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Abstract

We study the commutation structure within the Pauli groups built
on all decompositions of a given Hilbert space dimension ¢, containing a
square, into its factors. The simplest illustrative examples are the quartit
(¢ = 4) and two-qubit (¢ = 2?) systems. It is shown how the sum of
divisor function o(q) and the Dedekind psi function ¢(q) = ¢]],,(1+1/p)
enter into the theory for counting the number of maximal commuting
sets of the qudit system. In the case of a multiple qudit system (with
g = p™ and p a prime), the arithmetical functions o(p*"~') and ¥ (p*™ %)
count the cardinality of the symplectic polar space Wa,—1(p) that endows
the commutation structure and its punctured counterpart, respectively.
Symmetry properties of the Pauli graphs attached to these structures are
investigated in detail and several illustrative examples are provided.

Pacs: 03.67.Lx, 02.10.0x, 02.20.-a, 02.10.De, 02.40.Dr

1 Introduction

The paper contains a set of graph, group and number theoretical tools useful to
understand the commutation structure of operators in qudit and multiple qudit
systems. They are intended to help the development of new quantum algorithms
and the design of efficient quantum information systems. For instance, states
of nuclear spin % (a quartit) in a specific GaAs quantum well device may be
used for realizing the logical single and two-qubit gates by applying selective
radio frequency pulses at the resonance frequency between two energy levels []
Note that a g-level system (or qudit), in the Hilbert space dimension ¢ = [, p"
written as a product of primes, is equivalent to a mixture of p; dits when there
is no square, i.e. a; = 1 for any . The general case is tricky but can be reduced
to elementary building blocks using the suitable algebraic tools explained in
this paper. In the simplest case, a quartit system (¢ = 4) is not a two-qubit
sytem (¢ = 2%). This can be seen with the maximal commuting sets. We
already emphasized that the geometry of the two-qubit system (with points as
the 15 observables and lines as the 15 triple of mutually commuting sets) is
the (self-dual) generalized quadrangle GQ(2,2), with automorphism group the
symmetric group Sg [E] Besides, the quartit system contains 15 observables
and 7 = 6 + 1 maximum cliques in the Pauli graph: the decomposition reflects
the distinction between the sum of divisor function o(4) = 7, that counts the
whole number of maximum cliques, and the Dedekind psi function ¢ (4) = 6,



that counts the maximum cliques belonging to the projective line P1(Z4). Both
functions o(q) and ¥(q) are equal if ¢ does not contain a square [

In this paper, we are interested in the commutation relations of observables
attached to a selected decomposition of the Hilbert space dimension g. The
observables in a factor are defined from the action on a vector |s) of the g;-
dimensional Hilbert space of the ¢;-dit Pauli group generated by two unitary
X (shift) and clock Z operators via X [s) = |s+ 1) and Z|s) = w?|s), with
w a primitive ¢;-th root of unity. Then the observables in dimension ¢ are
obtained by taking tensor products over the g;-dimensional observable of each
factor. A Pauli graph is constructed by taking the observables as vertices and a
edge joining two commuting observables. Maximal sets of mutually commuting
observables, i.e. maximum cliques of the Pauli graph, are used to define a
point/line incidence geometry with observables as points and maximum cliques
as lines.

We focus on quantum systems of Pauli observables defined over the Hilbert
space of dimension ¢ containing a square. In the single qudit case, studied in
Sec. 2, the maximal mutually commuting sets of observables in the Hilbert space
of dimension g are mapped bijectively to the maximal submodules over the ring
Z, W, - If ¢ contains a square, there are ¢(q) = qu|q(1 + %) points on the
projective line P;(Zy) (in the Dedekind finction ¢(g), the product is taken over
all primes p dividing ¢) and the remaining o(q) — ¥(q) # 0 independent points
(with o(q) the sum of divisors function) is playing the role of a reference frame
and possess their own modular substructure. The number theoretical proper-
ties of the modular ring Z, are used to count the cardinality of the symplectic
group Sp(2,Zq) [E, ﬁ] In Sec. 3, we remind the established results concerning
the point/line geometries attached to multiple qudit systems in dimension p”,
that symplectic polar spaces Wa,_1(p) of order p and rank n govern the com-
mutation structure of the observables. Here, the number theoretical functions
a(p?*~1) and ¥(p*~1) are found to count the number of observables in the
symplectic polar space and in the punctured polar space, respectively. In Sec.
4, we study composite systems when at least one of the factors g; of the Hilbert
space dimension is a square. It is shown, that the non-modularity leads to a
natural splitting of the Pauli graph/geometry into several copies of basic struc-
tures such as polar spaces, punctured polar spaces and related hyperdimensional
structures.

2 Pauli graph/geometry of a single qudit

A single qudit is defined by a Weyl pair (X, Z) of shift and clock cyclic operators
satisfying

ZX —wXZ =0, (1)
where w = exp % is a primitive ¢g-th root of unity and 0 is the null g-dimensional
matrix. In the standard computational basis {|s),s € Zq}, the explicit form of



the pair is as follows
0 0
1 0 ...
X = e e |, Z = diag(lw,W? W), (2)

o O
O =

00 ... 10

The Weyl pair generates the single qudit Pauli group P, = (X, Z), of order
¢, where each element may be written in a unique way as w®*X%Z¢, with a, b, c €
7, B-3.

It will be shown in this section that the study of commutation relations
in a arbitrary single qudit system may be based on the study of symplectic
modules over the modular ring Z?, and conversely that the elegant number
theoretical relations underlying the isotropic lines of Z§ have their counterpart
in the maximal commuting sets of a qudit system. Our results may be found in
various disguises in several publications where the proofs are given [ﬂ, E, ﬂ]

Let us start with the Weyl pair property (m) and write the group theoretical
commutator as [X,Z] = XZX1Z~! = w1, (where I, is the g-dimensional
identity matrix), so that one gets the expression

|:waXch, wa,Xb/ZC,i| — wcb’fc’qu, (3)

meaning that two elements of P, commute if only if the determinant A =
/

det Ic), . vanishes. Two vectors such that their symplectic inner product
[(,¢).(b,c)] = A = bc— b’ vanishes are called perpendicular. Thus, from ([),
one can transfer the study of commutation relations within the group P, to the
study of perpendicularity of vectors in the ring Z3 [ﬁ]

From (fJ), one gets the important result that the set P, of commutators (also
called the derived subgroup) and the center Z(P;) of the Pauli group P, are
identical, and one is led to the isomorphism

(Pa/Z(Pq), %) = (Zg, +), (4)

i.e. multiplication of observables taken in the central quotient P,/Z(P,) trans-
fers to the algebra of vectors in the Z;-module Z3 endowed with the symplectic
inner product “.”.

Isotropic lines of the lattice Zg

Let us now define a isotropic line as a set of ¢ points on the lattice Zz such that
the symplectic product of any two of them is 0(mod ¢). From (), to such an
isotropic line corresponds a maximal commuting set in P,/Z(P,).

Taking the prime power decomposition of the Hilbert space dimension as
q = [I,p;*, it is shown in (18) of [] that the number of isotropic lines of the



lattice Zg reads

S;i+1 _
) =[] 2o = olo) )

%

where o(gq) denotes the sum of divisor function.

The projective line P (Z,)

As shown in [E], a isotropic line of Zz corresponds to a Lagrangian submodule,
i.e. a maximal module such that the perpendicular module M+ = M. Let us
now specialize to Lagrangian submodules that are free cyclic submodules

Zg(b,c) = {(ub,uc)|u € Zq}, (6)

for which the application v — (ub,uc) is injective. Not all Lagrangian sub-
modules are free cyclic submodules. A point = = (b,¢) such that Zg(b,c) is
free is called an admissible point, and the set of admissible points is called the
projective line

P1(Zq) = {Z4(b, )|(b, c) is admissible} . (7)
Following theorem 5 in [ﬂ], the number of points of the projective line is
P1(Zo)| = [[ (5 + 157 ) = ¢(a), (8)

i

where ¥ (q) = ¢ Hp‘ q(l + 1—17) and the product is taken over all primes p dividing
q. The proof is easy to establish since 1(q) is a multiplicative function. Note
that one has ¥(q) < o(q), where the equality holds if ¢ is square-free integer.

Let us give a few single qudit decompositions g = 4,8,9,12,16 and 18, that
contain a square, one gets 1(4) = 4(1+ 1) =6, ¥(8) =8(1+ 3) =12, ¥(9) =
12, (12) = 24, 1(16) = 24, 1(18) = 36 (see table 1, column 3 in [{]).

The Pauli graph of a qudit

In the previous subsections, we investigated the bijection between sets of oper-
ators of the Pauli group P, and vectors defined over the modular ring Z,. More
precisely, from (), elements of the central quotient of the Pauli group P,/Z(P,)
were mapped to vectors of the lattice Z2 and, from (B) the o(q) isotropic lines
of Zg were mapped to its maximal commuting sets.

One can see these bijections in a clearer way by defining the Pauli graph G,
of the qudit system. The Pauli graph G, is constructed by taking the observables
as vertices and a edge joining two commuting observables. A maximal set of
mutually commuting observables corresponds to a maximum clique of G,, and
one further defines a point/line incidence geometry with observables as points
and maximum cliques as lines. One characterizes this geometry by creating a
dual graph G; such that the vertices are the cliques and a edge joins two non-
intersecting cliques. The connected component of G} corresponds to the graph

q
of the projective line Py (Z,) (as defined in previous papers [{-[]).



In the subsequent sections, we shall also introduce the graph gék), in which
the vertices are the maximum cliques of the Pauli graph G, and a edge joins
two maximum cliques intersecting at k points.

The quartit system

For the four-level system, there are 42 —1 observables /vertices in the Pauli graph
Gs. The o(4) = 7 maximum cliques

c:={(X?2%2°X?),(X,X? X%),(X? 2°X, 2*X?),
(Z,72%,73),(ZX, 22 X2, Z3X3),(ZX2, 22, 73X ?),
(ZX3,2°X?,Z°X)} (9)

are mapped to the following isotropic lines of Z3

il :=={{(0,2),(2,0),(2,2)},{(0,1),(0,2), (0,3)},
{(0,2),(2,1),(2,3)}, {(1,0),(2,0), (3,0)},
{(1,1),(2,2),(3,3)},{(1,2),(2,0), (3,2)},

{(1,3),(2,2), 3, D}}- (10)

From the latter list, one easily observes that non-admissible vectors belong
to the first line {(0,2),(2,0),(2,2)}, that corresponds to the maximum clique
(X2, 72, 72X?). The remaing vectors in Z2 generate free cyclic submodules of
the form (§).

The sequence of degrees in G, is obtained as (1,0,0,0,6), meaning that the
first clique given in () (of degree 0) intersects all the remaing ones, and that
cliques number 2 to 7 in (f]) (of degrees 4) form the projective line Py (Z4). In-
deed, one has |P1(Z4)| = ¢¥(4) = 6. There are J2(4) = ¢(4)¢(4) = 12 admissible
points.

The graph G is strongly regular, with spectrum {4!,03*1 —22} (in the
notations of [f); the notation 03*! in the spectrum means that 0% belongs
to the projective line subgraph and there exists an extra 0 eigenvalue in the
spectrum of Gf. The automorphism group of P1(Z4) is found to be the direct
product Gug = Za x Sy (where Sy is the four-letter symmetric group).

The 12-dit system

The main results for all qudit systems with 4 < ¢ < 18, such that ¢ contains a
square, are given in table 1 of [E] We take the composite dimension ¢ = 22 x 3
as our second illustration. There are 122 — 1 = 143 observables in the Pauli
graph Gio. There are 0(12) = 28 maximum cliques in G2, as expected. The
sequence of degrees in the dual graph G}, is found as (4,0, ...,24), i.e. there
are four cliques of degree 0 and the remaining 1(12) = 24 ones have degree 12.

Owing to the composite character of the dimension, the structure of Gj, is
more complex than in the quartit case, see Fig. 1 of @] for a picture. All four



independent cliques intersect at the three vectors (0, 6), (6, 0), (6, 6), correspond-
ing to the three observables X, Z6 X676 The remaining 24 cliques intersect
at 0,1,2,3 or 5 points. The automorphism group of Py(Z2) is found to be
7Z3% 3 Ghaq, with Giaq = Ay x Dg and G144 = aut(P;(Zg)) the automorphism
group of the sextit system.

3 Pauli graph/geometry for multiple qudits

In this section, we specialize on multiple qudits ¢ = p", when the qudit is a
p-dit (with p a prime number). The multiple qudit Pauli group P, is generated
from the n-fold tensor product of Pauli operators X and Z [defined in () with
w= e><p(2”r )]. One has [P, = p*"*! and the derived group P;, equals the center
Z(Py) so that P,

Following ﬁ ﬁ] the observables of P,/Z(P,) are seen as the elements of the
2n-dimensional vector space V(2n,p) defined over the field F,,, and one makes
use of the commutator

[,.]: V(2n,p) x V(2n,p) = P, (11)

to induce a non-singular alternating bilinear form on V(2n,p), and simulta-
neously a symplectic form on the projective space PG(2n — 1,p) over I, (for
another approach, see [[L(]).

Doing this, the |V (2n, q)| = p?" observables of P,/Z(P,) are mapped to the
points of the symplectic polar space Wan-1(p) of cardmahty B

The identification of |[Wa,_1(p)| to o(p?*~1) is new in this context. It is
reminiscent of (H) and has still unoticed consequences about the structure of
the polar space, as explained in the sequel of the paper. For g-level systems
(single qudits), o(q) and v(q) refer to the number of isotropic lines and the
number of points of the projective line, respectively (as in (f) and (§)). For
multiple qudits, one has ¢ = p?"~! and o(q) and 1(q) refer to the number
of points of the symplectic polar space Wa,—1(p) and of punctured polar space

Wan_1(p)’, respectively (as in (1) and ([L4)).

p2n_1
p—1

(Wan—1(p)| = =o(p*" ), (12)

and two elements of [P,/Z(P,), x| commute iff the corresponding points of the
polar space Wa,,—1(p) are collinear.

A subspace of V(2n,p) is called totally isotropic if the symplectic form
vanishes identically on it. The polar space Wa,_1(p) can be regarded as the
space of totally isotropic subspaces of the (2n — 1)-dimensional projective space
PG(2n — 1,p). Such totally isotropic subspaces, also called generators G, have
dimension p™ — 1 and their number is

n

S(Wen—1(p)| = [T(1 + ). (13)

=1



Let us call a spread S of a vector space a set of generators partitioning its points.
The size of a spread of V(2n,p) is |S| = p™ + 1 and one has |V (2n,p)| — 1 =
IS| x |G| = (p™ +1) x (p" — 1) = p?™ — 1, as expected.

Going back to the Pauli observables, a generator G corresponds to a maximal
commuting set and a spread S corresponds to a maximum (and complete) set
of disjoint maximal commuting sets. Two generators in a spread are mutually
disjoint and the corresponding maximal commuting sets are mutually unbiased

-

Let us define the punctured polar space Wa,,_1(p)’ as the polar space Wa,_1(p)
minus a point u and all the totally isotropic spaces passing though it . Then,
one gets

(Won—1(p)'| = o(p*" 1) = a(p*"72) = (™" ), (14)

n=3) is the size of the removed part and 1(q) is the Dedekind psi

where o(p
function.

The Pauli graph of a multiple qudit

The symmetries carried by multiple qudit systems may also be studied with
Pauli graphs. We define the Pauli graph Gy~ of a multiple p"-dit, as we did for
the single qudit case, by taking the observables as vertices and a edge joining
two commuting observables. A dual graph Gp. is such that the vertices are the
maximum cliques and a edge joins two non-interesting cliques. One denotes g;*n
the corresponding graph attached to the punctured polar space.

Actual calculations have been performed for two- and three-qubits, and for
two- and three-qutrits. Main results are in table 2 of [ Here, we detail results
concerning the two- and three-qubit systems.

The two-qubit system

As already emphasized in [E, EI], the two-qubit system “is” the symplectic polar
space Ws(2) [i.e. p=n =2 in ([J)], alias the generalized quadrangle GQ(2,2),
also called doily, with 15 points and, dually, 15 lines (see Fig. 6 in [J]). One
denotes the corresponding Pauli graph as G,2. The maximum cliques are as
follows

o= {{IX,XI, XX}, {IX,YI,YX},{IX,ZI,ZX},
{1V, XI, XY} {IV,YI,YY},{IY, ZI,ZY},
{12, XI,XZY,{I1Z,YI1,YZ},{12,21,22},
(XY, YX,ZZY,{XY,YZ,ZX} {XZ,YX,ZY},
(XZYY,ZX},{XX,YY, ZZ} {XX,YZ,ZY}} (15)

where a notation such as 1X means the tensor product of I and X.

In the graph context the symbol > means a puncture in the graph. It is not the same
symbol as in the derived subgroup G’ of the group G.



The spectrum of the (strongly regular) Pauli graph G2 is {62,1%, —3%} and
the automorphism group is the symmetric group Sp(4,2) = Sg.

Following definition ([[4), ones defines the punctured polar space W5(2)' =
GQ(2,2) by removing a point in GQ(2,2) as well as the totally isotropic sub-
spaces/maximum cliques passing through it [for the selected point u = I'X, the
removed cliques are numbered 1 to 3 in ([[§)]. The punctured Pauli graph G
is as follows

GQ(2,2) = Gl -
spec := {61,23,0% —26},
aut(g;;) = G48 = ZQ X S4. (16)

The automorphism group of the graph G/% is similar to the automorphism group
obtained from the graph of the projective line P1(Z4), associated to the quartit
system, although the spectrum and the commutation structure are indeed not
the same. In a next paper, it will be shown that both graphs are topologically
equivalent to the hollow sphere.

It is already mentioned in Sec. 3 of [E] that the Pauli graph G2 can be
regarded as i(KG) (it is isomorphic to the line graph of the complete graph
Kg with six vertices). Similarly, defining Ka00 as the complete tripartite graph
(alias the 3-cocktail party graph, or octahedral graph), one gets G, = IZ(K 222).

The three-qubit system

For three qubits, the structure of commutation relations is that of the polar space
W;5(2) with o(2°) = 63 elements and (1 + 2)(1 + 22)(1 + 23) = 135 generators.
The (regular) Pauli graph Gys has spectrum {30',33% —527} and aut(Gys) =
Sp(6,2) = W'(E7), of order 1451520. Two maximum cliques intersect at 0,
1 or 3 points. The dual Pauli graph Gj, has spectrum {64',4%% —8°°} and
aut(Gs;) = O (8,2). Note that O1(8,2) is related to the Weyl group of Es by
the isomorphism W (FEg) & Z5.0% (8, 2).

The three-qubit system is very peculiar among multiple qubit systems, hav-
ing O%(8,2) as the automorphism group attached to the maximum cliques,
instead of the symplectic group Sp(6,2).

One defines the punctured polar space W5(2)" with |[W5(2)'| = ¢(2°) = 48
points and the corresponding graph GJ; as follows

Ws(2) = Gl -
spec := {561,470, —414 835}
aut(Gys) := Z3 x As, (17)

with Ag the eight letter alternating group.

The corresponding 1-point intersection graph of the maximum cliques has
spectrum {561, 1415 235 4841 As shown in Sec. 4, it occurs in the study of
the 3-qubit/qutrit system.



Thus, the number of pieces within the automorphism group of the dual Pauli
graph GJ; is twice the number 135 of maximum cliques, instead of the cardinality
a(p®™~1) of the symplectic polar space Wa,,_1(p), that is given in ([[g).

To conclude this subsection, let us mention that the Weyl group W (Eg) arises
as the symmetry group of a subgeometry of the polar space W5(2), namely in
the generalized quadrangle GQ(2,4) [L4]. Taking the 27 three-qubit observ-
ables shown in Fig. 3 of ], one attaches to such a geometry a Pauli graph,
that we denote Go7. One gets 45 maximum cliques of size 3, the spectrum is
{101,120, —56} and aut(Ga7) = W(Eg). By removing a point from GQ(2,4)
and the totally isotropic spaces passing through it, one gets the punctured gen-
eralized quadrangle GQ(2,4). The corresponding dual Pauli graph G5% has
spectrum {321,224, 429} and automorphism group Zs ! A5 (where ! means the
wreath product of groups).

The one-point intersection graph Gss of the 45 maximum cliques is that
of the generalized quadrangle GQ(4,2), the dual geometry of GQ(2,4). The
spectrum of Gy is {121,329, —321} and aut(Gss) = W(Es). The automorphism
group of the punctured Pauli graph GJ% is isomorphic to the Weyl group W (Fy)
of the 24-cell.

This view fits the one proposed in our paper [E]

4 Pauli graph/geometry of multiple qudit mix-
tures

As before, G, is the Pauli graph whose vertices are the observables and whose
edges join two commuting observables. A dual graph of the Pauli graph is
G, whose vertices are the maximum cliques and whose edges join two non-

intersecting cliques. In this section, we also introduces gé’“’, the graph whose
vertices are the maximum cliques and whose edges join two maximum cliques
intersecting at k points.

First of all, as shown in Sec. 6 of [H], a qudit mixture in composite dimension
q = p1 X p2 X+ Xp. (p; a prime number), identifies to a single ¢-dit. Since
the ring Z, is isomorphic to the direct product Z,, x Zj, X ---Z,, the commu-
tation relations arrange as the o(q) = v(q) isotropic lines of the lattice Zi, that
reproduce the projective line P1(Z,) = P1(Zy, ) X P1(Zp,) X -+ - X P1(Zy, ).

As an illustration, we detail the case of the two-qubit/qutrit system and the
case of a two-quartit system. More examples can be found in [Jj].

The two-qubit /qutrit system

The Pauli graph of the two-qubit/qutrit system contains 143 vertices and 60
maximum cliques. The incidence graph of the maximum cliques is found to
reproduce the projective line over the ring Fy x Zy X Zs [@] and the spectrum
of the dual Pauli graph G}, , is {241, 6°,2%7, —21% —6° —83}. Maximum cliques
of the Pauli graph intersect each other at 0, 1, 2 or 5 points. In G, 5, there are

x3?



480 maximum cliques of size 3 and 720 maximum cliques of size 4, to which one
can attach the same number of non-complete sets of mutually unbiased bases.

An interesting subgeometry of the two-qubit/qutrit system is found by tak-
ing the incidence graph géi’xg of maximum cliques of the Pauli graph intersecting
each other at 5 points. The spectrum of this graph is {6',1°, —3%}* correspond-
ing to four copies of the doily GQ(2,2) [alias L(K¢)]. The automorphism group
of this geometry is Sg x Sy. Similarly, the spectrum of the incidence graph for
maximum cliques intersecting at two points is {81,25, —29}4, that represents
four copies of the triangular graph L(Kjg). Thus, the doily is a basic constituent
of the two-qubit/qutrit system and builds up its commutation structure, as one
may have expected.

The two-quartit system

The two-quartit system corresponds to the decomposition ¢ = 4 x4 of the Hilbert
space dimension. The Pauli graph G4x4 contains 151 maximum cliques. The
connected subgraph QZ(XCZ of the dual graph Gj, 4 corresponds to 120 maximum
cliques of the Pauli graph that intersect each other at 0, 1, 3 or 7 points. The
graph Q§Q4 featuring the intersection of the 120 maximum cliques at 7 points
has spectrum {—3!,3%, —13 13}1% that corresponds to 15 copies of the cube
graph. The automorphism group Gyg of the cube graph is similar to that of the
punctured generalized quadrangle GQ(2,2)’. The automorphism group of the
selected geometry G.7), is found to be G13 x Sy5.

The remaining 31 cliques intersect each other at 3 or 7 points. The 3-clique
intersection graph still splits into a isolated clique and a connected component of
30 maximum cliques. The connected component, of spectrum {28%,0% —214},
is the 15-cocktail party graph, i.e. the dual graph of the 15-hypercube graph.

5 Conclusion

Number theoretical functions o(q) and ¥(q) enter into the structure of commu-
tation relations of Pauli graphs and geometries. Theu are also related to the
Riemann hypothesis, as described in [E] More precisely, there is the Robin
criterion

&767 <0 for any ¢ > 5041
qloglogq

and the criterion derived in [L§]
¥(Ng) e’

— fi > 31 1
N loglog N, _ C(2) >0 for any g > 31, (18)

where Ny = [[}_, pr is a primorial number (the product of the first ¢ primes),
v = limy, 00 2221% — logn ~ 0.577 is the Euler-Mascheroni constant and
¢(2) = 72/6. Note that an equation similar to ([I§) is obeyed by the expectation

10



R
value of low temperature phase states KMSg(e,) = ¢~ I, 11_’7—1),11

and Connes theory [[7. The case ([[§) corresponds to the integer temperature
B8 =3.

The structural role of symplectic groups Sp(2n,p) has been found, as ex-
pected. Other important symmetry groups are Gyg = Zo X Sy, G144 = Ay X Dg
and W (FEs). The group Gys is first of all the automorphism group of the single
qudit Pauli group P; and is important in understanding the CPT symmetry
[@] In this paper, it arises as the symmetry group of the quartit, of the punc-
tured generalized quadrangle GQ(2,2)" (see [[d)) and as a normal subgroup of
many systems of qudits. The torus group G144 occurs in the symmetries of the
6-dit, 12-dit, 18-dit and 24-dit systems. The Weyl group W (Fs) happens to be
central in the symmetries of three-qubit and multiple qutrit systems. The un-
derstanding of symmetries in the Hilbert space is important for the applications
in quantum information processing.

in Bost
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