pair of nodes to pairs of interface nodes. Secondly, the properties detected at the interface level are propagated to the internal nodes to perform convex and linear clustering.

Convex Clustering

A naive algorithm for convex clustering at the interface level would be to enumerate the possible elementary paths of the maximal fdc schedulings of an interface abstraction, the maximal fdc schedulings of a graph being computed by recursively substituting each arc by its upperbound of fdc scheduling. If one of these paths does not alternate inputs and outputs, the associated process may de ne a convex cluster.

The major drawback of this naive algorithm is its complexity: it requires two phases (computation of the maximal fdc scheduling and path enumeration) which have an exponential complexity in the general case. Consequently, we have investigated the other possibility which goes through the upperbound of fdc scheduling of an interface graph. The upperbound of fdc of a graph is computed by substituting in parallel each arc by its upperbound of fdc scheduling. This upperbound is the superimposition of all the maximal fdc schedulings. For instance, let us consider the interface abstraction depicted in Fig. 6-a In the general case, the upperbound of fdc scheduling does not de ne a scheduling as it may include cycles representing deadlocks. The upperbound of scheduling depicted in Fig. 6 As no cycle may alternate inputs and outputs, a cycle among inputs induces that these inputs can be scheduled in a sequence without outputs; a similar discussion may occur for cycles among outputs. This property of the cycles occurring at the upperbound of fdc scheduling motivates the following algorithm which performs convex clustering:

1. compute the upperbound of fdc scheduling among the inputs;

2. for each set of inputs belonging to a cycle at b h: cluster to this set of inputs the internal and outputs nodes which depend exclusively on these inputs.

Note that a symmetric convex clustering algorithm may start from the outputs instead of the inputs. This variation of the clustering algorithm may be useful if there is less outputs than inputs to deal with a smaller problem. Applied to the interface graph in Fig. 6-a, this algorithm detects that the associated process de nes a convex cluster at b h.

Linear Clustering

By convex clustering may result a partition into processes which can run to completion once all their inputs are available; in these processes, all the inputs may precede all the outputs at the implementation level. Looking for a partition into linear clusters which are not convex clusters leads to search for fdc scheduling paths which alternate inputs and outputs. Therefore, one way to reduce the search space of the algorithm which does this search is to start from a fdc scheduling dependency connecting an output to an input. Starting from such a scheduling dependency, the algorithm may proceed by looking backward and then forward to get the longest path of fdc scheduling. Previously to this algorithm, a transitive reduction algorithm may be applied to reduce even more the search space. Applied to the graph in Fig. 6-a, the algorithm starts from the fdc scheduling dependency o2 i2 at b k b h. Then, by going backward, the node i1 is added as the starting point of this scheduling path. By going forward, the node o1 is appended to the path. Finally, this algorithm detects that the associated process de nes a linear cluster but not a convex one at b k b h. By combining this result with the convex clustering detected on the same set of nodes, linear and possibly convex cluster are detected. By this combination, the process abstractly represented in Fig. 6-a de nes a linear cluster at:

b h _ ( b k b h) = b k
After this de nition of the convex and linear clustering algorithms, let us conclude this paper by presenting the way we intend to implement the ve-steps scheduling strategy we advocated, and how the fdc scheduling criterion is used in this framework.

Scheduling Strategy Implementation

In the beginning of this paper, we advocate a ve-steps scheduling strategy.

(a). Gather the nodes of the application graph into u clusters (u p). (b). Merge the u clusters into p connected virtual processors. (c). Map the p virtual processors onto the p physical processors. (d). Partition each virtual processor i in v i clusters. (e). Compute a static schedule for each cluster; the resulting sequences of code will be dynamically scheduled.

The two clustering steps (a) and (d) will be based on the convex and linear clustering algorithms previously presented. Steps (b) and (c) will be implemented by means of the coupling of the Signal software design environment with the Syndex system. Syndex, which stands for Synchronous Distributed Executive, is a system which enables the inference of implementations over various distributed architectures. It performs this inference by mapping SFD graphs over a graph representation of the architecture 9 . This inference is performed in three steps:

(a) the user may constrain some mapping of processes onto processors; (b) Syndex completes the mapping and produces scheduled distributed code for the target architecture and (c) Syndex provides the user with static analyses of the performance of the inferred implementation. An iteration among these three steps is required to infer for complex applications an e cient implementation on a distributed, eventually heterogeneous, architecture.

Implementing step (e) may take once again bene t of the fdc scheduling criterion but in a slighly di erent way than it has been achieved for clustering. De ning an implementation requires an order relation. From the upperbound of fdc scheduling of an interface graph, two ways exist to get an order relation: break the cycles or merge the nodes belonging to a cycle. Using these two methods over the upperbound in Fig. 6-b, we infer the two graphs in Fig. 7 which respectively de ne: { an interface execution scheme in Fig. 7-a.

The rst step in the inference of this high-level execution scheme in Fig. 7-a is to break the cycles representing deadlocks by removing the edges between inputs and between outputs at the clock at which convex clustering was performed. This leads to suppress in { a communication scheme in Fig. 7-b.

The cycle between the input nodes expresses that, when b h occurs, i1 may be scheduled before or after i2 without creating a deadlock. For this reason, the values on i1 and i2 can be received gathered without the creation of a deadlock. In other words, the communications of the values of i1 and i2 may be vectorized at b h if they come from the same processor. To express the design of such a communication scheme at the graph level, it is su cient to partition the nodes according to the cycles. Applied to the upperbound graph in Fig. 6-b, we may deduce the input communication interface presented in Fig. 7 The paper has motivated a scheduling strategy for the distributed implementation of Signal programs. This scheduling strategy di ers from the usual one by the dynamical scheduling it includes. This variation has been motivated by the reactive requirements that Signal, as a real-time language, must ful ll.

For the implementation of this scheduling strategy, we have de ned several tools, all of them acting on Synchronous-Flow Dependence Graphs (SFD Graphs). These graphs, which constitute the abstract representation of Signal programs, de ne a generalization of the notion of Directed Acyclic Graph. Three tools are de ned in this paper to implement this scheduling strategy: { Abstraction. This rst tool is intended to free SFD graphs from the ne-grain parallel abstract representation they were initially bound. By means of this abstraction, we are able to tune the grain-size of the representation according to the one of the target architecture without giving up with the SFD graph modeling; { Compile-time Scheduling. This de nition of the notion of scheduling constitutes the rst step towards the inference of implementations. The purpose of this de nition was also to illustrate the method to express over SFD graphs the scheduling of processes with a complex control; { Clustering.

A new qualitative criterion, namely compositional deadlock consistency, is de ned and used at several steps in the scheduling strategy. In particular, this new criterion is used to implement the two clustering steps of our scheduling strategy. This new criterion enable to embraces in a single framework two usual qualitative clustering criteria, linearity and convexity.

The abstraction tool is currently integrated into the Signal software design environment; the programming of the clustering tools is underway. The Signal software design environment intends to encompass all the stages of the design of real-time systems. This environment includes (a) a graphic speci cation interface to specify real-time systems, (b) several formal veri cation tools to prove properties thereby to enhance the safety of the implementations and (c) tools to infer implementations over sequential architectures as well as distributed ones.

The inference of distributed implementations for Signal programs is only partially implemented in the Signal compiler; the architecture-dependent transformations are performed by the Syndex system 11]. The coupling between the Signal compiler and the Syndex system is achieved by means of a textual decompilation of SFD graphs 4]; an extended version of this decompilation de nes the common graph format shared by Esterel 5], Argos 17], Lustre 8] and Signal.

  encoding, we can deduce that b v = c rst _ b v or equivalently c rst b v. This result intuitively means that the activity of the counter includes the reset operations. A Clock-Labeled Dependence Graph The equation system describes algebraically the reachable control states of the process. Over the counter example, the relation c rst b v induces that the control state where b v = 0; c rst = 1 is unreachable. According to the reachable control states, di erent ows of data may occur; the di erent ows of data which may occur in the counter are abstractly represented by the dependence graphs in Fig. 1-a, Fig. 1-b and Fig. 1-c, one for each reachable control state.

Fig. 1 .

 1 Fig. 1. The Data-Dependencies According to the Control States

Fig. 2 .

 2 Fig. 2. A Synchronous-Flow Dependence Graph

  The new clock-label c rst denotes the control state (b) in Fig. 1: c rst = 1 when b v = 1 and c rst = 0. The de nition of c rst is 7 : c rst = b v ^(b 1 c rst) . Formally, a SFD graph is de ned by: < G; C; ; f N ; f > is a Synchronous-Flow Dependence Graph (SFD graph) i : { G =< N; ; I; O > is a dependence graph < N; > with communication nodes: the inputs I and the outputs O are such that I N; O N and I \ O = ;. { < C; > is an equational control representation where is a set of constraints over a set C of characteristic functions called clocks; { f N : N ! C is a mapping labeling each node with a clock; it speci es the existence condition of the nodes.

  closure or an abstraction of a SFD graph, the above condition of deadlock consistency is rewritten in a simpler form: x ! b k y is deadlock-consistent for x ! b h y i b h ^b l = b 0 =) b k ^b l = b 0 with y ! b l x

Fig. 4 .

 4 Fig. 4. A Deadlock between a Process Implementation and its Environment

Fig. 5 .

 5 Fig. 5. A Generic SFD Graph Abstraction

  8ik; ol F env ^fkl = b 0 As for the proof of the upperbound of scheduling (formula (2) in section 5), the above condition can be equivalently rewritten in the inequation F env ( b 1 f kl ) . Consequently, the condition of compositional deadlock consistency (formula (3)) is rewritten in: 8ik; ol S(x; y) ^fkX ^fY l ^(b 1 f kl ) = b 0 This quanti ed equation can be rewritten in inequation (4). S(x; y) k;l ( b 1 f kX ^fY l ^(b 1 f kl )) (4) Proof : The equation S(x; y) ^fkX ^fY l ^(b 1 fkl) = b 0 can be rewritten in: S(x; y) ^(b 1 fkX ^fY l ^(b 1 fkl)) = S(x; y) 8ik 2 I ; ol 2 O , S(x; y) ( b 1 fkX ^fY l ^(b 1 fkl)) 8ik 2 I ; ol 2 O , S(x; y) V k;l ( b 1 fkX ^fY l ^(b 1 fkl))

  . In this abstraction, we assume that f N (i1) = f N (i2) = f N (o1) = f N (o2) = b k and b h b k . The upperbound of fdc scheduling of this abstraction is the SFD graph in Fig. 6-b.

Fig. 6 .

 6 Fig. 6. A Graph and its Upperbound of Fdc Scheduling

  Fig 6-b the arcs i2 i1 and o1 o2. The second step is the unfolding of the acyclic graph according to the different control states referred in the remaining cycles. The remaining cycle between i2 and o2, which does not denote a deadlock ( b h ^(b k b h) = b 0), im- poses a conditional scheduling denoted by the labeled fork-join in the graph in Fig. 7-a. Note that static (i.e. non conditional) scheduling is achieved at the two extreme cases: b h = b k and b h = b 0.

Fig. 7 .

 7 Fig. 7. Execution and Communication Schemes

  dependencies stands for a deadlock. This property is veri ed over DAGs by de nition. Over SFD graphs, it is expressed as:

A SFD graph < G; C; ; f N ; f > is deadlock free i , for every cycle x1; : : :; xn; x1 in G, f (x1; x2) ^f (x2; x3) ^: : : ^f (xn; x1) = b 0 Intuitively, this equation translates the property that a deadlock does not exist if all the dependencies of a cycle in a SFD graph cannot be present at the same time.

Note that Critical Path and Dominant Sequence path are equivalent notions in a linear clustering algorithm.

In fact, the graph representation of the architecture may be an hypergraph since the target architecture may include buses.

? This work has been initiated at IRISA (Institut de Recherche en Informatique et Syst emes Al eatoires). It has been completed at RAL (Rutherford Appleton Laboratory, England) and GMD where it has been supported by an ERCIM (European Research Consortium for Informatics and Mathematics) fellowship. 3 in the sense that no attempt is made to use intranode parallelism