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Nicolas Forcadel ∗ Carole Le Guyader †

December 6, 2010

Abstract

Motivated by a prior applied work of Vese and the second author ded-
icated to segmentation under topological constraints, we derive a slightly
modified model phrased as a functional minimization problem, and pro-
pose to study it from a theoretical viewpoint. The mathematical model
leads to a second order nonlinear PDE with a singularity at ∇u=0 and
containing a nonlocal term. A suitable setting is thus the one of the vis-
cosity solution theory and, in this framework, we establish a short time
existence/uniqueness result as well as a Lipschitz regularity result for the
solution.

1 Introduction

In [17], Le Guyader and Vese propose a topology-preserving segmentation model
based on an implicit level-set formulation and on the geodesic active contours.
The goal of this paper is to prove a short time existence and uniqueness result
for a slightly modified model. The necessity of designing topology-preserving
processes arises in medical imaging, for instance, in the human cortex recon-
struction: it is well-known that the human cortex has a spherical topology and
this anatomical feature must be preserved through the segmentation process
accordingly. The need for topology-preserving models also occurs when the
shape to be detected must be homeomorphic to the initial one. To fix ideas, we
propose some examples to illustrate what the results should be when running
such a kind of algorithm. The implicit framework of the level-set method (see
[18] for instance) has several advantages when tracking propagating fronts. In
particular, it easily handles topological changes such as merging and breaking.
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Thus, in Fig. 1, when no topological contraints are enforced, the evolving con-
tour splits into two components. On the other hand, in the topology-preserving
framework (see Fig. 2), we aim at segmenting the two disks while maintaining
the same topology throughout the process, which means that we expect to get
one path-connected component.

Figure 1: Segmentation of the synthetic image with two disks when no topologi-
cal constraint is enforced: the contour has split into two components. Iterations
0, 140, 180.

Figure 2: Segmentation of the synthetic image with two disks when topological
constraints are applied. Iterations 0, 180, 210.

For the sake of completeness, we refer the reader to other prior related works
dedicated to segmentation models under topological constraints: the work of
Han et al. ([14]) based on the concept of simple point in digital topology,
the work of Alexandrov and Santosa ([1]), which is a curve evolution method
based on level sets for shape optimization problems in material sciences and
which prevents the narrow band from overlapping, the work of Sundaramoorthi
and Yezzi ([20]) based on the knot energy and which includes a penalty in the
segmentation functional in the form of a double integral as done in [17], the
work of Rochery et al. ([19]) which uses a similar idea to [17] to avoid that
pieces of the evolving curve come in contact to merge or break, and lastly the
work of Cecil et al. ([8]).
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1.1 Description of the model

The model proposed in [17] is as follows. Let Ω be a bounded open subset of
R

2, ∂Ω its boundary and let I be a given bounded image function defined by
I : Ω̄−→R. Let g : [0,+∞[−→ [0,+∞[ be an edge-detector function satisfying
g(0)=1, g strictly decreasing, and lim

r→+∞
g(r)=0. The evolving contour C is

embedded in a higher-dimensional Lipschitz continuous function Φ defined by
Φ : Ω× [0,+∞[−→R with (x,t) 7→Φ(x,t) such that C(t, ·)={x∈Ω |Φ(x,t)=0}
and {

Φ<0 on w the interior of C,

Φ>0 on Ω\ w̄.

Generally, this function Φ is preferred to be a signed-distance function for the
stability of numerical computations.

The segmentation model of [17] combines the classical geodesic active con-
tour functional (see [7]) with a topological constraint phrased in terms of a
double integral. More precisely, it consists in minimizing the following func-
tional:

F (Φ)+µE(Φ),

where µ>0 is a tuning parameter. The functional F stems from the geodesic
active contour model and is defined by:

F (Φ)=

∫

Ω

g(|∇I(x)|)δ(Φ(x))|∇Φ(x)|dx,

with δ the 1-D Dirac measure. The functional E, related to the topological
constraint, is defined by:

E(Φ)=−

∫

Ω

∫

Ω

[
exp

(

−
||x−y||22

d2

)

〈∇Φ(x),∇Φ(y)〉H(Φ(x)+ l)H(l−Φ(x))

H(Φ(y)+ l)H(l−Φ(y))
]
dxdy,

with H the 1-D Heaviside function, 〈·,·〉 denoting the Euclidean scalar product
in R

2 and || · ||2 the associated norm. A geometrical observation motivates the
introduction of E. Indeed, in the case where Φ is a signed-distance function,
|∇Φ|=1 and the unit outward normal vector to the zero level line at point
x is ∇Φ(x). Let us now consider two points (x,y)∈Ω×Ω belonging to the
zero level line of Φ, close enough to each other, and let ∇Φ(x) and ∇Φ(y)
be the two unit outward normal vectors to the contour at these points. As
shown in Fig. 3, when the contour is about to merge or split, that is, when
the topology of the evolving contour is to change, then 〈∇Φ(x),∇Φ(y)〉≃−1.
This remark justifies the construction of E. Also, instead of working with only
the points of the zero level line, the authors propose to focus on the points
contained in a narrow band around the zero level line, more precisely, on the set
of points {x∈Ω | − l≤Φ(x)≤ l}, l being a level parameter. Lastly, the function

(x,y) 7→ exp

(

−
||x−y||22

d2

)

measures the nearness of the two points x and y.
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Figure 3: Geometrical characterization of points in a zone where the curve is to
split, merge or have a contact point.

Thus if the unit outward normal vectors to the level lines passing through x and
y have opposite directions, the functional is not minimal.

The Euler-Lagrange equation is derived and is solved by a gradient descent
method. A rescaling is made by replacing δ(Φ) by |∇Φ| and the evolution
equation is complemented by Neumann homogeneous boundary conditions. It
leads to the following evolution problem:







∂Φ

∂t
= |∇Φ|

[

div

(

g(|∇I|)
∇Φ

|∇Φ|

)]

+4
µ

d2
H(Φ(x)+ l)H(l−Φ(x))

∫

Ω

[

〈x−y,∇Φ(y)〉e−||x−y||2
2
/d2

H(Φ(y)+ l)H(l−Φ(y))
]

dy,

Φ(x,0)=Φ0(x),
∂Φ

∂~ν
=0, on ∂Ω.

This problem is hard to handle from a theoretical point of view. A suitable
setting would be the one of the viscosity solution theory (due to the nonlinear-
ity induced by the modified mean-curvature term) but the dependency of the
nonlocal term to the gradient (∇Φ(y)) and the failure to fulfill the monotony
property in Φ make it impossible. For this reason, we consider a slightly mod-
ified problem. We propose to focus on the following minimization problem for
which the topological constraint is only applied to the zero level line (we still
assume that |∇Φ|=1).

inf
Φ

∫

Ω

g(|∇I(x)|)δ(Φ(x))|∇Φ(x)|dx−µ

∫

Ω

∫

Ω

[
exp(

−||x−y||22
d2

)〈∇Φ(x),∇Φ(y)〉

δ(Φ(x))δ(Φ(y))
]
dxdy.

We compute the Euler-Lagrange equation and apply a gradient descent method.
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We get the following evolution equation:

∂Φ

∂t
= δ(Φ)div

(

g(|∇I|)
∇Φ

|∇Φ|

)

−2µ

∫

Ω

∂

∂x1

[

exp

(

−
||x−y||22

d2

)]

δ(Φ(x))δ(Φ(y))
∂Φ

∂y1
(y)dy

−2µ

∫

Ω

∂

∂x2

[

exp

(

−
||x−y||22

d2

)]

δ(Φ(x))δ(Φ(y))
∂Φ

∂y2
(y)dy.

=δ(Φ)

{

div

(

g(|∇I|)
∇Φ

|∇Φ|

)

+
4µ

d2

∫

Ω

(x1−y1)exp

(

−
||x−y||22

d2

)
∂

∂y1
[H(Φ(y))] dy

+
4µ

d2

∫

Ω

(x2−y2) exp

(

−
||x−y||22

d2

)
∂

∂y2
[H(Φ(y))] dy

}

.

Doing an integration by parts in the second part of the PDE and setting the
necessary boundary conditions to zero, it yields:

∂Φ

∂t
= δ(Φ)

{

div

(

g(|∇I|)
∇Φ

|∇Φ|

)

+
4µ

d2

∫

Ω

(

2−
2

d2
||x−y||22

)

exp

(

−
||x−y||22

d2

)

H(Φ(y))dy

}

,

= δ(Φ)

{

div

(

g(|∇I|)
∇Φ

|∇Φ|

)

+c0 ∗ [Φ]

}

,

with [Φ] the characteristic function of the set {Φ>0} and

c0 :







R
2→R

x 7→
4µ

d2

(

2−
2

d2
||x||22

)

exp

(

−
||x||22
d2

)
.

A rescaling can be made by replacing δ(Φ) by |∇Φ| in order to apply the same
motion to all level sets. Also, for the sake of simplicity, we assume, in the sequel,
that the problem is formulated on R

2 for the spatial coordinates.

1.2 Main results

Given T >0, we consider the following problem: find Φ(x,t) solution of:






∂Φ

∂t
= |∇Φ|

{

div

(

g(|∇I|)
∇Φ

|∇Φ|

)

+c0 ∗ [Φ]

}

in R
2×(0,T ),

Φ(x,0)=Φ0(x) in R
2,

(1.1)
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with Φ0∈W 2,∞(R2) (we denote by B0 its Lipschitz constant). We need the
following assumptions on function g:

(H1) ∃δ >0, ∀x∈R
2, δ <g(x)≤1.

(H2) g, g
1

2 and ∇g are bounded and Lipschitz continuous on R
2 with Lipschitz

constant κg, κ∇g and κ
g

1

2

respectively. For simplicity of notation, we set

Lg =max
(

κg,κ∇g,κ
g

1

2

)

.

This model is a nonlocal Hamilton-Jacobi equation. We propose, in this paper,
to prove a short time existence and uniqueness result for this equation.

Theorem 1 (Short time existence and uniqueness).
Assume (H1)-(H2) and let u0 :R2→R be a W 2,∞(R2) function such that:

|Du0|<B0 in R
2 and

∂u0

∂x2
>b0 >0 in R

2.

Then there exists T ∗>0 (depending only on b0, ,B0, c0 and g) such that there
exists a unique viscosity solution of problem (1.1) in R

2× [0,T ∗). Moreover, the
solution is Lipschitz continuous in space and time.

Since the equation is nonlinear, as previously mentioned, a natural frame-
work is the one of the viscosity solution theory (see for instance the monographs
of Barles [5] and Bardi and Capuzzo-Dolcetta [4] for a presentation of first order
equations and the article of Crandall, Ishii and Lions [11] for the second order
case). Our work is much motivated by a previous article of the first author
([12]), which is dedicated to the mathematical study of a model for dislocation
dynamics with a mean curvature term. The main difference with the model in
[12] is that in our case, the PDE explicitly depends on the space variable x,
which induces substential adaptations of the proof. The strategy of the proof
is the same as the one applied in [3] or [12], i.e., using a fixed point method by
freezing the nonlocal term. To do this, the key point is to get estimates on the
Lipschitz constant in space and time of the solution as well as a bound from
below on the gradient in space. The main difficulties come from the fact that
the mean curvature term is balanced by a function of the space variable x and
so, to obtain the estimate from below on the gradient, we have to bound the
mean curvature term. This is done using the Lipschitz regularity of the solution.

The outline of the paper is as follows. Section 2 is devoted to the mathemat-
ical study of a related preliminary local problem, which is useful to establish the
existence/uniqueness of the solution of the nonlocal problem. We give an exis-
tence/uniqueness result for the solution of the local problem and provide some
results on the regularity of this solution. Section 3 presents the main result
of the paper, that is, a short time existence/uniqueness result for the nonlocal
problem.
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2 Study of a related local problem

In the following, for the sake of simplicity, we denote by g the function g(|∇I|).
Also, the gradient of u is now denoted by Du. Given T >0, we consider the
following problem:







∂u

∂t
= c(x,t)|Du|+ |Du| div

(

g(x)
Du

|Du|

)

on R
2×(0,T ),

u(x,0)=u0(x) in R
2,

(2.2)

with c : R
2× [0,T ) 7→ c(x,t) bounded, Lipschitz continuous in space (we denote

by Lc its Lipschitz constant in space), and in time (we denote by Lct
its Lipschitz

constant in time).
The evolution equation can be rewritten in the form

∂u

∂t
+G(x,t,Du,D2u)=0,

with G :R2× [0,T )×R
2×S2 (S2 being the set of symmetric 2×2 matrices

equipped with its natural partial order) defined by:

G(x,t,p,X)=−c(x,t)|p|+F (x,p,X),

=−c(x,t)|p|+g(x)H(p,X)−〈∇g(x),p〉,

with the following properties:

1. The operators G, F and H : (p,X) 7→−trace

(
(
I−

p⊗p

|p|2
)
X

)

are indepen-

dent of u and are elliptic, i.e. ∀X,Y ∈S2, ∀p∈R
2,

if X ≤Y then F (x,p,X)≥F (x,p,Y ).

2. F is locally bounded on R
2×R

2×S2, continuous on R
2×R

2−{0R2}×S2,
and F ∗(x,0,0)=F∗(x,0,0)=0, where F ∗ (resp. F∗) is the upper semi-
continuous (usc) envelope (resp. lower semicontinuous (lsc) envelope) of
F .

2.1 Existence and uniqueness

Theorem 2 (Comparison principle).
Assume (H1)-(H2) and let u :R2× [0,T )→R be a bounded and upper semi-
continuous subsolution and v :R2× [0,T )→R be a bounded and lower semi-
continuous supersolution of (2.2). Assume that u(x,0)≤u0(x)≤ v(x,0) in R

2,
then u≤ v in R

2× [0,T ).

Proof. This proof is rather classical. For the reader’s convenience, we refer to
[13], in which the authors prove comparison theorems for viscosity solutions of
related degenerate parabolic equations of general form in a domain not neces-
sarily bounded.
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We now turn to the existence of a solution. To do so, we construct barriers.

Proposition 1 (Existence of barriers).
Assume (H1)-(H2) and let u0∈W 2,∞(R2). Then there exists a constant C1 >0
depending only on ||c||L∞, g and u0 such that u± =u0±C1t are resp. super-
and sub-solution of (2.2).

Proof. Let us check that u+ is a supersolution (the proof for u− being similar).
We have:

c(x,t)|Du+|−F ∗(x,Du+,D2u+)=c(x,t)|Du0|−g(x)H∗(Du0,D
2u0)

+〈∇g(x),Du0〉

≤‖c‖L∞‖Du0‖L∞ +‖∇g‖L∞‖Du0‖L∞

+ sup
x∈R2

(
−g(x)H∗(Du0,D

2u0)
)

≤C1 =(u+)t,

if we choose

C1≥‖c‖L∞‖Du0‖L∞ + sup
x∈R2

(
−g(x)H∗(Du0,D

2u0)
)
+‖∇g‖L∞‖Du0‖L∞ .

Theorem 3 (Existence/Uniqueness).
Assume (H1)-(H2) and that u0∈W 2,∞(R2). Then there exists a unique bounded
continuous solution of (2.2) on R

2× [0,T ) . Moreover, the solution satisfies for
(x,t)∈R

2× [0,T ),
u0(x)−C1t≤u(x,t)≤u0(x)+C1t,

where C1 is defined in Proposition 1.

Proof. This is a direct application of the Perron’s method (see [5]) joint to the
comparison principle (Theorem 2).

2.2 Regularity results

We now prove that the solution of problem (2.2) is Lipschitz continuous in space

and time, and derive a lower bound on the partial derivative
∂u

∂x2
.

Theorem 4 (Lipschitz regularity in space).
Assume (H1)-(H2) and that ||Du0||L∞(R2)≤B0 with B0 >0. Then the solution
of (2.2) is Lipschitz continuous in space and satisfies:

||Du(·,t)||L∞(R2) ≤B(t),

with B(t)= eC2tB0 and C2 =Lc+Lg +5L2
g.
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Proof.

The function u is bounded and continuous on R
2× [0,T ). We set

Φǫ(x,y,t)=B(t)
(
|x−y|2 +ǫ2

) 1

2

and aim at proving that u(x,t)−u(y,t)≤Φǫ(x,y,t).
Let us set

M = sup
(x,y)∈R2×R2, t∈[0,T )

(
u(x,t)−u(y,t)−Φǫ(x,y,t)

)
.

Let us assume by contradiction that M >0. Then we denote by M̄ :

M̄ = sup
(x,y)∈R2×R2, t∈[0,T )

{

u(x,t)−u(y,t)−Φǫ(x,y,t)−
α

2

(
|x|2 + |y|2

)
−

γ

T − t

}

.

For α, γ small enough, we have M̄ ≥ M
2 >0. The function u being bounded, the

supremum is reached. Let (x̄, ȳ, t̄) be a point of maximum with obviously x̄ 6= ȳ.

Note that
α

2

(
|x̄|2 + |ȳ|2

)
≤C (with a constant C depending only on ‖u‖L∞) and

so lim
α→0

αx̄= lim
α→0

αȳ =0.

Let us prove that t̄>0. Assuming the contrary, we have:

0<
M

2
≤u0(x̄)−u0(ȳ)−Φǫ(x̄, ȳ,0),

≤u0(x̄)−u0(ȳ)−B0

(
|x̄− ȳ|2 +ǫ2

) 1

2 ,

≤u0(x̄)−u0(ȳ)−B0|x̄− ȳ|,

which contradicts the assumptions on u0.
A mere calculus gives:

p̄=DxΦǫ(x̄, ȳ, t̄)=B(t̄)
(x̄− ȳ)

(
|x̄− ȳ|2 +ǫ2

) 1

2

=−DyΦ
ǫ(x̄, ȳ, t̄) 6=0,

∂tΦ
ǫ(x̄, ȳ, t̄)=B′(t̄)

(
|x̄− ȳ|2 +ǫ2

) 1

2 =C2e
C2t̄B0

(
|x̄− ȳ|2 +ǫ2

) 1

2 ,

and

A=D2Φǫ(x̄, ȳ, t̄)=B(t̄)

(
U −U

−U U

)

,

with U =
(
|x̄− ȳ|2 +ǫ2

)− 1

2 I−
(
|x̄− ȳ|2 +ǫ2

)− 3

2 (x̄− ȳ)⊗(x̄− ȳ).

Using the parabolic version of Ishii’s lemma with Φ(x,y,t)=Φǫ(x,y,t)+
γ

T − t
,
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for all η >0, there exist τ1,τ2∈R and X,Y ∈S(2) such that:

τ1−τ2 =B′(t̄)
(
|x̄− ȳ|2 +ǫ2

) 1

2 +
γ

(T − t̄)2
,

(τ1, p̄+αx̄,X +αI)∈P̄+u(x̄, t̄), (τ2, p̄−αȳ,Y −αI)∈P̄−u(ȳ, t̄),

−

(
1

η
+ ||A||

)

I ≤

(
X 0
0 −Y

)

≤A+ηA2.

So the following holds:

τ1≤ c(x̄, t̄)|p̄+αx̄|−F∗ (x̄, p̄+αx̄,X +αI) ,

and
τ2≥ c(ȳ, t̄)|p̄−αȳ|−F ∗ (ȳ, p̄−αȳ,Y −αI).

By substracting the two previous inequalities, it yields:

B′(t̄)
(
|x̄− ȳ|2 +ǫ2

) 1

2 +
γ

T 2
≤c(x̄, t̄)|p̄+αx̄|−c(ȳ, t̄)|p̄−αȳ|+〈∇g(x̄)−∇g(ȳ), p̄〉

+〈∇g(x̄),αx̄〉+〈∇g(ȳ),αȳ〉

−g(x̄)H∗(p̄+αx̄,X +αI)+g(ȳ)H∗(p̄−αȳ,Y −αI),

≤α(‖c‖L∞ +Lg)(x̄+ ȳ)+(c(x̄, t̄)−c(ȳ, t̄))|p̄|

+Lg
B(t̄)|x̄− ȳ|2

(|x̄− ȳ|2 +ǫ2)
1

2

−g(x̄)[H∗(p̄+αx̄,X +αI)−H∗(p̄,X)]

+g(ȳ)[H∗(p̄−αȳ,Y −αI)−H∗(p̄,Y )]

−g(x̄)H(p̄,X)+g(ȳ)H(p̄,Y ). (2.3)

We choose η =
1

B(t̄)

(
|x̄− ȳ|2 +ǫ2

)1/2
>0, so A+ηA2 can be written:

A+ηA2 =B(t̄)

(
C −C

−C C

)

with

C =3
(
|x̄− ȳ|2 +ǫ2

)− 1

2 I−5
(
|x̄− ȳ|2 +ǫ2

)− 3

2 (x̄− ȳ)
⊗

(x̄− ȳ)

+2|x̄− ȳ|2
(
|x̄− ȳ|2 +ǫ2

)− 5

2 (x̄− ȳ)
⊗

(x̄− ȳ).
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Moreover, denoting by E(p) the matrix defined by E(p)= I−
p⊗p

|p|2
, p∈R

2−

{0R2}, one has:

g(x̄)trace(E(p̄)X)−g(ȳ)trace(E(p̄)Y )

=trace








(
g(x̄)E(p̄)

√

g(x̄)g(ȳ)E(p̄)
√

g(x̄)g(ȳ)E(p̄) g(ȳ)E(p̄)

)

︸ ︷︷ ︸

G

(
X 0
0 −Y

)








.

The matrix G is symmetric semi-positive definite so it can be decomposed into
G=χχT . This implies that

trace

(

G

(
X 0
0 −Y

))

=trace

(

χT

(
X 0
0 −Y

)

χ

)

,

so

trace

(

G

(
X 0
0 −Y

))

≤B(t̄)trace

(

G

(
C −C

−C C

))

,

≤B(t̄)
(√

g(x̄)−
√

g(ȳ)
)2

trace
(
E(p̄)C

)
,

≤B(t̄)L2
g|x̄− ȳ|2trace

(
E(p̄)C

)
.

A mere calculus gives that

trace
(
E(p̄)C

)
≤3

(
|x̄− ȳ|2 +ǫ2

)− 1

2 +2|x̄− ȳ|4
(
|x̄− ȳ|2 +ǫ2

)− 5

2 ,

so finally

g(x̄)trace
(
E(p̄)X

)
−g(ȳ)trace

(
E(p̄)Y

)
≤3L2

gB(t̄)|x̄− ȳ|2
(
|x̄− ȳ|2 +ǫ2

)− 1

2

+2L2
gB(t̄)|x̄− ȳ|6

(
|x̄− ȳ|2 +ǫ2

)− 5

2 ,

≤5L2
gB(t̄)|x̄− ȳ|2

(
|x̄− ȳ|2 +ǫ2

)− 1

2 .

Thus, from relation (2.3),

γ

T 2
+B′(t̄)

(
|x̄− ȳ|2 +ǫ2

) 1

2 ≤α(‖c‖L∞ +Lg)(|x̄|+ |ȳ|)

+(Lc +Lg +5L2
g)B(t̄)

|x̄− ȳ|2

(
|x̄− ȳ|2 +ǫ2

) 1

2

−g(x̄)[H∗(p̄+αx̄,X +αI)−H∗(p̄,X)]

+g(ȳ)[H∗(p̄−αȳ,Y −αI)−H∗(p̄,Y )] . (2.4)

Using the fact that B′(t)= (Lc +Lg +5L2
g)B(t), we deduce that:

γ

T 2
≤α(‖c‖L∞ +Lg)(|x̄|+ |ȳ|)

−g(x̄)[H∗(p̄+αx̄,X +αI)−H∗(p̄,X)]

+g(ȳ)[H∗(p̄−αȳ,Y −αI)−H∗(p̄,Y )].
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It is easy to see that |p̄|≤B(T ). Also, it can be checked that:

−
3

ǫ
B(T )I ≤

(
X 0
0 −Y

)

≤
10

ǫ
B(T )I.

We let α go to 0 in (2.4): p̄, X and Y are bounded independently of α so we can
extract a convergent subsequence p̄→p∞, X→X∞ and Y →Y∞. Using the

continuity of u and the fact that u(x̄, t̄)−u(ȳ, t̄)≥
γ

T − t̄
≥

γ

T
, we deduce that

p∞ 6=0. Sending α to 0 in the previous inequality and using the fact that g is
bounded, it yields:

γ

T 2
≤0,

which is absurd. So
u(x,t)−u(y,t)≤Φǫ(x,y,t)

and letting ǫ tend to 0, we obtain:

u(x,t)−u(y,t)≤B(t)|x−y|.

Exchanging x and y yields:

|u(x,t)−u(y,t)|≤B(t)|x−y|.

Proposition 2 (Lipschitz regularity in time).
Let u0∈W 2,∞(R2). Then the solution u of (2.2) is Lipschitz continuous in time
and satisfies:

‖ut(x,·)‖L∞(0,T )≤C1 +Lct

∫ T

0

B(s)ds,

where C1 is defined in Proposition 1.

Proof. We recall, from Theorem 3, that

|u(x,t)−u0(x)|≤C1t.

Let h>0 be such that t+h≤T . We denote by

M = sup
x∈R2

|u(x,h)−u0(x)|≤C1h

and

uh(x,t)=u(x,t+h)−Lct
h

∫ t+h

0

B(s)ds−M.

Then uh is still a sub-solution of (2.2). Indeed, formally, we have

(uh)t(x,t)=ut(x,t+h)−Lct
hB(t+h),

=c(x,t+h)|Du(x,t+h)|−F (x,Du(x,t+h),D2u(x,t+h))−Lct
hB(t+h),

≤c(x,t)|Duh(x,t)|−F (x,Duh(x,t),D2uh(x,t)).
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Hence, using the comparison principle, one has uh(x,t)≤u(x,t), that is

u(x,t+h)−u(x,t)≤M +Lct
h

∫ t+h

0

B(s)ds≤C1h+Lct
h

∫ T

0

B(s)ds.

Similarly, one obtains that

|u(x,t+h)−u(x,t)|≤C1h+Lct
h

∫ T

0

B(s)ds.

In conclusion, u is Lipschitz continuous in time with Lipschitz constant equal

to C1 +Lct

∫ T

0
B(s)ds.

We now turn to the prescribing of a lower bound on the gradient. We need
the following lemma:

Lemma 1 (Estimate on the curvature).
Let (p,Y )∈R

2×S2 such that ∃τ ∈R such that (τ,p,Y )∈P̄−u(y,t) (respectively
(τ,p,Y )∈P̄+u(y,t)). Then

−H(p,Y )≤
C1 +Lct

TB(T )+ ||c||L∞(R2×[0,T ))B(T )+ ||∇g||L∞(R2)B(T )

δ
=:C3,

(

resp. H(p,Y )≤C3

)

,

where C1 denotes the Lipschitz constant in time of u and B(·) is defined in
Theorem 4.

Proof. We only do the proof for (τ,p,Y )∈P̄−u(y,t), the other one being similar.
By definition,

τ −c(y,t)|p|+g(y)H(p,Y )−〈∇g(y),p〉≥0.

That is,

g(y)H(p,Y )≥−τ +c(y,t)|p|+〈∇g(y),p〉.

But −τ ≥−C1−Lct
TB(T ) and |p|≤B(t)≤B(T ). Consequently,

g(y)H(p,Y )≥−C1−Lct
TB(T )−||c||L∞(R2×[0,T ))B(T )−||∇g||L∞(R2)B(T ),

and

−H(p,Y )≤
C1 +Lct

TB(T )+ ||c||L∞(R2×[0,T ))B(T )+ ||∇g||L∞(R2)B(T )

δ
.
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Theorem 5 (Lower bound on the gradient).

Let u0∈W 2,∞(R2) be such that
∂u0

∂x2
≥ b0 with b0 >0. Then the solution of (2.2)

satisfies:

∂u

∂x2
≥ b(t),

with b(t)= b0−2

(

Lc +Lg

)
B0

C2

(

eC2t−1

)

−LgC3t, where C2 and C3 are defined

respectively in Theorem 4 and Lemma 1.

Proof. We aim to prove that for xn <yn, u(x′,yn,t)−u(x′,xn,t)≥ b(t)(yn−xn).
In this purpose, let us introduce

M = sup
(x′,xn,yn,t)|xn<yn

{u(x′,xn,t)−u(x′,yn,t)−b(t)(xn−yn)} ,

and let us prove that M ≤0. We argue by contradiction. Let us assume that
M >0. Then we set:

M̄ = sup
(x′,xn,y′,yn,t) |xn<yn

{

u(x′,xn,t)−u(y′,yn,t)−b(t)(xn−yn)−
|x′−y′|2

2ǫ

−
γ

T − t
−

α

2

(
|x|2 + |y|2

)
}

.

For α and γ small enough, M̄ ≥ M
2 >0. Moreover, the solution u being bounded,

the supremum is reached in (x̄′,x̄n, ȳ′, ȳn, t̄).
Let us prove that t̄ 6=0. By contradiction, let us assume that t̄=0. We then
have:

0<
M

2
≤ M̄ ≤u0(x̄′,x̄n)−u0(ȳ′, ȳn)−b0(x̄n− ȳn)−

|x̄′− ȳ′|2

2ǫ
,

≤B0|x̄′− ȳ′|−
|x̄′− ȳ′|2

2ǫ
+u0(ȳ′,x̄n)−u0(ȳ′, ȳn)−b0(x̄n− ȳn).

A study of the function h : r 7→B0r−
r2

2ǫ
gives us that it is bounded by

B2
0ǫ

2
.

Thus,

0<
M

2
≤ M̄ ≤

B2
0ǫ

2
+u0(ȳ′,x̄n)−u0(ȳ′, ȳn)−b0(x̄n− ȳn),

where we have that u0(ȳ′,x̄n)−u0(ȳ′, ȳn)−b0(x̄n− ȳn)≤0 according to the as-
sumptions on u0. We clearly raise a contradiction for ǫ small enough, so t̄ 6=0.
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Let us now prove that x̄n 6= ȳn. We have:

0<
M

2
≤ M̄ =u(x̄′,x̄n, t̄)−u(ȳ′,x̄n, t̄)+u(ȳ′,x̄n, t̄)−u(ȳ′, ȳn, t̄)−b(t̄)(x̄n− ȳn)

−
|x̄′− ȳ′|2

2ǫ
−

γ

T − t̄
−

α

2

(
|x̄|2 + |ȳ|2

)
,

≤B(t̄)|x̄′− ȳ′|−
|x̄′− ȳ′|2

2ǫ
+u(ȳ′,x̄n, t̄)−u(ȳ′, ȳn, t̄)−b(t̄)(x̄n− ȳn),

≤
B(t̄)2ǫ

2
+u(ȳ′,x̄n, t̄)−u(ȳ′, ȳn, t̄)−b(t̄)(x̄n− ȳn).

Thus, for ǫ small enough,

u(ȳ′,x̄n, t̄)−u(ȳ′, ȳn, t̄)−b(t̄)(x̄n− ȳn)≥
M

3
.

Consequently, x̄n 6= ȳn.

We consider Φ(x,y,t)= b(t)(xn−yn)+
|x′−y′|2

2ǫ
+

γ

T − t
and we set p̄= x̄′− ȳ′.

We use the parabolic version of Ishii’s lemma and we set:







p1 =DxΦ(x̄, ȳ, t̄)=p2 =−DyΦ(x̄, ȳ, t̄)=

(
ǫ−1p̄

b(t̄)

)

6=0 for T small enough,

A=D2Φ(x̄, ȳ, t̄)=









1

ǫ
0 −

1

ǫ
0

0 0 0 0

−
1

ǫ
0

1

ǫ
0

0 0 0 0









.

Then for all η >0, there exist X et Y such that:







τ1−τ2 = b′(t̄)(x̄n− ȳn)+
γ

(T − t̄)
2 ,

(τ1,p1 +αx̄,X +αI)∈P̄+u(x̄, t̄),
(τ2,p1−αȳ,Y −αI)∈P̄−u(ȳ, t̄),

−

(
1

η
+ ||A||

)

I ≤

(
X 0
0 −Y

)

≤A+ηA2 =









1

ǫ
+

2η

ǫ2
0 −

1

ǫ
−

2η

ǫ2
0

0 0 0 0

−
1

ǫ
−

2η

ǫ2
0

1

ǫ
+

2η

ǫ2
0

0 0 0 0









.

Because u is a subsolution and v is a supersolution,

τ1−c(x̄, t̄)|p1 +αx̄|+F∗ (x̄,p1 +αx̄,X +αI)≤0,

τ2−c(ȳ, t̄)|p1−αȳ|+F ∗ (ȳ,p1−αȳ,Y −αI)≥0.
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Then, substracting the two previous inequalities yields:

b′(t̄)(x̄n− ȳn)+
γ

T 2
≤c(x̄, t̄)|p1 +αx̄|−c(ȳ, t̄)|p1−αȳ|

+g(ȳ)H∗ (p1−αȳ,Y −αI)−g(x̄)H∗ (p1 +αx̄,X +αI)

+〈∇g(x̄)−∇g(ȳ),p1〉+〈∇g(ȳ),αȳ〉+〈∇g(x̄),αx̄〉,

≤α(‖c‖L∞ +Lg)(|x̄|+ |ȳ|)+

(

c(x̄, t̄)−c(ȳ, t̄)

)

|p1|

+g(ȳ)[H∗ (p1−αȳ,Y −αI)−H∗ (p1,Y )]

+g(x̄)[H∗ (p1,X)−H∗ (p1 +αx̄,X +αI)]

+g(ȳ)H∗ (p1,Y )−g(x̄)H∗ (p1,X)+Lg |x̄− ȳ||p1|.

Let us assume that g(ȳ)≤ g(x̄). In this case,

g(ȳ)H(p1,Y )−g(x̄)H(p1,X)

=(g(x̄)−g(ȳ))
︸ ︷︷ ︸

≥0

(−H(p1,Y )
︸ ︷︷ ︸

≤C3

)+g(x̄)(H(p1,Y )−H(p1,X))
︸ ︷︷ ︸

≤0 since X≤Y

,

≤C3Lg|x̄− ȳ|.

In the case where g(ȳ)≥ g(x̄), we obtain the same result using the inequality
H(p1,X)≤C3. We then have:

b′(t̄)(x̄n− ȳn)+
γ

T 2

≤α(‖c‖L∞ +Lg)(|x̄|+ |ȳ|)+C3Lg(|x̄′− ȳ′|+ ȳn− x̄n)

+(Lc +Lg)

(
|x̄′− ȳ′|2

ǫ
+b(t̄)|x̄′− ȳ′|+

|x̄′− ȳ′|

ǫ
(ȳn− x̄n)+b(t̄)(ȳn− x̄n)

)

+g(ȳ)[H∗ (p1−αȳ,Y −αI)−H∗ (p1,Y )]

+g(x̄)[H∗ (p1,X)−H∗ (p1 +αx̄,X +αI)].

Moreover, since u is B(t)-Lipschitz continuous in space, we have |p1|≤B(t̄),
hence |x̄′− ȳ′|≤B(t̄)ǫ. Thus,

b′(t̄)(x̄n− ȳn)+
γ

T 2

≤α(‖c‖L∞ +Lg)(|x̄|+ |ȳ|)+C3Lg(B(T )ǫ+ ȳn− x̄n)

+(Lc +Lg)
(
B(T )2ǫ+b0B(T )ǫ+B(t̄)(ȳn− x̄n)+b(t̄)(ȳn− x̄n)

)

+g(ȳ)[H∗ (p1−αȳ,Y −αI)−H∗ (p1,Y )]

+g(x̄)[H∗ (p1,X)−H∗ (p1 +αx̄,X +αI)].
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Taking ǫ sufficiently small, it yields:

b′(t̄)(x̄n− ȳn)+
γ

2T 2
≤α(‖c‖L∞ +Lg)(|x̄|+ |ȳ|)+C3Lg(ȳn− x̄n)

+(Lc +Lg)(B(t̄)(ȳn− x̄n)+b(t̄)(ȳn− x̄n))

+g(ȳ)[H∗ (p1−αȳ,Y −αI)−H∗ (p1,Y )]

+g(x̄)[H∗ (p1,X)−H∗ (p1 +αx̄,X +αI)],

≤α(‖c‖L∞ +Lg)(|x̄|+ |ȳ|)

+(2B(t̄)(Lc +Lg)+C3Lg)(ȳn− x̄n)

+g(ȳ)[H∗ (p1−αȳ,Y −αI)−H∗ (p1,Y )]

+g(x̄)[H∗ (p1,X)−H∗ (p1 +αx̄,X +αI)].

But b′(t̄)=−2B(t̄)(‖∇c‖L∞ +Lg)−C3Lg so,

γ

2T 2
≤α(‖c‖L∞ +‖∇g‖L∞)(|x̄|+ |ȳ|)

+g(ȳ)[H∗ (p1−αȳ,Y −αI)−H∗ (p1,Y )]

+g(x̄)[H∗ (p1,X)−H∗ (p1 +αx̄,X +αI)]. (2.5)

Remark that X and Y are bounded independently of α from the matrix in-
equality. This is also the case for p1. So there exits αn →0 such that t̄→ t∞,
p1→p∞ and (X,Y )→ (X∞,Y∞). Also, if we set

Mα = sup
(x′,xn,y′,yn,t) |xn<yn

{

u(x′,xn,t)−u(y′,yn,t)−b(t)(xn−yn)−
|x′−y′|2

2ǫ

−
γ

T − t
−

α

2

(
|x|2 + |y|2

)
}

,

=u(x̄′,x̄n, t̄)−u(ȳ′, ȳn, t̄)−b(t̄)(x̄n− ȳn)−
|x̄′− ȳ′|2

2ǫ
−

γ

T − t̄
−

α

2

(
|x̄|2 + |ȳ|2

)
,

obviously Mα≤M0 and (Mα)α increases when α→0, so (Mα)α is convergent
and we denote by L its limit. To finish, it can be easily seen that M α

2
−Mα≥

α

4

(
|x̄|2 + |ȳ|2

)
≥0. So by letting α tend to 0, it follows that lim

α→0
α

(
|x̄|2 + |ȳ|2

)
=

0. Thus lim
α→0

αx̄= lim
α→0

αȳ =0.

Sending αn to 0 in (2.5) and using the fact that lim
α→0

αx̄= lim
α→0

αȳ =0, p1 6=0

and p∞ 6=0, it yields:

γ

2T 2
≤0,

which is absurd.
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3 The non local problem

The space BV (R2) is the space of bounded variation functions. Let us define
by L1

unif (R2) the space:

L1
unif (R2)=

{

f :R2→R , ||f ||L1

unif
(R2) <∞

}

,

with

||f ||L1

unif
(R2) = sup

x∈R2

∫

Q(x)

|f |,

and with Q(x) the unit square centered at x: Q(x)=

{

x′∈R
2 , |xi−x′

i|≤
1

2

}

,

and by L∞
int(R

2) the space:

L∞
int(R

2)=
{
f :R2→R, ||f ||L∞

int
(R2) <∞

}
,

with ||f ||L∞

int
(R2) =

∫

R2

||f ||L∞(Q(x))

Theorem 6 (Short time existence and uniqueness).
Assume (H1)-(H2) and let u0 :R2→R be a W 2,∞(R2) function such that:

|Du0|<B0 in R
2 and

∂u0

∂xn
>b0 >0 in R

2.

Let c0 satisfies c0∈L∞
int(R

2)∩BV (R2). Then there exists a unique viscosity
solution of problem (1.1) in R

2× [0,T ∗) with:

T ∗ =inf







ln

(
b0C2

8B0 (|c0|BV +Lg)
+1

)

C2
,

b0

4C4
,

b0

16B0||c0||L∞

int(R
2)

,
ln2

C2







,

where

C4 =
Lg

δ
(2C1 +2‖c0‖L1B0 +2‖∇g‖L∞B0) and C2 = |c0|BV +5L2

g +Lg.

Moreover, the solution satisfies:

|Du(x,t)|≤2B0 on R
2× [0,T ∗),

∂u

∂x2
(x,t)>

b0

2
>0 on R

2× [0,T ∗),

|ut(x,t)|≤2C1 on R
2× [0,T ∗).

We need the three following lemmata.
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Lemma 2 (Estimate on the characteristic functions).
Let u1∈C(R2) satisfying

∂u1

∂x2
≥ b

in the distribution sense for some b>0 and u2∈L∞
loc(R

2) satisfying the same
condition. Then, we have the following estimate:

||[u2]− [u1]||L1

unif
≤

2

b
||u2−u1||L∞ .

Lemma 3 (Convolution inequality).
For every f ∈L1

unif (R2) and g∈L∞
int(R

2), the convolution product f ∗g is
bounded and satisfies:

||f ∗g||L∞(R2)≤||f ||L1

unif
(R2)||g||L∞

int
(R2).

A proof of these two lemmata can be found respectively in [2] and [3].

Lemma 4 (Stability of the solution with respect to the velocity).
Let T >0. We consider for i=1,2 two different equations:

{
ui

t = ci(x,t)|Dui|−F (x,Dui,D2ui) in R
2×(0,T ),

ui(x,0)=u0(x),
(3.6)

ci, u0 and F satisfying the previous assumptions. Then, for every t∈ [0,T ), we
have:

||u1(·,t)−u2(·,t)||L∞(R2) ≤||c1−c2||L∞(R2×(0,T ))

∫ T

0

B(s)ds,

where ui are the solutions of (3.6), B(t)=B0e
(Lc+5L2

g+Lg)t with Lc =sup
i

Lci .

Proof. We set K = ||c1−c2||L∞(R2×(0,T )). We remark that u1 is a subsolution of

ut−c2(x,t)|Du|+F (x,Du,D2u)−KB(t)=0.

Indeed, we have:

u1
t −c2(x,t)|Du1|+F (x,Du1,D2u1)=c1(x,t)|Du1|−F (x,Du1,D2u1)

−c2(x,t)|Du1|+F (x,Du1,D2u1),

≤||c1−c2||L∞(R2×(0,T ))B(t),

≤KB(t).
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This differential inequality holds in the viscosity sense. Moreover, the function

u2 +K

∫ t

0

B(s)ds is solution of the same problem. By the comparison principle,

we deduce that:

u1≤u2 +K

∫ t

0

B(s)ds.

Switching the role of u1 and u2, it yields:

||u1(·,t)−u2(·,t)||L∞(R2)≤||c1−c2||L∞(R2×(0,T ))

∫ t

0

B(s)ds.

It now brings us to the proof of Theorem 6.

Proof of Theorem 6. We define the space

E =







u∈L∞
loc(R

2× [0,T ∗)) s.t.

∣
∣
∣
∣
∣
∣
∣

|Du(x,t)|≤2B0

∂u

∂xn
(x,t)≥

b0

2
|ut(x,t)|≤2C1







,

where C1 is defined in Proposition 1.

For u∈E, we set c(x,t)= (c0 ∗ [u(·,t)])(x). This function is bounded, Lipschitz

continuous in space (with Lc = |c0|BV ) and time (with Lct
=

8C1‖c0‖L∞

int

b0
). In-

deed,

||c||L∞(R2×[0,T∗)) ≤ sup
t∈R

||c0||L1 ||[u(·,t)]||L∞(R2),

≤||c0||L1 .

Moreover, for every t,

||Dc(·,t)||L∞(R2) = ||Dc0∗ [u(·,t)]||L∞(R2),

≤|c0|BV ||[u(·,t)]||L∞(R2),

≤|c0|BV .

Finally, for 0<t,s<T ∗:

|c(x,t)−c(x,s)|= |c0 ∗ [u(·,t)](x)−c0 ∗ [u(·,s)](x)|,

= |c0 ∗([u(x,t)]− [u(x,s)])(x)|,

≤||c0||L∞

int
||[u(·,t)]− [u(·,s)]||L1

unif
(R2),

≤
4 ||c0||L∞

int

b0
||u(·,t)−u(·,s)||L∞(R2),

≤
8C1 ||c0||L∞

int

b0
|t−s|.
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For u∈E, we then define v=Φ(u) as the unique viscosity solution of:

{
vt =(c0 ∗ [u])|Dv|−F (x,Dv,D2v) in R

2×(0,T ∗),
v(x,t=0)=u0(x) in R

2.

We show that Φ :E→E is a contraction. First, we show that Φ is well-defined.
We have:

||Dv(·,t)||≤B(t)≤B0e
(Lc+5L2

g+Lg)T∗

≤2B0,

by definition of T ∗.
Moreover, by Proposition 2, v is Lipschitz continuous in time and satisfies

‖vt‖L∞ ≤C1 +Lct
T ∗B(T ∗)≤C1 +2Lct

B0T
∗

≤C1

(

1+
16B0‖c0‖L∞

int

b0
T ∗

)

≤2C1

by definition of T ∗. Finally, by Theorem 5, we have

∂v

∂x2
≥b(t)≥ b0−2(Lc +Lg)

B0

C2

(
eC2t−1

)
−C4t,

where C2 =Lc +5L2
g +Lg and C4 =

Lg

δ (2C1 +2‖c0‖L1B0 +2‖∇g‖L∞B0). To en-

sure that
∂v

∂xn
≥

b0

2
, it suffices to have that:

C4T
∗≤

b0

4

and

2(Lc +Lg)
B0

C2

(

eC2T∗

−1
)

≤
b0

4
.

This two inequalities are true owing to the choice of T ∗.

It thus remains to be shown that Φ is a contraction. For vi =Φ(ui), according
to Lemmata 3 and 4, we have:

||v2−v1||L∞(R2×(0,T∗)) ≤2B0T ∗ ||c0 ∗ [u2]−c0 ∗ [u1]||L∞(R2×(0,T∗)),

≤2B0T ∗ ||c0||L∞

int
sup

t∈(0,T∗)

||[u2(·,t)]− [u1(·,t)]||L1

unif
,

≤
8B0T ∗

b0
||c0||L∞

int
||u2−u1||L∞(R2×(0,T∗)),

≤
1

2
||u2−u1||L∞(R2×(0,T∗)).

In conclusion, Φ is a contraction on E which is a closed set for the L∞-topology.
So there exists a unique viscosity solution to the problem in E on (0,T ∗).
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We are now able to prove the short time existence and uniqueness result of
Problem (1.1).

Proof of Theorem 1. We recall that

c0 :







R
2→R

x 7→
4µ

d2

(

2−
2

d2
||x||22

)

exp

(

−
||x||22
d2

)
.

It is easy to check that c0∈L1(R2). It is also C1(R2) so its total variation J(c0)
is defined by:

J(c0)=

∫

R2

|∇c0|dx.

It is obvious that J(c0)<+∞. Consequently, c0∈BV (R2). To finish, using
inequalities, it can be proved that c0∈L∞

int(R
2). Hence we can apply Theorem

6 to get the desired result.
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