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Hierarchical Coordinated Freeway
On-Ramp Metering Using Switching

System Theory

Antoine Lemarchand ∗ John J. Martinez ∗ Damien Koenig ∗

∗ Control system department, GIPSA-lab, UMR 5216, Grenoble-INP,
France.

Abstract: This paper deals with the problem of freeway traffic control through ramp metering
to enhance their efficiency. The traffic is often modeled by a nonlinear hyperbolic conservation
laws that may develop and propagate shock waves. The Cell Transmission model (CTM)
developed in (Daganzo [1994]),(C. F. Daganzo [1995]) is taken in this work since linear control
tools can be used for analysis and control design. This model is extended with parametric
uncertainties. A hierarchical control scheme with two levels is considered. The first level gives
the optimal densities to apply on the freeway. The second level is charged for compensating local
parametric uncertainties and disturbances (on-ramp demands, boundary conditions). These
controllers are designed using switching control theory. A real-data based simulation is used
to validate the effectiveness of the proposed control approach.

Keywords: Traffic control, switching theory, linear optimal control, uncertain linear systems

1. INTRODUCTION

According to the 2007 urban mobility report (Schrank
and Lomax [2007]), the cost of traffic jam has increased
5% during the last three years and has reached more
than 4.2 billion dollars. This is due to the increasing
amount of vehicles on roads that also causes an over
consumption of fuel. Since the construction of new roads
may be very expensive and not always possible, efforts
trying to optimize the use of the existing road network are
reinforced. A valuable tool for increasing the effectiveness
of the design and the evaluation of traffic monitoring and
control is the use of accurate traffic models (Munoz et al.
[2004]). There are two types of traffic models : microscopic
and macroscopic models. In microscopic models, each cars
behavior is considered separately (Yang and Koutsopoulos
[1996]) whereas in macroscopic models density and flow are
considered as in hydrodynamic theory (Daganzo [1994]).
In this work, we choose a first order macroscopic model
which can not predict negative flow, unlike higher order
models (Papageorgiou [1998]). First order models are
usually based on the Cell Transmission Model (CTM)
presented in (C. F. Daganzo [1995]). The main idea of
these models is to consider homogenous density over small
interconnected road sections and to calculate flow between
cells in case of simple, merging and diverging junctions
(Section 2). The CTM is extended in order to propose a
new uncertain multiple state space representation. This
work is presented in Section 3. In this paper we use a
hierarchical control scheme in order to achieve a global
control of a freeway section which include several on/off-
ramps. This scheme is depicted in Figure 1. Here, the
control system is divided in two layers, a high level
layer which determines the optimal traffic densities and
flows as in (Gomes and Horowitz [2006]),(Jacquet [2008]).
The solution of the optimal problem is computed by the

simplex algorithm. This layer is presented in section 4.
Once the optimal references are calculated by this layer,
they are applied at each on-ramp neighborhood. Due to
the presence of disturbances, model uncertainties and the
multi-model, a bank of local PI controllers based on the
Lyapunov theory on switching systems is designed via LMI
formulation as explored in (Jacquet et al. [2008]). This
work is presented in Section 5. Finally, a real-data based
simulation is performed to illustrate the performance of
the proposed control strategy. This work is presented in
Section 6.

Fig. 1. Regulation scheme.

2. CELL TRANSMISSION MODEL

The CTM is a first order linear discrete traffic model pro-
posed in (Daganzo [1994]),(C. F. Daganzo [1995]) and used



in many trafic issues. The CTM model is presented in four
parts : Section 2.1 presents the elementary cells, Section
2.2 presents the queue model, Section 2.3 presents the
junction model, and Section 2.4 presents the uncertainties
model.

2.1 Elementary Cell

Consider the road section divided into elementary cells.
Assuming that in each cell, the density, ρ(k) [veh/km],
of vehicles is homogenous. Then ρ(k) can be related to
φi(k) and φi+1(k) [veh/h], respectively the flow entering
and leaving cell i by

ρi(k + 1)=ρi(k) + T
li

(φi(k)− φi+1(k)), (1)

as depicted in Figure 2

Fig. 2. Elementary cell.

where li [km] is the length of cell i and T [h] the period of
discretized time. To guarantee numerical stability, T has
to fit the condition T < inf( livi ),∀i = 1, ..., N (N , the
number of cells). Notice that (1) is the conservation law of
vehicles (Jacquet [2007]).

2.2 Queue

The queue model is the same as the cell model (section
2.1). Taking di(k) [veh/h] as the demand at on-ramp (i.e.
the flow entering on-ramp), and ui(k) [veh/h] as the flow
leaving on-ramp and entering in the main line (Figure 3).
The evolution of the queue density, ρini(k) [veh/km] is
described by

ρini(k + 1)=ρini(k) + T
lini

(di(k)− ui(k)), (2)

Fig. 3. Queue.

2.3 Junctions

Assuming that a cell can contain at most one on-ramp at
the beginning of the cell and one off-ramp at the end as
depicted in Figure 4. Denote ui the flow entering cell i via
on-ramp, and φouti the flow leaving cell i−1 via off-ramp.

Define Sφi(k) as the flow that the upstream cell can
supply, and Rφi(k) as the flow that the downstream cell
can receive. They depend on vi the free flow speed, wi
the backward congestion propagation speed, ρJi the jam

Fig. 4. Junction.

density (i.e. maximal density), and φMi the maximum flow
that can travel from upstream to downstream cell. Sφi(k)
and Rφi(k) are characterizeds by :

Sφi(k) =min((1− βi).vi−1.ρi−1(k), φMi
), (3)

Rφi(k) =min(wi.(ρJi − ρi(k))− φini(k), φMi
). (4)

with βi the split ratio (i.e. the part of the flow leaving cell
i− 1 that leaves main road via off-ramp) defined by

φouti(k) = βi.(φouti(k) + φi(k)). (5)

Obviously the flow moving from upstream to downstream
cell is the minimum of (3) and (4), i.e.

φi(k) =min(Sφi(k), Rφi(k)). (6)

Junction modes :
From (3), (4), and (6) one can identify the three possible
modes of the junction : a free mode (F) where the flow is
proportional to the upstream cell concentration, a decou-
pled mode (D) where the flow is equal to the maximal flow,
and a congested mode (C) where the flow is proportional
to the remaining space in downstream cell. A graphical
representation of (3), (4) and (6) is provided in Figure 5.
It is called the fundamental diagram. This kind of diagram
appears in every traffic issues using macroscopic model
(Geroliminis and Daganzo [2008]).

2.4 Uncertain Parameters

The nominal parameters of the fundamental diagram can
be computed using the calibration methods described
in (Munoz et al. [2004]) with experimental data 1 . The
obtained diagram is depicted in Figure 5.
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Fig. 5. Fundamental diagram identification.

1 Real time measurements realized on D383 road (near Lyon,
France) provided by DDE69



Notice that this diagram contains uncertainties. They can
be modeled as the following parametric uncertainties (Cf
Figure 6) :

vi−1(k) = v0i−1 + ∆vi−1(k)
φMi(k) = φM0i

+ ∆φMi(k)
wi(k) = w0i + ∆wi(k)

(7)

Fig. 6. Fundamental diagram with parametric uncertain-
ties.

The spectrum of ∆v is depicted in Figure 7. It shows
that this parameter has a slow varying rate. Indeed, the
most important part of the uncertainty is situated at
low frequencies (less than 0.5h−1). So a local bank of PI
controller can attenuate these uncertainties.

Fig. 7. Spectrum of ∆v.

3. UNCERTAIN SWITCHED CTM

Consider a freeway section, divided into N cells, N + 1
junctions and Nin inputs. Define

α(k) := [α1(k), · · · , αN+1(k)]
where αi(k) ∈ {F,D,C} represents the mode of junction
i (see Section 2.3).

Proposition 1. For all α(k) the dynamics of a freeway
section can be written as a dynamical system of the form
:

ρ(k + 1) = A0α(k) .ρ(k) +Bα(k).u(k) + Eα(k).d(k)+
a0α(k) + Fα(k).ρ∆(k) +Gα(k).h∆(k) (8)

where ρ(k) is the state vector of densities in each cells,
u(k) are controlled on-ramps flows, d(k) are uncon-
trolled on-ramps flows and boundary conditions, a0α(k)

is a constant, ρ∆(k) and h∆(k) are some perturbations.
A0α(k) , Bα(k), Eα(k), Fα(k), Gα(k) are matrices of appropri-
ate dimensions.

Proof In the rest of this section, we will write α instead
of α(k) on clearness purpose.
Firstly, the conservation law (1) is rewritten as follows :

ρ(k + 1) = ρ(k) + Θ.φ(k) +B.u(k) (9)
where φ = [φ1, · · · , φN+1] is the vector of flows in each
junction, and

Θ =


T

l1
−T
l1

0 0

0
. . . . . . 0

0 0
T

lN
− T

lN

 ,

B =



0 0 0
T

li1
0

...

0
T

lix

...

... 0 0

0 0
T

liNin


.

Secondly, the vector φ(k) is reformulated thanks to the
results of Section 2.3 with a matrix formulation as follows
:
φ(k) = Aφα(k).ρ(k) +Bφα .u(k) + Eφα .d(k)

+aJα(k).ρJ + aφMα .φM (k), (10)

where, ρJ := [ρJ1 , · · · , ρJN ] is the vector jam densities of
each cell, φM (k) := [φM1(k), · · · , φMN+1(k)] is the vector
of maximal flows in each junction (see Figure 6), and the
matrices Aφα(k), Bφα , Eφα , aJα(k), aφMα are respectively
described by :

Aφα(k) =


−w1(k).eC1 0 0

v1(k).eF2

. . . 0

0
. . . −wN (k).eCN

0 0 vN (k).eFN+1

 ,

Bφα =



0 0 0

−eC1 0
...

0 −eCx
...

... 0 0
0 0 −eCNin


,



Eφα =


eF1 0

0
...

... 0
0 eCN+1

 ,

aJα(k) =

w1(k) 0
. . .

0 wN+1(k)

 ,

aφMα =

eD1 0
. . .

0 eDN

 ,

with,

eFi =
{

1 if junction i is Free
0 otherwise

eDi =
{

1 if junction i is Decoupled
0 otherwise

eCi =
{

1 if junction i is Congested
0 otherwise

Substituting (10) into (9) and using the relations (11-14)
the formulation (15) is obtained.

Aα(k) = I + Θ.Aφα(k), (11)

Bα =B + Θ.Bφα , (12)

Eα = Θ.Eφα , (13)

aα(k) = Θ.(aJα(k).ρJ + aφMα .φM (k)). (14)

ρ(k + 1) = Aα(k).ρ(k) +Bα.u(k) + Eα.d(k) + aα(k).(15)
Notice that (11) and (14) contain uncertainties. Let’s
separate the constant parts and the uncertain parts of
(11) and (14). For this purpose, we study a case where
all different junction modes occurs : the freeway section is
in congested mode from junction 1 to p− 1, decoupled in
junction p and free from p+1 to N +1. From (7) the term
(11) can be decomposed as a nominal and an uncertain
part as follows :

Aα(k) = A0α + Fα.∆(k) (16)
with,

A0α = Aα(k)|vi(k)=v0i ,wi(k)=w0i
,

Fα = Θ.



1 0
. . .

1
1

. . .
0 1


,

∆(k) =



∆w1(k)

. . . 0
∆wp−1(k)

∆vp(k)

0
. . .

∆vN (k)



The term (14) can be decomposed as :
aα(k) = a0α +Gα.h∆(k) (17)

with
a0α = aα(k)|wi(k)=w0i ,φMi (k)=φM0i

,

Gα = Θ.


1 0

. . .
0 1

0

 ,

h∆(k) =


ρJ1 .∆w1(k)

...
ρJp−1 .∆wp−1(k)

∆φMp

 ,

Substituting (16) and (17) in (15), and taking ρ∆(k) =
ρ(k).∆(k) the formulation (8) of the proposition is ob-
tained.

�

4. OPTIMIZATION LAYER

The optimization problem is a non-linear and non-convex
problem. This type of problem is hard to solve and we can
not guarantee that the optimal solution found is the global
optimal solution. To solve this problem, the optimization
problem has to be converted into a linear and convex
problem. This conversion is proposed and demonstrated
in (Gomes and Horowitz [2006]),(Jacquet [2008]).
We denote χ the set of cells, ζ those which contain an off-
ramp, and ξ those which contain an on-ramp. Assume that
each on-ramp can be metered. Consider the time horizon
t ∈ [0, (K − 1).T ] ⇔ k ∈ κ = [0,K − 1] to compute the
optimization, with T the sampling time.

4.1 Constraints

The first part of the constraints of the linear problem
consists in the main-line and on-ramp conservation laws,
respectively (18) and (19).


ρi(k + 1) = ρi(k) +

T

li
(φi(k)− φi+1(k)

+φini(k)− φouti+1(k))
∀i ∈ χ,∀k ∈ κ

(18)

{
ρini(k + 1) = ρini(k) + T

lini
(di(k)− ui(k)).

∀i ∈ ξ,∀k ∈ κ
(19)

Notice that in (18), φini(k) = 0 if cell i /∈ ξ, and
φouti(k) = 0 if i /∈ ζ. To ensure that the concentration
and flow does not become negative and does not exceed
maximum capabilities, constraints on the on-ramp flow
and concentration are implemented as follows :

ρini(k) ≤ ρMini ,

φini(k) ≤ lini
T ui(k),

φini(k) ≤ φMini(k),
∀i ∈ ξ,∀k ∈ κ

(20)

The fundamental diagram which allows us to calculate the
flow in the junction is a non-linear function due to the min



function in (3) and (4). A well known trick of relaxation of
such a function is to replace this function by a set of upper
bounds and to add the relaxed variable on the criteria with
appropriate optimization direction (25) as done in (Gomes
and Horowitz [2006]). So ∀i ∈ χ and ∀k ∈ κ the non-linear
characteristic (6) can be replaced by


φi(k) ≤ (1− βi−1).vi−1.ρi−1(k),
φi(k) + φini(k) ≤ wi.(ρJi − ρi(k)),
φi(k) ≤ φMi

∀i ∈ χ,∀k ∈ κ
(21)

4.2 Criteria

The criteria is divided into three parts. The Total Travel
Time (TTT) represents the time spend by all vehicle
traveling on the main section. The Total Waiting Time
(TWT) represents the time that vehicles spend waiting at
on-ramps. And the Total Travel Distance (TTD) repre-
sents the total distance traveled by all vehicles.The TTT
and the TWT has to be minimized. The TTD has to be
maximized to fit the previous relaxation. So the criteria J
to be minimized is

J = TTT + µTWT − ηTTD, (22)
with,

TWT =
κ∑ ξ∑

ρini(k).lini , (23)

TTT =
κ∑ χ∑

ρi(k).li, (24)

TTD=
κ∑

(
χ∑
φi(k) +

ξ∑
ui(k)). (25)

4.3 Linear Problem

So, the optimal references (ρ∗(k), u∗(k)), are the solution
of the linear problem optimization :


min
ρ,u

J

subject to (18), (19), conservation equations
(21), main line constraints
(20), on-ramp constraints

(26)

This problem is solved using the GLPK (GNU Linear
Programming Kit) library which implements the Simplex
algorithm.

5. LOCAL REGULATION

The optimal trajectories (ρ∗(k), u∗(k)) calculated with the
optimization layer are open loop calculations. Nominal
system models with estimated parameters is used. To
ensure that the system track the references, we design a
local regulation at each neighborhood of metered on-ramp
as it is shown in Figure 8.

5.1 Case Study

Take the neighborhood depicted in Figure 9. Assume that
junctions 5 and 1 are always in Free mode.

Fig. 8. Local regulation.

Fig. 9. On-ramp neighborhood.

In normal traffic conditions (i.e. without accidents) the
different modes which a system can experience are the
following :

• case 1 : α(k) = [FFFFF ]
• case 2 : α(k) = [FFFDF ]
• case 3 : α(k) = [FFCDF ]
• case 4 : α(k) = [FCCDF ]

In case 1, all the junctions of the section are in free mode.
Just before congestion appears (case 2) junction 4 switches
to decoupled mode. Then in case 3 and 4, the congestion
propagates backward. For theses 4 cases, we study the
controllability of the system, with the Kalman criteria as
in Munoz et al. [2003]. In mode 1, the densities of cells 3
and 4 are controllable. In mode 2, the density of cell 3 is
controllable. In mode 3, the density of cell 2 is controllable.
In mode 4, the densities of cells 1 and 2 are controllable.
Denoting the transition from case 1 to case 2 as τ12 . We
can write the possible transition set :

Γ = {τ11, τ12, τ21, τ22, τ23, τ32, τ33, τ34, τ43, τ44}. (27)

5.2 Extended System

Since the optimization layer is developed with the nom-
inal system (i.e. without uncertain parameters) and
based on the results of Section 4, the optimal references
(ρ∗(k), u∗(k)) respect

ρ∗(k+1) = A0α(k) .ρ
∗(k)+Bα(k).u

∗(k)+Eα(k).d(k)+a0α(k) .

(28)
Take

ε(k) = ρ(k)− ρ∗(k),

v(k) = u(k)− u∗(k),

then from (8) and (28), we can write



ε(k + 1) = A0α(k) .ε(k) +Bα(k).v(k) + Fα(k).ρ∆(k)
+Gα(k).h∆(k), (29)

The problem now, is to design a robust switched PI
controller in order to stabilize the system (29) face to the
uncertainties ρ∆(k), h∆(k). For this purpose, we have to
extend our system with an integrator. The new state vector
becomes

εa(k) =
(
ε(k)
z(k)

)
(30)

To keep the stabilizability property of the system, we can
only extend one state of the system with an integrator. For
the cases 1 and 2, we choose to extend the system with an
integrator on ε3(k). For the cases 3 and 4, we choose to
extend the system with an integrator on the cell density
where the congestion front stand (respectively ε2(k) and
ε1(k)). So,

z(k + 1) = z(k) +

{
ε3(k) , if case 1 or 2
ε2(k) , if case 3
ε1(k) , if case 4

(31)

The nominal extended system is described by :
εa(k + 1) = Aaα .ε(k) +Baα .v(k), (32)

with the following dynamics matrices :

Aaα =
(
A0α(k) 0
Azα(k) 1

)
,

Baα =
(
Bα(k)

0

)
,

According to 31, we have

Azα(k) =

 (0 0 1 0) , if case 1 or 2
(0 1 0 0) , if case 3
(1 0 0 0) , if case 4

5.3 State Feedback Design

Assume that each cell density ρi, i ∈ 1, ..., 4 is measured.
This seems to be a fair assumption since sensor becomes
cheaper and cheaper, and since many roads are equipped
with sensors. Then, we apply the following state feedback
on the system (32)

u(k) = −Kα(k)εa(k). (33)
Take the following notations, α(k) = i, α(k + 1) = j
The core of our approach is the use of the following
candidate Lyapunov function

Vi(k) = εa(k)TPiεa(k). (34)
Where Pi is a positive definite matrix. Since Pi = Pi

T > 0,
it is well known that ∆V (k) = Vj(k + 1) − Vi(k) < 0 is
a sufficient condition to prove the stability of the system.
As,

∆V (k) = εa(k + 1)TPjεa(k + 1)− εa(k)TPiεa(k) (35)

= εa(k)T ((Aai−BaiKi)TPj(Aai−BaiKi)−Pi)εa(k), (36)
the system is stable under the state feedback (33) if

(Aai −BaiKi)TPj(Aai −BaiKi)− Pi < 0. (37)
(37) is a BMI that can easily be rewritten as an LMI. Take
Qi = Pi

−1, Xi = KiPi
−1 and multiply (37) on the left and

on the right by Pi−1. So (37) becomes
(AaiQi −BaiXi)TQj−1(AaiQi −BaiXi)−Qi < 0 (38)

Using the Schur’s complements, (38) can be written as
follows :

(
Qj (AaiQi −BaiXi)
∗ Qi

)
> 0. (39)

As in (Montagner et al. [2003]), this condition can be
modified to place the poles of the system in a particular
region as depicted in Figure 10.

Fig. 10. Pole placement region.

For this purpose, we have to replace Ai − BiKi by
Ai−BiKi−(1−r)I

r . So the condition (39) becomes :(
rQj AaiQi −BaiXi − (1− r)Qi
∗ rQi

)
> 0. (40)

The LMI condition (40), gives us a sufficient condition
of stability and pole placement for the extended system.
From here, we can have two approaches. We can take a
single Lyapunov function and a single state feedback for
all α(k) (i.e. Pi = Pj = P and Ki = Kj = K, ∀i, j).
Or we can take a different Lyapunov function and state
feedback for each suitable value of α(k). Obviously, the
approach with a single regulator is more conservative and
the solution may not exist for particular placement region.
If this solution exists, the controller is easier to implement.
The solution of the LMI (39) gives the local gain K = X.P .
For the multiple controller approach, the LMI (39) has to
be satisfied for all transitions of Γ (27).
Figure 11 shows the sensitivity function between relevant

uncertainties (∆v1,∆w3,∆φM ) and the extended output
ε3 in mode 3. As we can see, the influence of uncertainties
is attenuated at low frequency.

6. REAL-DATA BASED SIMULATION

The control law is tested with real traffic measurement of
a section of the D383 road near Lyon, France, source :
DDE69 (Direction departementale de l’equipement Rhone
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Alpes). This section and the measurement points are rep-
resented on Figure 12, and has been segmented as shown
on Figure 13. The period of time selected correspond to
the after work congestion which is a critical moment for
traffic management.

Fig. 12. Application freeway section D383.

Fig. 13. Application freeway section/segmentation.

The system is simulated thanks to the model presented in
Section 3, subject to the uncertainties depicted in Figure
14.

For the synthesis of the local controllers, we consider a
neighborhood constituted by cell 1 to 6 of the section
depicted in Figure 13. The result of pole placement is
depicted in Figure (10).
Figure 15 shows the evolution of densities and the on-ramp
density subject to the optimal on-ramp flow (computed
by optimization layer) without local controllers. There are
two critical periods (around 1.5 and 2.5) where the system
is perturbed by uncertainties. Notice that the uncertainty
∆φM has more effect on the system.

Figure 16 shows the evolution of densities subject to the
optimal on-ramp flow with local controllers. The graph
call ”Active Controller” . To avoid useless queue, the

Fig. 14. Uncertainties.
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Fig. 15. Optimal command.

case 1 is un-metered. The effect of uncertainties on the
evolution of the system is well attenuated. The controllable
densities track optimal references. Here the queue exceeds
maximum capacity which is 300.
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Fig. 16. Local regulation.

Figure 17 shows the evolution of densities subject to the
optimal on-ramp flow with local controllers with command
saturations. The command saturations guarantee that the



queue length does not exceed maximum capacity. We also
add saturations on the integral term to avoid saturation
of the command. Notice that when the queue length
reach maximum capacity, the local regulation becomes less
effective.
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Fig. 17. Local regulation with queue constraints.

These results show the effectiveness of the local controllers
to track optimal references face to uncertainties modeled in
Section 2.4. The effectiveness of coordinated optimization
has already been shown in (Gomes and Horowitz [2006]).

7. CONCLUSIONS

In this work we have presented a hierarchical control
scheme for traffic control. The proposed approach provides
optimal densities and flows references that minimizes the
Total Travel Time, the Total Waiting Time and maximized
the Total Travel Distance. Local switching PI controllers
allow to increase robustness of the controlled system face
to parametric uncertainties. These local controllers have
be obtained by solving a particular LMI providing stability
and pole placement conditions for the modeled switched
system. The sensitivity functions between uncertainties
and output show the interest of this approach. A real-data
based simulation was used to validate the effectiveness of
the proposed local controllers where the impact of model
un certainties was effectively compensated by the proposed
control strategy. As a future work, uncertainties model and
uncontrolled dynamics can be used a priori to increase
robustness and performance.
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