Nicolas Forcadel 
email: forcadel@ceremade.dauphine.fr
  
Carole Le Guyader 
email: carole.le-guyader@insa-rouen.fr
  
A short time existence/uniqueness result for a nonlocal topology-preserving segmentation model

Motivated by a prior applied work of Vese and the second author dedicated to segmentation under topological constraints, we derive a slightly modified model phrased as a functional minimization problem, and propose to study it from a theoretical viewpoint. The mathematical model leads to a second order nonlinear PDE with a singularity at ∇u = 0 and containing a nonlocal term. A suitable setting is thus the one of the viscosity solution theory and, in this framework, we establish a short time existence/uniqueness result as well as a Lipschitz regularity result for the solution.

Introduction

In [START_REF] Guyader | Self-repelling snakes for topology-preserving segmentation models[END_REF], Le Guyader and Vese propose a topology-preserving segmentation model based on an implicit level-set formulation and on the geodesic active contours. The goal of this paper is to prove a short time existence and uniqueness result for a slightly modified model. The necessity of designing topology-preserving processes arises in medical imaging, for instance, in the human cortex reconstruction: it is well-known that the human cortex has a spherical topology and this anatomical feature must be preserved through the segmentation process accordingly. The need for topology-preserving models also occurs when the shape to be detected must be homeomorphic to the initial one. To fix ideas, we propose some examples to illustrate what the results should be when running such a kind of algorithm. The implicit framework of the level-set method (see [START_REF] Osher | Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF] for instance) has several advantages when tracking propagating fronts. In particular, it easily handles topological changes such as merging and breaking. 1 Thus, in Fig. 1, when no topological contraints are enforced, the evolving contour splits into two components. On the other hand, in the topology-preserving framework (see Fig. 2), we aim at segmenting the two disks while maintaining the same topology throughout the process, which means that we expect to get one path-connected component. For the sake of completeness, we refer the reader to other prior related works dedicated to segmentation models under topological constraints: the work of Han et al. ([14]) based on the concept of simple point in digital topology, the work of Alexandrov and Santosa ( [START_REF] Alexandrov | A topology-preserving level set method for shape optimization[END_REF]), which is a curve evolution method based on level sets for shape optimization problems in material sciences and which prevents the narrow band from overlapping, the work of Sundaramoorthi and Yezzi ( [START_REF] Sundaramoorthi | Global regularizing flows with topology preservation for active contours and polygons[END_REF]) based on the knot energy and which includes a penalty in the segmentation functional in the form of a double integral as done in [START_REF] Guyader | Self-repelling snakes for topology-preserving segmentation models[END_REF], the work of Rochery et al. ( [START_REF] Rochery | Higher-order active contours[END_REF]) which uses a similar idea to [START_REF] Guyader | Self-repelling snakes for topology-preserving segmentation models[END_REF] to avoid that pieces of the evolving curve come in contact to merge or break, and lastly the work of Cecil et al. ([8]).

Description of the model

The model proposed in [START_REF] Guyader | Self-repelling snakes for topology-preserving segmentation models[END_REF] is as follows. Let Ω be a bounded open subset of R 2 , ∂Ω its boundary and let I be a given bounded image function defined by I : Ω -→ R. Let g : [0,+∞[-→ [0,+∞[ be an edge-detector function satisfying g(0) = 1, g strictly decreasing, and lim r→+∞ g(r) = 0. The evolving contour C is embedded in a higher-dimensional Lipschitz continuous function Φ defined by

Φ : Ω × [0,+∞[-→ R with (x,t) → Φ(x,t) such that C(t,•) = {x ∈ Ω|Φ(x,t) = 0} and Φ < 0 on w the interior of C, Φ > 0 on Ω \ w.
Generally, this function Φ is preferred to be a signed-distance function for the stability of numerical computations.

The segmentation model of [START_REF] Guyader | Self-repelling snakes for topology-preserving segmentation models[END_REF] combines the classical geodesic active contour functional (see [START_REF] Caselles | Geodesic Active Contours[END_REF]) with a topological constraint phrased in terms of a double integral. More precisely, it consists in minimizing the following functional:

F (Φ) + µE(Φ),
where µ > 0 is a tuning parameter. The functional F stems from the geodesic active contour model and is defined by:

F (Φ) = Ω g(|∇I(x)|)δ(Φ(x))|∇Φ(x)|dx,
with δ the 1-D Dirac measure. The functional E, related to the topological constraint, is defined by:

E(Φ) = - Ω Ω exp - ||x -y|| 2 2 d 2 ∇Φ(x),∇Φ(y) H(Φ(x) + l)H(l -Φ(x))
H(Φ(y) + l)H(l -Φ(y)) dxdy, with H the 1-D Heaviside function, •,• denoting the Euclidean scalar product in R 2 and || • || 2 the associated norm. A geometrical observation motivates the introduction of E. Indeed, in the case where Φ is a signed-distance function, |∇Φ| = 1 and the unit outward normal vector to the zero level line at point x is ∇Φ(x). Let us now consider two points (x,y) ∈ Ω × Ω belonging to the zero level line of Φ, close enough to each other, and let ∇Φ(x) and ∇Φ(y) be the two unit outward normal vectors to the contour at these points. As shown in Fig. 3, when the contour is about to merge or split, that is, when the topology of the evolving contour is to change, then ∇Φ(x),∇Φ(y) ≃ -1. This remark justifies the construction of E. Also, instead of working with only the points of the zero level line, the authors propose to focus on the points contained in a narrow band around the zero level line, more precisely, on the set of points {x ∈ Ω|l ≤ Φ(x) ≤ l}, l being a level parameter. Lastly, the function

(x,y) → exp - ||x -y|| 2 2 d 2
measures the nearness of the two points x and y. 

                 ∂Φ ∂t = |∇Φ| div g(|∇I|) ∇Φ |∇Φ| + 4 µ d 2 H(Φ(x) + l)H(l -Φ(x)) Ω x -y,∇Φ(y) e -||x-y|| 2 2 /d 2 H(Φ(y) + l)H(l -Φ(y)) dy, Φ(x,0) = Φ 0 (x), ∂Φ ∂ ν = 0, on ∂Ω.
This problem is hard to handle from a theoretical point of view. A suitable setting would be the one of the viscosity solution theory (due to the nonlinearity induced by the modified mean-curvature term) but the dependency of the nonlocal term to the gradient (∇Φ(y)) and the failure to fulfill the monotony property in Φ make it impossible. For this reason, we consider a slightly modified problem. We propose to focus on the following minimization problem for which the topological constraint is only applied to the zero level line (we still assume that |∇Φ| = 1).

inf

Φ Ω g(|∇I(x)|)δ(Φ(x))|∇Φ(x)|dx -µ Ω Ω exp( -||x -y|| 2 2 d 2 ) ∇Φ(x),∇Φ(y) δ(Φ(x))δ(Φ(y)) dxdy.
We compute the Euler-Lagrange equation and apply a gradient descent method.

We get the following evolution equation:

∂Φ ∂t = δ(Φ)div g(|∇I|) ∇Φ |∇Φ| -2µ Ω ∂ ∂x 1 exp - ||x -y|| 2 2 d 2 δ(Φ(x))δ(Φ(y)) ∂Φ ∂y 1 (y)dy -2µ Ω ∂ ∂x 2 exp - ||x -y|| 2 2 d 2 δ(Φ(x))δ(Φ(y)) ∂Φ ∂y 2 (y)dy. =δ(Φ) div g(|∇I|) ∇Φ |∇Φ| + 4µ d 2 Ω (x 1 -y 1 )exp - ||x -y|| 2 2 d 2 ∂ ∂y 1 [H(Φ(y))] dy + 4µ d 2 Ω (x 2 -y 2 ) exp - ||x -y|| 2 2 d 2 ∂ ∂y 2 [H(Φ(y))] dy .
Doing an integration by parts in the second part of the PDE and setting the necessary boundary conditions to zero, it yields:

∂Φ ∂t = δ(Φ) div g(|∇I|) ∇Φ |∇Φ| + 4µ d 2 Ω 2 - 2 d 2 ||x -y|| 2 2 exp - ||x -y|| 2 2 d 2 H(Φ(y))dy , = δ(Φ) div g(|∇I|) ∇Φ |∇Φ| + c 0 * [Φ] ,
with [Φ] the characteristic function of the set {Φ > 0} and c 0 :

   R 2 → R x → 4µ d 2 2 - 2 d 2 ||x|| 2 2 exp - ||x|| 2 2 d 2
.

A rescaling can be made by replacing δ(Φ) by |∇Φ| in order to apply the same motion to all level sets. Also, for the sake of simplicity, we assume, in the sequel, that the problem is formulated on R 2 for the spatial coordinates.

Main results

Given T > 0, we consider the following problem: find Φ(x,t) solution of:

   ∂Φ ∂t = |∇Φ| div g(|∇I|) ∇Φ |∇Φ| + c 0 * [Φ] in R 2 × (0,T ), Φ(x,0) = Φ 0 (x) in R 2 , (1.1) 
with Φ 0 ∈ W 2,∞ (R 2 ) (we denote by B 0 its Lipschitz constant). We need the following assumptions on function g:

(H1) ∃δ > 0, ∀x ∈ R 2 , δ < g(x) ≤ 1.
(H2) g, g 1 2 and ∇g are bounded and Lipschitz continuous on R 2 with Lipschitz constant κ g , κ ∇g and κ g 1 2 respectively. For simplicity of notation, we set

L g = max κ g ,κ ∇g ,κ g 1 2 .
This model is a nonlocal Hamilton-Jacobi equation. We propose, in this paper, to prove a short time existence and uniqueness result for this equation.

Theorem 1 (Short time existence and uniqueness). Assume (H1)-(H2) and let u

0 : R 2 → R be a W 2,∞ (R 2 ) function such that: |Du 0 | < B 0 in R 2 and ∂u 0 ∂x 2 > b 0 > 0 in R 2 .
Then there exists T * > 0 (depending only on b 0 , ,B 0 , c 0 and g) such that there exists a unique viscosity solution of problem

(1.1) in R 2 × [0,T * ).
Moreover, the solution is Lipschitz continuous in space and time.

Since the equation is nonlinear, as previously mentioned, a natural framework is the one of the viscosity solution theory (see for instance the monographs of Barles [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] and Bardi and Capuzzo-Dolcetta [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications[END_REF] for a presentation of first order equations and the article of Crandall, Ishii and Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for the second order case). Our work is much motivated by a previous article of the first author ( [START_REF] Forcadel | Dislocations dynamics with a mean curvature term: short time existence and uniqueness[END_REF]), which is dedicated to the mathematical study of a model for dislocation dynamics with a mean curvature term. The main difference with the model in [START_REF] Forcadel | Dislocations dynamics with a mean curvature term: short time existence and uniqueness[END_REF] is that in our case, the PDE explicitly depends on the space variable x, which induces substential adaptations of the proof. The strategy of the proof is the same as the one applied in [START_REF] Alvarez | Dislocation Dynamics: short time existence and uniqueness of the solution[END_REF] or [START_REF] Forcadel | Dislocations dynamics with a mean curvature term: short time existence and uniqueness[END_REF], i.e., using a fixed point method by freezing the nonlocal term. To do this, the key point is to get estimates on the Lipschitz constant in space and time of the solution as well as a bound from below on the gradient in space. The main difficulties come from the fact that the mean curvature term is balanced by a function of the space variable x and so, to obtain the estimate from below on the gradient, we have to bound the mean curvature term. This is done using the Lipschitz regularity of the solution.

The outline of the paper is as follows. Section 2 is devoted to the mathematical study of a related preliminary local problem, which is useful to establish the existence/uniqueness of the solution of the nonlocal problem. We give an existence/uniqueness result for the solution of the local problem and provide some results on the regularity of this solution. Section 3 presents the main result of the paper, that is, a short time existence/uniqueness result for the nonlocal problem.

Study of a related local problem

In the following, for the sake of simplicity, we denote by g the function g(|∇I|). Also, the gradient of u is now denoted by Du. Given T > 0, we consider the following problem:

   ∂u ∂t = c(x,t)|Du| + |Du| div g(x) Du |Du| on R 2 × (0,T ), u(x,0) = u 0 (x) in R 2 , (2.2) 
with c : R 2 × [0,T ) → c(x,t) bounded, Lipschitz continuous in space (we denote by L c its Lipschitz constant in space), and in time (we denote by L ct its Lipschitz constant in time).

The evolution equation can be rewritten in the form

∂u ∂t + G(x,t,Du,D 2 u) = 0, with G : R 2 × [0,T ) × R 2 × S 2 (S 2
being the set of symmetric 2 × 2 matrices equipped with its natural partial order) defined by:

G(x,t,p,X) = -c(x,t)|p| + F (x,p,X), = -c(x,t)|p| + g(x)H(p,X) -∇g(x),p ,
with the following properties:

1. The operators G, F and H : (p,X) → -trace

I - p ⊗ p |p| 2 X are indepen- dent of u and are elliptic, i.e. ∀X,Y ∈ S 2 , ∀p ∈ R 2 , if X ≤ Y then F (x,p,X) ≥ F (x,p,Y ). 2. F is locally bounded on R 2 × R 2 × S 2 , continuous on R 2 × R 2 -{0 R 2 } × S 2 ,
and F * (x,0,0) = F * (x,0,0) = 0, where F * (resp. F * ) is the upper semicontinuous (usc) envelope (resp. lower semicontinuous (lsc) envelope) of F .

Existence and uniqueness

Theorem 2 (Comparison principle). Assume (H1)-(H2) and let u : R 2 × [0,T ) → R be a bounded and upper semicontinuous subsolution and v : R 2 × [0,T ) → R be a bounded and lower semicontinuous supersolution of (2.2). Assume that u(x,0)

≤ u 0 (x) ≤ v(x,0) in R 2 , then u ≤ v in R 2 × [0,T ).
Proof. This proof is rather classical. For the reader's convenience, we refer to [START_REF] Giga | Comparison Principle and Convexity Preserving Properties for Singular Degenerate Parabolic Equations on Unbounded Domains[END_REF], in which the authors prove comparison theorems for viscosity solutions of related degenerate parabolic equations of general form in a domain not necessarily bounded.

We now turn to the existence of a solution. To do so, we construct barriers.

Proposition 1 (Existence of barriers). Assume (H1)-(H2) and let u 0 ∈ W 2,∞ (R 2 ). Then there exists a constant C 1 > 0 depending only on ||c|| L ∞ , g and u 0 such that u ± = u 0 ± C 1 t are resp. superand sub-solution of (2.2).

Proof. Let us check that u + is a supersolution (the proof for u -being similar).

We have:

c(x,t)|Du + | -F * (x,Du + ,D 2 u + ) =c(x,t)|Du 0 | -g(x)H * (Du 0 ,D 2 u 0 ) + ∇g(x),Du 0 ≤ c L ∞ Du 0 L ∞ + ∇g L ∞ Du 0 L ∞ + sup x∈R 2 -g(x)H * (Du 0 ,D 2 u 0 ) ≤C 1 = (u + ) t , if we choose C 1 ≥ c L ∞ Du 0 L ∞ + sup x∈R 2 -g(x)H * (Du 0 ,D 2 u 0 ) + ∇g L ∞ Du 0 L ∞ .
Theorem 3 (Existence/Uniqueness). Assume (H1)-(H2) and that u 0 ∈ W 2,∞ (R 2 ). Then there exists a unique bounded continuous solution of (2.2) on R 2 × [0,T ) . Moreover, the solution satisfies for

(x,t) ∈ R 2 × [0,T ), u 0 (x) -C 1 t ≤ u(x,t) ≤ u 0 (x) + C 1 t,
where C 1 is defined in Proposition 1.

Proof. This is a direct application of the Perron's method (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]) joint to the comparison principle (Theorem 2).

Regularity results

We now prove that the solution of problem (2.2) is Lipschitz continuous in space and time, and derive a lower bound on the partial derivative ∂u ∂x 2 .

Theorem 4 (Lipschitz regularity in space).

Assume (H1)-(H2) and that ||Du

0 || L ∞ (R 2 ) ≤ B 0 with B 0 > 0.
Then the solution of (2.2) is Lipschitz continuous in space and satisfies:

||Du(•,t)|| L ∞ (R 2 ) ≤ B(t), with B(t) = e C2t B 0 and C 2 = L c + L g + 5L 2 g .
Proof.

The function u is bounded and continuous on R 2 × [0,T ). We set

Φ ǫ (x,y,t) = B(t) |x -y| 2 + ǫ 2 1 2
and aim at proving that u(x,t)u(y,t) ≤ Φ ǫ (x,y,t).

Let us set

M = sup (x,y)∈R 2 ×R 2 , t∈[0,T ) u(x,t) -u(y,t) -Φ ǫ (x,y,t) .
Let us assume by contradiction that M > 0. Then we denote by M :

M = sup (x,y)∈R 2 ×R 2 , t∈[0,T ) u(x,t) -u(y,t) -Φ ǫ (x,y,t) - α 2 |x| 2 + |y| 2 - γ T -t .
For α, γ small enough, we have M ≥ M 2 > 0. The function u being bounded, the supremum is reached. Let (x, ȳ, t) be a point of maximum with obviously x = ȳ. Note that α 2 |x| 2 + |ȳ| 2 ≤ C (with a constant C depending only on u L ∞ ) and so lim

α→0 α x = lim α→0 α ȳ = 0.
Let us prove that t > 0. Assuming the contrary, we have:

0 < M 2 ≤u 0 (x) -u 0 (ȳ) -Φ ǫ (x, ȳ,0), ≤u 0 (x) -u 0 (ȳ) -B 0 |x -ȳ| 2 + ǫ 2 1 2 , ≤u 0 (x) -u 0 (ȳ) -B 0 |x -ȳ|,
which contradicts the assumptions on u 0 . A mere calculus gives:

p = D x Φ ǫ (x, ȳ, t) = B( t) (x -ȳ) |x -ȳ| 2 + ǫ 2 1 2 = -D y Φ ǫ (x, ȳ, t) = 0, ∂ t Φ ǫ (x, ȳ, t) = B ′ ( t) |x -ȳ| 2 + ǫ 2 1 2 = C 2 e C2 tB 0 |x -ȳ| 2 + ǫ 2 1 2 ,
and

A = D 2 Φ ǫ (x, ȳ, t) = B( t) U -U -U U , with U = |x -ȳ| 2 + ǫ 2 -1 2 I -|x -ȳ| 2 + ǫ 2 -3 2 (x -ȳ) ⊗ (x -ȳ).
Using the parabolic version of Ishii's lemma with Φ(x,y,t) = Φ ǫ (x,y,t) + γ Tt , for all η > 0, there exist τ 1 ,τ 2 ∈ R and X,Y ∈ S(2) such that:

τ 1 -τ 2 = B ′ ( t) |x -ȳ| 2 + ǫ 2 1 2 + γ (T -t) 2 , (τ 1 , p + α x,X + αI) ∈ P+ u(x, t), (τ 2 , p -α ȳ,Y -αI) ∈ P-u(ȳ, t), - 1 η + ||A|| I ≤ X 0 0 -Y ≤ A + ηA 2 .
So the following holds:

τ 1 ≤ c(x, t)|p + αx| -F * (x, p + α x,X + αI),
and

τ 2 ≥ c(ȳ, t)|p -αȳ| -F * (ȳ, p -α ȳ,Y -αI).
By substracting the two previous inequalities, it yields:

B ′ ( t) |x -ȳ| 2 + ǫ 2 1 2 + γ T 2 ≤c(x, t)|p + αx| -c(ȳ, t)|p -αȳ| + ∇g(x) -∇g(ȳ), p + ∇g(x),α x + ∇g(ȳ),α ȳ -g(x)H * (p + αx,X + αI) + g(ȳ)H * (p -αȳ,Y -αI), ≤α( c L ∞ + L g )(x + ȳ) + (c(x, t) -c(ȳ, t))|p| + L g B( t)|x -ȳ| 2 (|x -ȳ| 2 + ǫ 2 ) 1 2 -g(x)[H * (p + αx,X + αI) -H * (p,X)] + g(ȳ)[H * (p -αȳ,Y -αI) -H * (p,Y )] -g(x)H(p,X) + g(ȳ)H(p,Y ). (2.3) We choose η = 1 B( t)
|x -ȳ| 2 + ǫ 2 1/2 > 0, so A + ηA 2 can be written:

A + ηA 2 = B( t) C -C -C C with C =3 |x -ȳ| 2 + ǫ 2 -1 2 I -5 |x -ȳ| 2 + ǫ 2 -3 2 (x -ȳ) (x -ȳ) + 2|x -ȳ| 2 |x -ȳ| 2 + ǫ 2 -5 2 (x -ȳ) (x -ȳ).
Moreover, denoting by E(p) the matrix defined by

E(p) = I - p ⊗ p |p| 2 , p ∈ R 2 - {0 R 2 }, one has: g(x)trace(E(p)X) -g(ȳ)trace(E(p)Y ) =trace      g(x)E(p) g(x)g(ȳ)E(p) g(x)g(ȳ)E(p) g(ȳ)E(p) G X 0 0 -Y     
.

The matrix G is symmetric semi-positive definite so it can be decomposed into

G = χχ T . This implies that trace G X 0 0 -Y = trace χ T X 0 0 -Y χ , so trace G X 0 0 -Y ≤ B( t)trace G C -C -C C , ≤ B( t) g(x) -g(ȳ) 2 trace E(p)C , ≤ B( t)L 2 g |x -ȳ| 2 trace E(p)C . A mere calculus gives that trace E(p)C ≤ 3 |x -ȳ| 2 + ǫ 2 -1 2 + 2|x -ȳ| 4 |x -ȳ| 2 + ǫ 2 -5 2 , so finally g(x)trace E(p)X -g(ȳ)trace E(p)Y ≤ 3L 2 g B( t)|x -ȳ| 2 |x -ȳ| 2 + ǫ 2 -1 2 + 2L 2 g B( t)|x -ȳ| 6 |x -ȳ| 2 + ǫ 2 -5 2 , ≤ 5L 2 g B( t)|x -ȳ| 2 |x -ȳ| 2 + ǫ 2 -1 2 .
Thus, from relation (2.3),

γ T 2 + B ′ ( t) |x -ȳ| 2 + ǫ 2 1 2 ≤α( c L ∞ + L g )(|x| + |ȳ|) + (L c + L g + 5L 2 g )B( t) |x -ȳ| 2 |x -ȳ| 2 + ǫ 2 1 2 -g(x)[H * (p + αx,X + αI) -H * (p,X)] + g(ȳ)[H * (p -αȳ,Y -αI) -H * (p,Y )]. (2.4) Using the fact that B ′ (t) = (L c + L g + 5L 2 g )B(t), we deduce that: γ T 2 ≤α( c L ∞ + L g )(|x| + |ȳ|) -g(x)[H * (p + αx,X + αI) -H * (p,X)] + g(ȳ)[H * (p -αȳ,Y -αI) -H * (p,Y )].
It is easy to see that |p| ≤ B(T ). Also, it can be checked that:

- 3 ǫ B(T )I ≤ X 0 0 -Y ≤ 10 ǫ B(T )I.
We let α go to 0 in (2.4): p, X and Y are bounded independently of α so we can extract a convergent subsequence p → p ∞ , X → X ∞ and Y → Y ∞ . Using the continuity of u and the fact that u(x, t)u(ȳ, t) ≥ γ T -t ≥ γ T , we deduce that p ∞ = 0. Sending α to 0 in the previous inequality and using the fact that g is bounded, it yields: γ T 2 ≤ 0, which is absurd. So u(x,t)u(y,t) ≤ Φ ǫ (x,y,t)

and letting ǫ tend to 0, we obtain:

u(x,t) -u(y,t) ≤ B(t)|x -y|.
Exchanging x and y yields:

|u(x,t) -u(y,t)| ≤ B(t)|x -y|. Proposition 2 (Lipschitz regularity in time). Let u 0 ∈ W 2,∞ (R 2 ).
Then the solution u of (2.2) is Lipschitz continuous in time and satisfies:

u t (x,•) L ∞ (0,T ) ≤ C 1 + L ct T 0 B(s)ds,
where C 1 is defined in Proposition 1.

Proof. We recall, from Theorem 3, that

|u(x,t) -u 0 (x)| ≤ C 1 t.
Let h > 0 be such that t + h ≤ T . We denote by

M = sup x∈R 2 |u(x,h) -u 0 (x)| ≤ C 1 h and u h (x,t) = u(x,t + h) -L ct h t+h 0 B(s)ds -M.
Then u h is still a sub-solution of (2.2). Indeed, formally, we have

(u h ) t (x,t) =u t (x,t + h) -L ct hB(t + h), =c(x,t + h)|Du(x,t + h)| -F (x,Du(x,t + h),D 2 u(x,t + h)) -L ct hB(t + h), ≤c(x,t)|Du h (x,t)| -F (x,Du h (x,t),D 2 u h (x,t)).
Hence, using the comparison principle, one has u h (x,t) ≤ u(x,t), that is

u(x,t + h) -u(x,t) ≤ M + L ct h t+h 0 B(s)ds ≤ C 1 h + L ct h T 0 B(s)ds.
Similarly, one obtains that

|u(x,t + h) -u(x,t)| ≤ C 1 h + L ct h T 0 B(s)ds.
In conclusion, u is Lipschitz continuous in time with Lipschitz constant equal to C 1 + L ct T 0 B(s)ds. We now turn to the prescribing of a lower bound on the gradient. We need the following lemma:

Lemma 1 (Estimate on the curvature). Let (p,Y ) ∈ R 2 × S 2 such that ∃τ ∈ R such that (τ,p,Y ) ∈ P-u(y,t) (respectively (τ,p,Y ) ∈ P+ u(y,t)). Then -H(p,Y ) ≤ C 1 + L ct T B(T ) + ||c|| L ∞ (R 2 ×[0,T )) B(T ) + ||∇g|| L ∞ (R 2 ) B(T ) δ =: C 3 , resp. H(p,Y ) ≤ C 3 ,
where C 1 denotes the Lipschitz constant in time of u and B(•) is defined in Theorem 4.

Proof. We only do the proof for (τ,p,Y ) ∈ Pu(y,t), the other one being similar. By definition, τc(y,t)|p| + g(y)H(p,Y ) -∇g(y),p ≥ 0.

That is,

g(y)H(p,Y ) ≥ -τ + c(y,t)|p| + ∇g(y),p . But -τ ≥ -C 1 -L ct T B(T ) and |p| ≤ B(t) ≤ B(T ). Consequently, g(y)H(p,Y ) ≥ -C 1 -L ct T B(T ) -||c|| L ∞ (R 2 ×[0,T )) B(T ) -||∇g|| L ∞ (R 2 ) B(T ),
and

-H(p,Y ) ≤ C 1 + L ct T B(T ) + ||c|| L ∞ (R 2 ×[0,T )) B(T ) + ||∇g|| L ∞ (R 2 ) B(T ) δ .
Theorem 5 (Lower bound on the gradient).

Let u 0 ∈ W 2,∞ (R 2 ) be such that ∂u 0 ∂x 2 ≥ b 0 with b 0 > 0.
Then the solution of (2.2) satisfies:

∂u ∂x 2 ≥ b(t), with b(t) = b 0 -2 L c + L g B 0 C 2 e C2t -1 -L g C 3 t
, where C 2 and C 3 are defined respectively in Theorem 4 and Lemma 1.

Proof. We aim to prove that for

x n < y n , u(x ′ ,y n ,t) -u(x ′ ,x n ,t) ≥ b(t)(y n -x n ).
In this purpose, let us introduce

M = sup (x ′ ,xn,yn,t)|xn<yn {u(x ′ ,x n ,t) -u(x ′ ,y n ,t) -b(t)(x n -y n )},
and let us prove that M ≤ 0. We argue by contradiction. Let us assume that M > 0. Then we set:

M = sup (x ′ ,xn,y ′ ,yn,t) | xn<yn u(x ′ ,x n ,t) -u(y ′ ,y n ,t) -b(t)(x n -y n ) - |x ′ -y ′ | 2 2ǫ - γ T -t - α 2 |x| 2 + |y| 2 .
For α and γ small enough, M ≥ M 2 > 0. Moreover, the solution u being bounded, the supremum is reached in ( x′ , xn , ȳ′ , ȳn , t). Let us prove that t = 0. By contradiction, let us assume that t = 0. We then have:

0 < M 2 ≤ M ≤u 0 ( x′ , xn ) -u 0 ( ȳ′ , ȳn ) -b 0 ( xn -ȳn ) - | x′ -ȳ′ | 2 2ǫ , ≤B 0 | x′ -ȳ′ | - | x′ -ȳ′ | 2 2ǫ + u 0 ( ȳ′ , xn ) -u 0 ( ȳ′ , ȳn ) -b 0 ( xn -ȳn ).
A study of the function h :

r → B 0 r - r 2 2ǫ
gives us that it is bounded by

B 2 0 ǫ 2 . Thus, 0 < M 2 ≤ M ≤ B 2 0 ǫ 2 + u 0 ( ȳ′ , xn ) -u 0 ( ȳ′ , ȳn ) -b 0 ( xn -ȳn ),
where we have that u 0 ( ȳ′ , xn )u 0 ( ȳ′ , ȳn )b 0 ( xnȳn ) ≤ 0 according to the assumptions on u 0 . We clearly raise a contradiction for ǫ small enough, so t = 0.

Let us now prove that xn = ȳn . We have:

0 < M 2 ≤ M =u( x′ , xn , t) -u( ȳ′ , xn , t) + u( ȳ′ , xn , t) -u( ȳ′ , ȳn , t) -b( t)( xn -ȳn ) - | x′ -ȳ′ | 2 2ǫ - γ T - t - α 2 |x| 2 + |ȳ| 2 , ≤B( t)| x′ -ȳ′ | - | x′ -ȳ′ | 2 2ǫ + u( ȳ′ , xn , t) -u( ȳ′ , ȳn , t) -b( t)( xn -ȳn ), ≤ B( t) 2 ǫ 2 + u( ȳ′ , xn , t) -u( ȳ′ , ȳn , t) -b( t)( xn -ȳn ).
Thus, for ǫ small enough,

u( ȳ′ , xn , t) -u( ȳ′ , ȳn , t) -b( t)( xn -ȳn ) ≥ M 3 .
Consequently, xn = ȳn .

We consider Φ(x,y,t

) = b(t)(x n -y n ) + |x ′ -y ′ | 2 2ǫ + γ T -t
and we set p = x′ -ȳ′ .

We use the parabolic version of Ishii's lemma and we set:

                     p 1 = D x Φ(x, ȳ, t) = p 2 = -D y Φ(x, ȳ, t) = ǫ -1 p b( t) = 0 for T small enough, A = D 2 Φ(x, ȳ, t) =       1 ǫ 0 - 1 ǫ 0 0 0 0 0 - 1 ǫ 0 1 ǫ 0 0 0 0 0      
.

Then for all η > 0, there exist X et Y such that:

                           τ 1 -τ 2 = b ′ ( t)( xn -ȳn ) + γ (T -t) 2 , (τ 1 ,p 1 + αx,X + αI) ∈ P+ u(x, t), (τ 2 ,p 1 -αȳ,Y -αI) ∈ P-u(ȳ, t), - 1 η + ||A|| I ≤ X 0 0 -Y ≤ A + ηA 2 =       1 ǫ + 2η ǫ 2 0 - 1 ǫ - 2η ǫ 2 0 0 0 0 0 - 1 ǫ - 2η ǫ 2 0 1 ǫ + 2η ǫ 2 0 0 0 0 0       .
Because u is a subsolution and v is a supersolution,

τ 1 -c(x, t)|p 1 + α x| + F * (x,p 1 + α x,X + αI) ≤ 0, τ 2 -c(ȳ, t)|p 1 -α ȳ| + F * (ȳ,p 1 -α ȳ,Y -αI) ≥ 0.
Then, substracting the two previous inequalities yields:

b ′ ( t)( xn -ȳn ) + γ T 2 ≤c(x, t)|p 1 + α x| -c(ȳ, t)|p 1 -α ȳ| + g(ȳ)H * (p 1 -α ȳ,Y -αI) -g(x)H * (p 1 + α x,X + αI) + ∇g(x) -∇g(ȳ),p 1 + ∇g(ȳ),αȳ + ∇g(x),αx , ≤α( c L ∞ + L g )(|x| + |ȳ|) + c(x, t) -c(ȳ, t) |p 1 | + g(ȳ)[H * (p 1 -α ȳ,Y -αI) -H * (p 1 ,Y )] + g(x)[H * (p 1 ,X) -H * (p 1 + α x,X + αI)] + g(ȳ)H * (p 1 ,Y ) -g(x)H * (p 1 ,X) + L g |x -ȳ||p 1 |.
Let us assume that g(ȳ) ≤ g(x). In this case,

g(ȳ)H(p 1 ,Y ) -g(x)H(p 1 ,X) =(g(x) -g(ȳ)) ≥0 (-H(p 1 ,Y ) ≤C3 ) + g(x)(H(p 1 ,Y ) -H(p 1 ,X)) ≤0 since X ≤ Y , ≤C 3 L g |x -ȳ|.
In the case where g(ȳ) ≥ g(x), we obtain the same result using the inequality H(p 1 ,X) ≤ C 3 . We then have:

b ′ ( t)( xn -ȳn ) + γ T 2 ≤α( c L ∞ + L g )(|x| + |ȳ|) + C 3 L g (| x′ -ȳ′ | + ȳn -xn ) + (L c + L g ) | x′ -ȳ′ | 2 ǫ + b( t)| x′ -ȳ′ | + | x′ -ȳ′ | ǫ ( ȳn -xn ) + b( t)( ȳn -xn ) + g(ȳ)[H * (p 1 -α ȳ,Y -αI) -H * (p 1 ,Y )] + g(x)[H * (p 1 ,X) -H * (p 1 + α x,X + αI)].
Moreover, since u is B(t)-Lipschitz continuous in space, we have

|p 1 | ≤ B( t), hence | x′ -ȳ′ | ≤ B( t)ǫ. Thus, b ′ ( t)( xn -ȳn ) + γ T 2 ≤α( c L ∞ + L g )(|x| + |ȳ|) + C 3 L g (B(T )ǫ + ȳn -xn ) + (L c + L g ) B(T ) 2 ǫ + b 0 B(T )ǫ + B( t)( ȳn -xn ) + b( t)( ȳn -xn ) + g(ȳ)[H * (p 1 -α ȳ,Y -αI) -H * (p 1 ,Y )] + g(x)[H * (p 1 ,X) -H * (p 1 + α x,X + αI)].
Taking ǫ sufficiently small, it yields:

b ′ ( t)( xn -ȳn ) + γ 2T 2 ≤α( c L ∞ + L g )(|x| + |ȳ|) + C 3 L g (ȳ n -xn ) + (L c + L g )(B( t)( ȳn -xn ) + b( t)( ȳn -xn )) + g(ȳ)[H * (p 1 -α ȳ,Y -αI) -H * (p 1 ,Y )] + g(x)[H * (p 1 ,X) -H * (p 1 + α x,X + αI)], ≤α( c L ∞ + L g )(|x| + |ȳ|) + (2B( t)(L c + L g ) + C 3 L g )( ȳn -xn ) + g(ȳ)[H * (p 1 -α ȳ,Y -αI) -H * (p 1 ,Y )] + g(x)[H * (p 1 ,X) -H * (p 1 + α x,X + αI)]. But b ′ ( t) = -2B( t)( ∇c L ∞ + L g ) -C 3 L g so, γ 2T 2 ≤α( c L ∞ + ∇g L ∞ )(|x| + |ȳ|) + g(ȳ)[H * (p 1 -α ȳ,Y -αI) -H * (p 1 ,Y )] + g(x)[H * (p 1 ,X) -H * (p 1 + α x,X + αI)]. (2.5) 
Remark that X and Y are bounded independently of α from the matrix inequality. This is also the case for p 1 . So there exits

α n → 0 such that t → t ∞ , p 1 → p ∞ and (X,Y ) → (X ∞ ,Y ∞ ). Also, if we set M α = sup (x ′ ,xn,y ′ ,yn,t) | xn<yn u(x ′ ,x n ,t) -u(y ′ ,y n ,t) -b(t)(x n -y n ) - |x ′ -y ′ | 2 2ǫ - γ T -t - α 2 |x| 2 + |y| 2 , =u( x′ , xn , t) -u( ȳ′ , ȳn , t) -b( t)( xn -ȳn ) - | x′ -ȳ′ | 2 2ǫ - γ T - t - α 2 |x| 2 + |ȳ| 2 ,
obviously M α ≤ M 0 and (M α ) α increases when α → 0, so (M α ) α is convergent and we denote by L its limit. To finish, it can be easily seen that M α 2 -M α ≥ α 4 |x| 2 + |ȳ| 2 ≥ 0. So by letting α tend to 0, it follows that lim 

The non local problem

The space BV (R 2 ) is the space of bounded variation functions. Let us define by L 1 unif (R 2 ) the space:

L 1 unif (R 2 ) = f : R 2 → R, ||f || L 1 unif (R 2 ) < ∞ , with ||f || L 1 unif (R 2 ) = sup x∈R 2 Q(x)
|f |, and with Q(x) the unit square centered at x:

Q(x) = x ′ ∈ R 2 , |x i -x ′ i | ≤ 1 2 ,
and by L ∞ int (R 2 ) the space:

L ∞ int (R 2 ) = f : R 2 → R, ||f || L ∞ int (R 2 ) < ∞ , with ||f || L ∞ int (R 2 ) = R 2 ||f || L ∞ (Q(x))
Theorem 6 (Short time existence and uniqueness). Assume (H1)-(H2) and let u 0 : R 2 → R be a W 2,∞ (R 2 ) function such that:

|Du 0 | < B 0 in R 2 and ∂u 0 ∂x n > b 0 > 0 in R 2 . Let c 0 satisfies c 0 ∈ L ∞ int (R 2 ) ∩ BV (R 2 ).
Then there exists a unique viscosity solution of problem (1.1) in R 2 × [0,T * ) with:

T * = inf     ln b 0 C 2 8B 0 (|c 0 | BV + L g ) + 1 C 2 , b 0 4C 4 , b 0 16B 0 ||c 0 || L ∞ int (R 2 ) , ln2 C 2     ,
where

C 4 = L g δ (2C 1 + 2 c 0 L 1 B 0 + 2 ∇g L ∞ B 0 ) and C 2 = |c 0 | BV + 5L 2 g + L g .
Moreover, the solution satisfies:

|Du(x,t)| ≤ 2B 0 on R 2 × [0,T * ), ∂u ∂x 2 (x,t) > b 0 2 > 0 on R 2 × [0,T * ), |u t (x,t)| ≤ 2C 1 on R 2 × [0,T * ).
We need the three following lemmata.

Lemma 2 (Estimate on the characteristic functions).

Let u 1 ∈ C(R 2 ) satisfying ∂u 1 ∂x 2 ≥ b
in the distribution sense for some b > 0 and u 2 ∈ L ∞ loc (R 2 ) satisfying the same condition. Then, we have the following estimate:

||[u 2 ] -[u 1 ]|| L 1 unif ≤ 2 b ||u 2 -u 1 || L ∞ . Lemma 3 (Convolution inequality). For every f ∈ L 1 unif (R 2 ) and g ∈ L ∞ int (R 2 ), the convolution product f * g is bounded and satisfies: ||f * g|| L ∞ (R 2 ) ≤ ||f || L 1 unif (R 2 ) ||g|| L ∞ int (R 2 ) .
A proof of these two lemmata can be found respectively in [START_REF] Alvarez | A convergent scheme for a nonlocal Hamilton-Jacobi equation modeling dislocation dynamics[END_REF] and [START_REF] Alvarez | Dislocation Dynamics: short time existence and uniqueness of the solution[END_REF].

Lemma 4 (Stability of the solution with respect to the velocity).

Let T > 0. We consider for i = 1,2 two different equations:

u i t = c i (x,t)|Du i | -F (x,Du i ,D 2 u i ) in R 2 × (0,T ), u i (x,0) = u 0 (x), (3.6) 
c i , u 0 and F satisfying the previous assumptions. Then, for every t ∈ [0,T ), we have:

||u 1 (•,t) -u 2 (•,t)|| L ∞ (R 2 ) ≤ ||c 1 -c 2 || L ∞ (R 2 ×(0,T )) T 0 B(s)ds,
where u i are the solutions of (3.6),

B(t) = B 0 e (Lc+5L 2 g +Lg )t with L c = sup i L c i . Proof. We set K = ||c 1 -c 2 || L ∞ (R 2 ×(0,T )) . We remark that u 1 is a subsolution of u t -c 2 (x,t)|Du| + F (x,Du,D 2 u) -KB(t) = 0.
Indeed, we have:

u 1 t -c 2 (x,t)|Du 1 | + F (x,Du 1 ,D 2 u 1 ) =c 1 (x,t)|Du 1 | -F (x,Du 1 ,D 2 u 1 ) -c 2 (x,t)|Du 1 | + F (x,Du 1 ,D 2 u 1 ), ≤||c 1 -c 2 || L ∞ (R 2 ×(0,T )) B(t), ≤K B(t).
This differential inequality holds in the viscosity sense. Moreover, the function

u 2 + K t 0 B ( 
s)ds is solution of the same problem. By the comparison principle, we deduce that:

u 1 ≤ u 2 + K t 0 B(s)ds.
Switching the role of u 1 and u 2 , it yields:

||u 1 (•,t) -u 2 (•,t)|| L ∞ (R 2 ) ≤ ||c 1 -c 2 || L ∞ (R 2 ×(0,T )) t 0 B(s)ds.
It now brings us to the proof of Theorem 6.

Proof of Theorem 6. We define the space 

E =      u ∈ L ∞ loc (R 2 × [0,T * )) s.t. |Du(x,t)| ≤ 2B 0 ∂u ∂x n (x,t) ≥ b 0 2 |u t (x,t)| ≤ 2C 1      , where C 1 is defined in Proposition 1. For u ∈ E, we set c(x,t) = (c 0 * [u(•,t)])(x).
≤ ||c 0 || L ∞ int ||[u(•,t)] -[u(•,s)]|| L 1 unif (R 2 ) , ≤ 4||c 0 || L ∞ int b 0 ||u(•,t) -u(•,s)|| L ∞ (R 2 ) , ≤ 8C 1 ||c 0 || L ∞ int b 0 |t -s|.
For u ∈ E, we then define v = Φ(u) as the unique viscosity solution of:

v t = (c 0 * [u])|Dv| -F (x,Dv,D 2 v) in R 2 × (0,T * ), v(x,t = 0) = u 0 (x) in R 2 .
We show that Φ : E → E is a contraction. First, we show that Φ is well-defined. This two inequalities are true owing to the choice of T * .

It thus remains to be shown that Φ is a contraction. For v i = Φ(u i ), according to Lemmata 3 and 4, we have:

||v 2 -v 1 || L ∞ (R 2 ×(0,T * )) ≤ 2B 0 T * ||c 0 * [u 2 ] -c 0 * [u 1 ]|| L ∞ (R 2 ×(0,T * )) , ≤ 2B 0 T * ||c 0 || L ∞ int sup t∈(0,T * ) ||[u 2 (•,t)] -[u 1 (•,t)]|| L 1 unif , ≤ 8B 0 T * b 0 ||c 0 || L ∞ int ||u 2 -u 1 || L ∞ (R 2 ×(0,T * )) , ≤ 1 2 ||u 2 -u 1 || L ∞ (R 2 ×(0,T * )) .
In conclusion, Φ is a contraction on E which is a closed set for the L ∞ -topology. So there exists a unique viscosity solution to the problem in E on (0,T * ).

We are now able to prove the short time existence and uniqueness result of Problem (1.1).

Proof of Theorem 1. We recall that c 0 :

   R 2 → R x → 4µ d 2 2 - 2 d 2 ||x|| 2 2 exp - ||x|| 2 2 d 2
.

It is easy to check that c 0 ∈ L 1 (R 2 ). It is also C 1 (R 2 ) so its total variation J(c 0 ) is defined by:

J(c 0 ) = R 2 |∇c 0 |dx.
It is obvious that J(c 0 ) < +∞. Consequently, c 0 ∈ BV (R 2 ). To finish, using inequalities, it can be proved that c 0 ∈ L ∞ int (R 2 ). Hence we can apply Theorem 6 to get the desired result.
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 1 Figure 1: Segmentation of the synthetic image with two disks when no topological constraint is enforced: the contour has split into two components. Iterations 0, 140, 180.

Figure 2 :

 2 Figure 2: Segmentation of the synthetic image with two disks when topological constraints are applied. Iterations 0, 180, 210.

Figure 3 :

 3 Figure 3: Geometrical characterization of points in a zone where the curve is to split, merge or have a contact point.
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 22 α n to 0 in (2.5) and using the fact that lim α→0 αx = lim α→0 αȳ = 0, p 1 = 0 and p ∞ = 0, it yields: γ 2T 2 ≤ 0, which is absurd.

  This function is bounded, Lipschitz continuous in space (with L c = |c 0 | BV ) and time (withL ct = 8C1 c0 L ∞ int b0 ). Indeed, ||c|| L ∞ (R 2 ×[0,T * )) ≤ sup t∈R ||c 0 || L 1 ||[u(•,t)]|| L ∞ (R 2 ) , ≤ ||c 0 || L 1 .Moreover, for every t,||Dc(•,t)|| L ∞ (R 2 ) = ||Dc 0 * [u(•,t)]|| L ∞ (R 2 ) , ≤ |c 0 | BV ||[u(•,t)]|| L ∞ (R 2 ) , ≤ |c 0 | BV .Finally, for 0 < t,s < T * :|c(x,t)c(x,s)| = |c 0 * [u(•,t)](x)c 0 * [u(•,s)](x)|, = |c 0 * ([u(x,t)] -[u(x,s)])(x)|,
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