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Abstract

A common operation in many geometry processing algorithms consists in finding correspondences between pairs

of shapes by finding structure-preserving maps between them. A particularly useful case of such maps is isometries,

which preserve geodesic distances between points on each shape. Although several algorithms have been proposed

to find approximately isometric maps between a pair of shapes, the structure of the space of isometries is not well

understood. In this paper, we show that under mild genericity conditions, a single correspondence can be used

to recover an isometry defined on entire shapes, and thus the space of all isometries can be parametrized by one

correspondence between a pair of points. Perhaps surprisingly, this result is general, and does not depend on

the dimensionality or the genus, and is valid for compact manifolds in any dimension. Moreover, we show that

both the initial correspondence and the isometry can be recovered efficiently in practice. This allows us to devise

an algorithm to find intrinsic symmetries of shapes, match shapes undergoing isometric deformations, as well as

match partial and incomplete models efficiently.

1. Introduction

Finding structure-preserving maps between shapes is one of

the most common operations in geometry processing ap-

plications, including shape matching, shape retrieval, and

recognition. High quality correspondences are also essen-

tial in morphing, and shape interpolation [KMP07]. Further-

more, many measures of similarity between shapes are de-

fined through the quality of the maps between them [MS05].

A particularly useful type of maps between shapes is an

intrinsic isometry, which preserves pairwise geodesic dis-

tances between points. Since many real-world deformations,

such as articulated motion, are approximately isometric,

finding near isometric maps can have practical significance

in non-rigid shape comparison and recognition, with appli-

cations in manufacturing and medical imaging [SGT98].

At first sight, finding an isometric map between two shapes

is complicated by the fact that the space of all possible maps

can be quite large. Moreover, even if the map is given, di-

rectly verifying if it is an isometry, can potentially have

quadratic complexity since distance preservation should be

enforced at all pairs of points. Nevertheless, isometric maps

provide a very rich structure that makes isometric shape

matching tractable. For example, many shape matching al-

gorithms (e.g. [BBK06, HAWG08]) implicitly assume that

the knowledge of a small number of correspondences can

be extended to a full isometry. Similarly, verifying distance

Figure 1: Matching between a full and a partial model. Red

is the correspondence found by our algorithm, and green are

the interpolated correspondences using our method.

preservation on a small number of pairs of points can im-

prove efficiency and robustness without sacrificing accuracy,

[TBW+09]. However, the precise nature of these constraints,

such as the minimal number of correspondences necessary to

recover the full isometry, is not well understood.

In this paper, we make a step towards analyzing and exploit-

ing the structure of isometries between a pair of shapes, by

showing that under mild genericity conditions the knowl-

edge of a single correspondence can be used to recover an

isometry defined on entire shapes. We first show that the im-

age of every point is characterized by the preservation of

the heat kernel to the given correspondence points. Further-

more, we prove that generically, any map that preserves the

heat kernel to a fixed point is an isometry. This allows us
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to quickly check whether a potential correspondence can be

extended to a full isometry, without verifying all pairwise

geodesic distances. Using these observations, we devise an

efficient algorithm which can be used to (1) find intrinsic

symmetries of shapes, (2) match shapes undergoing isomet-

ric deformations, and (3) match partial and incomplete mod-

els efficiently. We also demonstrate that local descriptors and

multiple landmark correspondences can be naturally incor-

porated into our method to improve robustness and accuracy.

1.1. Related Work

Finding correspondences between two possibly deformed

shapes is a very well-studied problem in geometry process-

ing with a wealth of work spanning several decades. We give

a brief overview of the work most closely related to ours,

in particular focusing on algorithms aimed at finding dense

maps between pairs of non-rigid shapes.

Several variants of the classical ICP algorithm have been

proposed to match deformable shapes when the deforma-

tion between them is small (e.g. [ACP03,WJH+07,LSP08]).

These methods typically introduce a regularization term that

allows for small elastic deformation of the shape, but cannot

be easily extended to handle shapes in arbitrary poses.

Bronstein et al. [BBK06] propose an optimization-based

technique to find as-isometric-as-possible mappings of a se-

lected number of points from the source shape to the tar-

get shape. Similar ideas have been exploited by Huang et al.

[HAWG08] who extend a sparse set of correspondences to a

dense map using geodesic landmark coordinates and Tevs et

al. [TBW+09] who use a robust random sampling technique

to find near-isometric matches. Lasowski et al. [LTSW09]

sub-sample the shape to a small set of points and formulate

a probability distribution over all possible isometric matches

between samples, revealing the symmetry structure of the

object. Ahmed and colleagues [ATR+08] follow a simi-

lar paradigm, by first matching a sparse set of features ex-

tracted from a high-resolution video stream, and then obtain

dense correspondences using Laplacian diffusion. Zhang et

al. [ZSCO+08] perform a combinatorial search on the space

of feature matches and use a non-rigid shape deformation

technique [LSLCO05] to interpolate correspondences and

measure distortion. All of the above techniques use the in-

tuition that a small number of landmark correspondences is

sufficient to obtain a dense map that preserves all pairwise

distances. In this paper, we formalize this intuition by show-

ing that, generically, the isometric map between shapes can

be efficiently recovered from a single correspondence.

Spectral invariants such as the eigenfunctions of the

Laplace-Beltrami operator have been used for near-isometric

shape matching by Mateus et al. [MHK+08] and Jain et

al. [JZvK07] as well as for segmentation [dGGV08, Reu10]

and intrinsic symmetry detection [OSG08] among many oth-

ers. In this work we employ spectral ideas, and in particular

the heat kernel, to parametrize and recover isometric maps.

Note that in the case of rigid matching, the isometry group

is the Euclidean group E(3), where three correspondences

constrain all degrees of freedom. This observation has led to

extremely robust shape matching methods, e.g. [AMCO08].

Perhaps most closely related to our method is the remark-

able work by Lipman and Funkhouser [LF09], who pro-

pose a shape matching method for genus zero surfaces. Their

method is based on the observation that for such surfaces, the

isometry group is a subgroup of the Möbius group, which

can be parametrized by three distinct correspondences. In

contrast, our technique is applicable to shapes of any genus

and dimension, satisfying mild genericity conditions. Fur-

thermore, unlike the Möbius map, which is conformal, we

operate in the space of isometric maps, reducing the mini-

mum number of correspondences and allowing us to provide

a simple sufficient condition for a map to be an isometry.

Our work is also closely related to shape parametrization

techniques that rely on Laplace-Beltrami operator and the

heat kernel [BBG94, JMS10]. Unlike these techniques, our

method allows to define a canonical, global embedding of

the shape, which is essential for shape matching.

Our use of the heat kernel and theoretical results are also

related to the Heat Kernel Signature (HKS) of Sun et al.

[SOG09], who prove that a homeomorphism between two

compact manifolds that preserves the diagonal of the heat

kernel at each point must be an isometry. Unfortunately, the

regularization condition of continuity is rather difficult to

enforce in practice. We discuss the relation of our results

to [SOG09] in detail in Section 3.

Finally our isometry verification step follows the paradigm

proposed in geometric hashing [WR97], and used in [LF09].

2. Heat Kernel and Heat Kernel Map

The main ingredient for our method is the heat kernel. In

this Section we briefly overview its properties and define the

Heat Kernel Map, used in our isometric matching algorithm.

2.1. Mathematical Background

Given a compact Riemannian manifold M without boundary,

let u(x, t) : M ×R
+ → R

+ be the amount of heat at a point

x∈M at time t, for some initial heat distribution f : M →R
+

at time 0. Then, u(x, t) satisfies the heat equation:

∂u

∂t
= −∆Mu, and lim

t→0
u(x, t) = f (x)

where ∆M is the Laplace-Beltrami operator of M. The solu-

tion to the heat equation at time t given f , can be computed

through the heat operator Ht : L2 → L2, where L2 is the space

of all smooth, square integrable functions on M:

u(x, t) = (Ht f )(x) =
(

e
−t∆M f

)

(x),

where the e−t∆M is the operator exponential. An exposition

of these results can be found in e.g. [Gri06].

c© 2010 The Author(s)
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The heat kernel on M is the unique function kM
t (x,y) : R

+×
M×M → R

+, such that for all f ∈ L2, x ∈ M, t > 0:

u(x, t) =
(

e
−t∆M f

)

(x) =
Z

M
k

M
t (x,y) f (y)dy.

Intuitively, the value of the heat kernel kM
t (x,y) measures the

amount of heat transferred from point x to point y in time t.

The heat kernel has an alternative interpretation as the tran-

sition density function of Brownian motion on M (see e.g.

[Hsu02] for details). If W x
t is the Brownian motion on M

starting at point x, then the probability P(W x
t ∈ C) that at

time t,W x
t lies inside an integrable set C ⊆ M, is given by:

P(W x
t ∈C) =

Z

C
kt(x,y)dy.

This interpretation makes apparent the richness of the in-

formation contained in the heat kernel. Since the transition

probability is related not only to the shortest path between

two points, but is rather a weighted average over all paths

possible in time t, the heat kernel intuitively contains in-

formation beyond the shortest path distance between two

points. We will formalize this intuition in Section 3.

The heat kernel has many nice properties, which have made

it a useful tool in several geometry processing applications

[SOG09, Mém09, GBAL09]. The properties of the heat ker-

nel that are most relevant to our work are that the heat kernel

is an isometry invariant (intrinsic) and that it is multiscale.

Lemma 2.1 Let M and N be two compact, connected Rie-

mannian manifolds without boundary. A map T from M to

N is an isometry if and only if kM
t (x,y) = kN

t (T (x),T (y)) for

all x,y ∈ M, t > 0.

The invariance of the heat kernel under isometries follows

from the intrinsic nature of the Laplace-Beltrami operator.

The converse follows from Varadhan’s Lemma (e.g. [Gri06])

which asserts that for every pair of points x,y in M, the

geodesic distance d2(x,y) = −4limt→0 t logkM
t (x,y). Thus,

any map that preserves the heat kernel must be distance-

preserving. Furthermore, we show in the Appendix that any

such map must be surjective and thus an isometry.

The multiscale property of the heat kernel implies that for

small values of t, the heat kernel kM
t (x, ·) can be well approx-

imated by the heat kernel of a small geodesic neighborhood

of the point x. The authors of [SOG09] have demonstrated

this property empirically, and cited theoretical results that

suggest this behavior for either infinitesimal t or for large t

as long as the neighborhood is large enough.

Another relation between t and the size of the neighborhood

of x was obtained by Grigor’yan [Gri99], who showed that

if M is a non-compact Riemannian geodesically complete

manifold satisfying bounded volume growth conditions, and

W t
x is the Brownian motion on M starting at x, the proba-

bility that the Brownian motion W t
x at time t belongs to the

geodesic ball B(x,
√

cnt log t) goes to 1 as t grows to infinity.

Figure 2: Expected geodesic distance E
(

x,d(W t
x )

)

between

a point x and the Brownian motion W t
x starting at x.

This suggests (but does not prove) that the heat kernel, which

is the transition density function of the Brownian motion, is

determined by the neighborhood of x with geodesic radius

O(
√

cnt log t). We will use this intuition when extending our

isometric matching to handle incomplete shapes.

As an illustration, we show in Figure 2 the evolution of the

expected value of the geodesic distance of Brownian mo-

tion from the source point x as a function of time, for three

source points on a mesh. Note that this expected value is

given simply as E(d(x,W t
x )) =

R

M d(x,y)kt(x,y)dy. More-

over, by Markov’s inequality, we can bound the amount of

heat contained outside of a ball B(x,r) around x by:
Z

M\B(x,r)
kt(x,y)dy ≤ 1

r

Z

M
d(x,y)kt(x,y)dy.

It is interesting to note that the graph of E(d(x,W t
x )) for

small time values allows us to distinguish source points on

a saddle from source points in a positively curved area. For

the same shape as in Figure 2, and a few source points x, we

computed numerically the smallest radius R such that 90% of

the heat distribution kM
t (x, .) is contained within the geodesic

ball B(x,R). If we let M′ be the geodesic ball B(x,R), the

L2 difference between the restrictions of the heat distribu-

tions kM
t/2(x, .) and kM′

t/2(x, .) to the ball B(x,R) remains low

— consistently smaller than 2%.

Note that some remarks from the point of view of homoge-

nization of PDEs, made in [Mém09] further attempt to jus-

tify the interpretation of t as a geometric scale.

2.2. Heat Kernel Map

Given a compact manifold M and a fixed source point p, we

define the Heat Kernel Map ΦM
p (x) of any point x ∈ M:

ΦM
p : M → F, ΦM

p (x) = k
M
t (p,x),

where F is the space of functions from R
+ to R

+. Thus, ΦM
p

associates with every point x ∈ M a real-valued function of

one parameter t given by kM
t (p,x). Note that the Heat Kernel

Map depends on the source point p, which can be any point

on the manifold M.

One of the main results of this paper is that under mild gener-

icity conditions, the Heat Kernel Map is injective. In other

words, ΦM
p (x) = ΦM

p (y) if and only if x = y. We will use

this observation to guide our isometric matching method.

c© 2010 The Author(s)
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Figure 3: Overview of our method: Given a shape M and a point p on M, we construct the Heat Kernel Map, which associates

for each point x ∈ M, a function from t ∈ R to R, given by t 7→ kM
t (p,x). Under mild genericity conditions, we prove that each

point x is associated with a unique function (Theorem 3.1). Given another shape N, and a point q corresponding to p, we match

any other point x ∈ M, by finding the unique point y ∈ N such that their Heat Kernel Maps coincide. We show that the global

map constructed this way is an isometry (Theorem 3.5). Moreover, each step can be done efficiently in practice (Sections 4,5).

Our general approach is as follows (see Figure 3 for a sum-

mary): given two compact manifolds M and N, and a known

correspondence between a point p ∈ M and f (p) ∈ N, any

isometry f : M → N must preserve the heat kernel, and thus

for any point x ∈ M, ΦM
p (x) = ΦN

f (p)( f (x)). But since ΦN
f (p)

is injective, there cannot be another point z ∈ N such that

ΦN
f (p)( f (x)) = ΦN

f (p)(z). Therefore, every point x ∈ M will

have a unique corresponding point f (x) ∈ N, characterized

by the preservation of the heat kernel: ΦM
p (x) = ΦN

f (p)( f (x)).
To prove this, we need two genericity assumptions.

Generic Manifolds: A compact Riemannian manifold M

is called generic if its Laplace-Beltrami operator does not

have repeated eigenvalues. Note that this is the same gener-

icity condition considered by Sun et al. [SOG09]. It is well

known (see [BU83], Theorem 3.1) that this condition holds

for a generic Riemannian metric on any smooth manifold

of dimension at least 2. Therefore, given a manifold M that

does not satisfy the genericity assumption, an infinitesimal

perturbation of the metric makes M generic.

Generic Points: A point p in M is called generic if φM
i (p) 6=

0 for every eigenfunction φM
i of the Laplace-Beltrami oper-

ator of M. Note that the set of generic points of M has full

measure. Indeed, the nodal domain of every eigenfunction

φM
i is (d − 1)-dimensional, and as such has zero d-volume

[Che76]. Thus, the countable union of all nodal domains has

measure zero, and its complement has full measure.

3. Properties of the Heat Kernel Map

Our first result is the following:

Theorem 3.1 Let M be a generic connected compact mani-

fold without boundary and p a generic point on M. Then the

Heat Kernel Map is injective: ΦM
p (x) = ΦM

p (y) only if x = y.

To prove Theorem 3.1, we start with a technical Lemma that

gives some intuition about the heat kernel and the informa-

tion that it provides. This Lemma is well known (note that

a similar one was proved in [SOG09]), but we include its

proof in the Appendix for completeness.

Lemma 3.2 Let (λi) be an increasing sequence of non-

negative numbers that tend to infinity, and suppose that for

every positive time t, a(t) = ∑
∞
i=0 aie

−λit = 0 where the con-

vergence is absolute. Then all of the coefficients ai are zero.

Remark 3.3 Note that by this Lemma, if a(t) = ∑
∞
i=0 aie

−λit ,

and b(t) = ∑
∞
i=0 bie

−µit are two absolutely convergent series

with ai 6= 0 and bi 6= 0 then a(t) = b(t) for all t if and only

if ai = bi and λi = µi for all i. Thus, the knowledge of the

function a(t) for all t is equivalent to the knowledge λi,ai.

Proof of Theorem 3.1 First, recall that the heat kernel on

any compact manifold M has the following spectral expan-

sion (see e.g. [Gri06]) :

k
M
t (p,x) =

∞

∑
i=0

e
−tλM

i φM
i (p)φM

i (x) , (1)

where λM
i ,φM

i are the eigenvalues and eigenfunctions of the

Laplace-Beltrami operator on M respectively. The eigenval-

ues λi are all non-negative and only accumulate at infinity.

By Mercer’s theorem, the spectral expansion converges ab-

solutely for all t, which allows us to use Lemma 3.2.

Suppose two points x,y ∈ M are such that ΦM
p (x) = ΦM

p (y).
The spectral expansion of this equality shows that:

∞

∑
i=0

e
−λM

i tφM
i (p)φM

i (x) =
∞

∑
i=0

e
−λM

i tφM
i (p)φM

i (y) ∀ t

Applying Lemma 3.2 on the difference of the two sides, we

get that for every i:

φM
i (p)

(

φM
i (x)−φN

i (y)
)

= 0

and, since p is generic, φM
i (x) should agree with φM

i (y) for

every i. But this implies that for any L2 function h : M → R,

h(x) = h(y), which can only hold if x = y.

Intuitively, Theorem 3.1 establishes that for a generic mani-

fold M, a generic point p can be used to provide a unique

name for every point of the manifold, given by ΦM
p (x).

Moreover, since the Heat Kernel Map is intrinsic, this name

is invariant under isometric deformations of the shape. A di-

rect consequence of this result is the following:

Corollary 3.4 If M and N be two generic connected compact

manifolds without boundary, and p a generic point on M.

Then, if f ,g : M → N, are two isometries such that f (p) =
g(p), then f (x) = g(x) for all x ∈ M.

c© 2010 The Author(s)
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Proof: Since M and N are isometric by assumption, λM
i =

λN
i for all i. Thus, by Lemma 3.2, and using the genericity of

p, φN
i ( f (p))2 = φM

i (p)2 6= 0 for every i, and f (p) is generic.

Since both f and g are isometries, they must preserve the

Heat Kernel Map: for any x ∈ M, ΦM
p (x) = ΦN

f (p)( f (x)) =

ΦN
g(p)(g(x)). But f (p) = g(p) by assumption, and the ΦN

f (p)

is injective, so f (x) = g(x) ∀ x.

Therefore, given a generic point p of M, there is at most one

isometry f from M to N that sends p to a given point q in

N. If such an isometry exists, the image f (x) of a point x

is characterized by the preservation of the heat kernel to p:

f (x) is the only point s.t. kM
t (p,x) = kN

t (q, f (x)) for all t.

This immediately suggests an algorithm for finding corre-

spondences between points on M and N. Suppose we know

that a point p ∈ M must map to a point q ∈ N under some un-

known isometry f : M → N. Then, we can compute the Heat

Kernel Map ΦM
p of points on M and the Heat Kernel Map

ΦN
q of points on N. By the above Theorem, for any point

x ∈ M, the corresponding point f (x) is the unique point such

that ΦM
p (x) = ΦN

q ( f (x)) (see Figure 3).

Unfortunately, we often do not know even a single corre-

spondence between shapes. One remedy suggested by The-

orem 3.1 is to fix a point p ∈ M and try all possible corre-

spondences q ∈ N. For each potential correspondence (p,q),
we can try to extend it using the procedure suggested above.

Namely, for every point x ∈ M try to locate a point f (x) ∈ N

such that ΦM
p (x) = ΦN

q ( f (x)). Note however, that even if we

succeed to find a corresponding point for each x, we still

need to verify that the global map we get with this pro-

cedure is an isometry. However, as shown in the following

Theorem, preservation of the Heat Kernel Map turns out to

be sufficient to ensure pairwise isometric consistency in the

exact case. This means, in particular that if we succeed in

finding a correspondence for each point x using this simple

procedure, then we will have constructed an isometry.

Theorem 3.5 Let M and N be two generic connected com-

pact manifolds and p a generic point on M. Then, any map f

such that f (p) is generic and kM
t (p,x) = kN

t ( f (p), f (x)), for

every time t > 0 and every point x in M, is an isometry.

Note that if the heat kernel was preserved for every pair of

points x,y in M, this Theorem would be nothing but Lemma

2.1. The non-trivial part consists in showing that the conclu-

sion remains true even when one of the points in M is fixed.

Proof. Setting x = p, we get kM
t (p, p) = kN

t ( f (p), f (p)) for

all t > 0. Thus,
∞

∑
i=0

e
−tλM

i (φM
i (p))2 =

∞

∑
i=0

e
−tλN

i (φN
i ( f (p)))2.

By the genericity assumption, the coefficients (φM
i (p))2 and

(φN
i (p))2 are all non-zero. Thus, by Remark 3.3, for every i,

λM
i = λN

i and φN
i ( f (p)) = αiφ

M
i (p), where αi ∈ {±1}.

Moreover, since kM
t (p,x) = kN

t ( f (p), f (x)), we have:
∞

∑
i=0

e
−tλM

i φM
i (p)φM

i (x) =
∞

∑
i=0

e
−tλN

i φN
i ( f (p))φN

i ( f (x))

Lemma 3.2 again shows that for every i, φN
i ( f (x)) =

αiφ
M
i (x), where αi ∈ {±1} is independent of x. Therefore

for any pair of points (x,y) in M and any positive t,

k
M
t (x,y) = ∑

i

e
−tλM

i φM
i (x)φM

i (y)

= ∑
i

α2
i e

−tλN
i φN

i ( f (x))φN
i ( f (y)) = k

N
t ( f (x), f (y)).

Thus, by Lemma 2.1, the function f is an isometry.

Note that Theorem 3.5 is rather surprising since it shows

that any map that preserves relations of all points to a single

point p for all t, also preserves pairwise relations between

the points. This, of course, would not be true if the map only

preserved distances to p, since it would not disambiguate

between points lying on the same geodesic circle around p.

Genericity Conditions Both Theorem 3.1 and Theorem 3.5

may not hold if the manifolds are not generic. The sim-

plest case of a non-generic manifold is the sphere, where for

any point p, kt(p,x) = kt(p,y) for all t, whenever d(p,x) =
d(p,y). Since the geodesic circle, in general, contains more

than a single point, both theorems will not hold. Note that a

consequence of Theorem 3.1 is that for any generic manifold

M, the set of points {x∈M, s.t. x = T (x) for some non-trivial

self-isometry T : M → M } has zero measure. Similarly, if

M is generic, then every self-isometry T : M → M is idem-

potent (T ◦ T = Id) [OSG08] and the isometry group must

be discrete [BU83, Proposition 3.4.].

Nevertheless, we note that Theorem 3.1 can be generalized

to show that if the Laplace-Beltrami operator of a mani-

fold M has eigenvalues with bounded multiplicity k, then k

generic points can be used to define an injective map. The

proof follows the steps of 3.1, and we omit it due to space

constraints. As we will see in Section 6 adding extra corre-

spondences can also be useful in practice to increase robust-

ness and the quality of the recovered dense maps.

Manifolds with Boundary Note that although Theorem 3.1

and Theorem 3.5 were stated for compact manifolds with-

out boundary, similar statements also hold for manifolds

with boundary with a choice of boundary conditions on the

Laplace-Beltrami operator. We omit the treatment of the

boundary conditions for simplicity, but see for example Sec-

tion 4 of [Hsu02] for a discussion of the Dirichlet heat kernel

for manifolds with boundary.

Relation to the HKS As mentioned in the Introduction,

Theorem 3.5 is related to the Informative Theorem for the

Heat Kernel Signature (HKS) in [SOG09], which estab-

lishes that any homeomorphism T between two generic man-

ifolds M and N, s.t. kM
t (x,x) = kN

t (T (x),T (x)) ∀ x, t must

be an isometry. Note that this does not imply that the map

x 7→ kt(x,x) is injective, or that if two points have the same
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HKS, there exists an isometry mapping one to the other.

Moreover, even if such an isometry exists, to construct it, one

has to operate in the space of continuous maps, which is dif-

ficult to enforce for discretely sampled shapes. Consider, for

example, two copies, M and N, of a shape with a reflectional

symmetry (e.g. a human shape), so that its only self-isometry

is idempotent, and it can satisfy the genericity conditions.

The necessity for continuity is clear since for every point on

M there are at least two points on N with the same HKS. In

contrast, Theorem 3.1 proves injectivity of the Heat Kernel

Map, while Theorem 3.5 does not assume continuity, which

is essential for constructing isometric maps in practice. Note

that, although not done here, we leave explicit construction

of examples of generic manifolds with non-injective HKS or

non-trivial isometry groups as future work.

4. Algorithm

In this Section, we convert the observations of Section 3

into an algorithm for finding approximate isometries in prac-

tice. Our algorithm consists of two stages: obtaining a few

landmark correspondences and extending them to a dense

map on the whole shape. Note that Theorem 3.1 ensures

that generically a single correspondence is sufficient to re-

cover the isometry. However, several correspondences can

improve stability or be used if the shapes are not generic.

I. Feature Detection Given two shapes M and N, repre-

sented as triangle meshes, we first detect a sparse set of fea-

ture points P ⊆ M and Q ⊆ N. In this work, we use the local

maxima of the Heat Kernel Signature [SOG09] for a large

time t to identify feature points. Thus, we consider a point p

to be a feature point on M if kt(p, p) > kt(x,x) for all x in the

two ring neighborhood of p. These feature points have been

shown to be stable and repeatable in practice [BBB+10], but

other feature detection methods (such as extrema of Gauss

curvature) can also be used to reduce complexity.

II. Single Feature Matching Given the sets of feature

points P ⊆ M and Q ⊆ N, we fix a point p ∈ P (either ran-

domly or by user selection) and iterate over points qi ∈ Q

to find possible candidate correspondences of p. To evaluate

each potential match (p,qi), we compute the Heat Kernel

Maps ΦM
p and ΦN

qi
, by discretizing for every point x ∈ M the

function kM
t (p,x) into a set of time samples {t j}. Thus, for

every point x ∈ M we compute the vector of size J =
∣

∣{t j}
∣

∣ ,

whose component j is kM
t j

(p,x), for a set of predetermined

time values t j. Similarly, for every point y ∈ N, we compute

the vector kN
t j
(q,y). We then evaluate the quality of the match

(p,qi) by computing the sum of squared distances between

heat kernel maps:

E(p,qi) = ∑
x∈M

min
y∈N

∥

∥

∥
ΦM

p (x)−ΦN
qi
(y)

∥

∥

∥

2
.

One choice of distance that works well in practice is:
∥

∥

∥
ΦM

p (x)−ΦN
qi
(y)

∥

∥

∥
= sup

j

t j

∣

∣

∣
k

M
t j

(p,x)− k
N
t j
(qi,y)

∣

∣

∣
. (2)
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Figure 4: Top Left: Intrinsic symmetry detection without

HKS [SOG09]. The extrapolated map (green) is continuous

but incorrectly matches the tail to the leg. Top Right: Incor-

porating HKS fixes these correspondences. Bottom: Quality

of the dense map for different discretizations of the Laplace-

Beltrami operator. Note that the average geodesic distortion

levels out at 10-15 time samples.

Note that we scale each coordinate j of ΦM
p (x) by t j. This

ensures the heat kernel does not blow up as t goes to 0,

for 2-dimensional surfaces [Gri06, Theorem 3.9]. Also note

that by Theorem 3.5, if E(p,q) = 0 then there must exist an

isometry mapping p to q. In practice, we order the poten-

tial matches (p,qi) in increasing order of E(p,qi) and only

consider those with small error.

III. Correspondence Propagation Given a landmark cor-

respondence (p,q), assuming the genericity conditions

above, for any x ∈ M, Theorem 3.1 ensures that there will

exist a unique point y ∈ N such that

∥

∥

∥
ΦM

p (x)−ΦN
q (y)

∥

∥

∥
= 0.

In practice, we simply do the best we can:

f (x) = argmin
y∈N

∥

∥

∥
ΦM

p (x)−ΦN
q (y)

∥

∥

∥
.

Thus to every point x ∈ M we associate its nearest neighbor

from N in the space of Heat Kernel Maps, breaking ties arbi-

trarily. In other words, we find the point from N whose Heat

Kernel Map is the closest to that of x. In practice, this can be

easily done using a nearest neighbor data structure.

IV. Local Descriptors & Correspondence Augmentation

In the ideal case of exact isometries between generic shapes

the procedure outlined above will result in a dense isomet-

ric map between the two shapes. However, most shapes in

practice are not exactly isometric and can fail to be generic.

Here, we introduce two heuristics that greatly improve the

quality of the dense maps in practice.

First, we note that any isometric map between two shapes

must preserve local descriptors at each point. Therefore, a
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map f : M → N that preserves the Heat Kernel Map at each

point must also preserve intrinsic quantities such as Gauss

curvature. The Heat Kernel Signature (HKS) proposed in

[SOG09] and independently in [GBAL09] is a powerful lo-

cal descriptor that characterizes each point in a multiscale

fashion. It also fits naturally within our framework, since it

is defined through preservation of the heat kernel. To em-

ploy the HKS, we augment the Heat Kernel Map by intro-

ducing extra J =
∣

∣{t j}
∣

∣ coordinates for each point x, defined

as kM
t j

(x,x). Thus, each point is now associated with a vector

of size 2J, where the first J coordinates are the Heat Kernel

Map: kM
t j

(p,x) and the next J are the HKS. Figure 4 demon-

strates the effect of introducing the Heat Kernel Signature

when using our method for intrinsic symmetry detection.

Similarly, note that we can augment the Heat Kernel Map by

introducing extra landmark correspondences. In other words,

if we know that a point p ∈ M is mapped to a point q ∈ N,

and p2 ∈ M is mapped to q2 ∈ N we can associate with each

point x ∈ M a combined Heat Kernel Map, where the extra

J coordinates are kM
t j

(p2,x). In practice, we greedily add a

feature correspondence (p2,q2) that results in the smallest

combined error E.

Note that although we may introduce extra coordinates to

the Heat Kernel Map, all of the quantities remain commen-

surable, and as a result we can use the same distance metric

to compare them. Namely, we always use the weighted L∞

distance, defined in equation (2).

5. Implementation

The two main ingredients to implement the method de-

scribed above are the computation of the Heat Kernel Map,

and nearest neighbor search in the space of Heat Kernel

Maps. Below we outline our choices in practice.

Computing the heat kernel on a triangle mesh has been con-

sidered in e.g. [SOG09,GBAL09], where the authors use the

spectral expansion (1) to compute the heat kernel and its re-

striction to the diagonal. Namely, given a triangle mesh dis-

cretizing the shape, and a matrix L discretizing the Laplace-

Beltrami operator with eigenvalues λi and eigenvectors φi,

the heat kernel is given as:

k
M
t (x,y) =

N

∑
i=0

e
−tλi φM

i (x)φM
i (y),

This choice is also possible in our setting. When the mesh

is large, however, computing many eigenvalues and eigen-

vectors of the matrix L, even if it is sparse, can be de-

manding. In this case, we can still compute the Heat Ker-

nel Map via sparse matrix exponentiation. Namely, as noted

in [SOG09] if L = A−1W , where A is the diagonal ma-

trix of area weights, and W is a positive definite weight

matrix, the heat kernel matrix for a given time value t is

given as: Kt = exp(−tL)A−1, where exp(−tL) is the ma-

trix exponential. Recall that the Heat Kernel Map is defined

via the heat kernel to a fixed point p. Thus, we only need

Figure 5: Intrinsic symmetry detection using our method.

to compute one column of the matrix Kt , corresponding to

the point p. This can be done by computing the product

Ktep = exp(−tL)A−1ep, where ep is the indicator vector

with a one in the coordinate corresponding to p.

Several techniques have been proposed to evaluate the pro-

duct exp(−tL)v for a given vector v without computing the

matrix exponential itself. We use the highly stable Krylov

subspace projection method implemented in the Expokit

software [Sid98]. This method only requires the implemen-

tation of the matrix vector multiplication Lv. Note that sparse

matrix vector multiplication can be easily parallelized. In

practice, we split the matrix L into contiguous sets of rows

and issue separate threads to compute the product Lv inde-

pendently for each set. Note that sparse matrix multiplica-

tion has also been implemented in graphics hardware (e.g.

[BG08]), which can improve efficiency. Moreover, an effi-

cient multiresolution approach to computing the heat kernel

has been recently proposed by Vaxman et al. [VBCGar].

To compute nearest neighbors in the space of Heat Kernel

Maps, we use the ANN [MA] library that supports efficient

nearest neighbor search in high dimensions with L∞ norm.

6. Results

6.1. Symmetry Detection & Choice of Parameters

We first note that the algorithm described in Section 4 can

be used to discover intrinsic symmetries of shapes (as in

e.g. [OSG08]). Indeed, intrinsic symmetry detection can be

regarded as a special case of isometric shape matching,

where the two shapes are identical. To demonstrate the per-

formance of our algorithm for different choices of the pa-

rameters, we first compare its performance for different dis-

cretizations of the Laplace-Beltrami operator, and different

number of time samples when computing the Heat Kernel

Map. The bottom of Figure 4 shows the average geodesic

distortion of the interpolated dense maps for one fixed land-

mark correspondence using the Laplace-Beltrami operator

discretization of Reuter et al. [RWP06] called Shape-DNA

(using linear FEM), the method of Belkin et al. [BSW08]

called MeshLP and the cotangent weight scheme of Meyer

et al. [MDSB02]. To compute the average geodesic distor-

tion, we sampled 100 points {si} on the mesh, and then

computed ∑i ∑ j

∣

∣d(si,s j)−d( f (si), f (s j))
∥

∥ , where d(·, ·) is

the geodesic distance on the mesh, and f is the interpolated
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(a) Small geodesic distortion (5.3%) (b) Medium geodesic distortion (13.2%)

Figure 6: Matching deformable shapes under small (a) and medium (b) geodesic distortion. Note that in both cases we identify

the symmetry of the objects by finding two possible maps. (a) left: using a single landmark correspondence is sufficient to get a

high quality interpolated map,(a) middle: a single landmark correspondence provides a good map, but the ears are switched,

which is fixed by computing the second landmark correspondence (a) right. Even under considerable geodesic distortion, 2

landmark correspondences are enough to find high quality direct and symmetric maps, (b) left and right respectively.

map given a landmark correspondence (Section 4). In this

example, and elsewhere, we have observed that Shape-DNA

performs the best without using the Heat Kernel Signature.

However, with the addition of the HKS, all three methods

perform similarly. Moreover, the distortion levels out be-

yond 10-15 time samples. Therefore, the dimensionality of

the Heat Kernel Map is relatively low (we used 10 time sam-

ples in all the examples below). Finally, the top of Figure

4, shows the effect of adding HKS to the Heat Kernel Map.

On the left, the dense map is computed without HKS, and

it erroneously matches the tail of the model to its leg. Us-

ing HKS fixes this effect and allows us to find a high quality

dense map using only one landmark correspondence. Note

also the decrease of the average geodesic distortion when

using HKS for all three discretizations. Figure 5 shows the

result of applying our method for intrinsic symmetry de-

tection on a few sample shapes from the Nonrigid World

3D Database [BB07]. In all of the remaining examples we

used the cotangent weight scheme [MDSB02] due to its sim-

plicity and comparable performance. To compute the time

discretization of the Heat Kernel Map, we normalized each

shape to have unit total area by scaling the area matrix A and

computed 10 time samples between t = 0.001 and t = 2.

In all of the Figures, the computed landmark correspon-

dences are shown in red, whereas the interpolated correspon-

dences are shown in green. We stress that both the land-

mark correspondences and the interpolated ones are com-

puted automatically, and thus there is no need for human in-

tervention, except possibly when exploring symmetric maps,

where the second-best match is used for the initial feature

correspondence.

6.2. Isometric Matching

To demonstrate the performance of our algorithm for iso-

metric shape matching, we first consider shapes undergo-

ing deformation with moderate geodesic distortion. Figure

6 shows the result of our method for deformed shapes of the

armadillo model. In Figure 6(a) (left), we show that a sin-

gle landmark correspondence produces a high quality dense

map on the entire shape, when the maximum geodesic distor-

tion of the ground-truth correspondence is 5.3% of the shape

Figure 7: Direct and symmetric maps found on two pairs of

shapes from the dataset by Vlasic et al. [VBMP08]

diameter. Moreover, we are able to find the intrinsic symme-

try of the armadillo, by considering the second best match

for the initial feature correspondence (Figure 6(a) middle).

This map, however, flips the two ears of the armadillo, which

can be fixed by computing a second landmark correspon-

dence (Figure 6(a) right). Similarly, even under considerable

geodesic distortion (13.2% of the diameter), our method can

find both the direct and the symmetric map (Figure 6(b)).

Note that in all of the examples, the symmetric maps are

computed on the same shapes. To avoid clutter, however, we

flip one of the shapes for visualization.

Figure 8(a) (left) further demonstrates the effect of adding

the second landmark correspondence on the SCAPE dataset

[ASK+05]. In this case, although the first landmark corre-

spondence is found correctly (Figure 8(a) left), the interpo-

lated correspondences map both arms of one of the models

to one arm on the other. Note, that despite this, the interpo-

lated map is consistent in that it associates the correct parts

of the arms. Having a second landmark correspondence al-

lows us to find the correct direct and symmetric maps on a

variety of poses 8(a) (middle and right) and (Figure 8(b)).

Figure 7 shows the result of our matching algorithm on a few

sample shapes from the dataset by Vlasic et al. [VBMP08].

Again, two landmark correspondences allow us to find both

direct and symmetric isometric maps between the shapes.

Partial and Approximate Matching

As mentioned in the introduction, our method can be nat-

urally used for matching incomplete shapes. Recall that, as

we illustrated in Section 2.1, the heat kernel kt(p, ·) for small
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(a) (b)

Figure 8: Isometric matches in the SCAPE dataset [ASK+05]. (a) left, the landmark correspondence is computed correctly, but

the map misses one of the arms. The second landmark correspondence allows to obtain good dense maps: middle, right (a), (b).

values of t reflects the properties of a local neighborhood of

p. Thus, to match partial and incomplete shapes, we can con-

struct the Heat Kernel Map by only considering small values

of t. Figure 9 shows the result of applying our method for

matching an arm to a human body and a leg to a horse model.

Note that the arm model is significantly denser (containing

9k points, whereas the human model is 10k points), and the

two maps shown in the figure are computed for the same arm

model. To compute the heat kernel for the partial models, we

used Dirichlet boundary conditions, and computed the Heat

Kernel Embedding for time values such that the heat kernel

at points close to the boundary remains negligible.

Finally, Figure 10 shows matching obtained on deformable

models of the human head. Note that the pair of shapes on

the left has different topology (the mouth of the leftmost

shape is open), yet our method allows to find approximate

maps that respect the local and global structure of the shapes.

Note that although we have obtained noisy matches in other

similar examples, our method is capable to recover maps

even when no near isometry exists. Exploring the stability

of our method under topological changes is an interesting

problem for the future, both theoretically and in practice.

7. Conclusion and Future Work

In this paper we have described a method for finding dense

isometric maps between a pair of generic shapes. We show

that the isometry can be recovered from a single correspon-

dence by proving that it is the unique map that preserves

the heat kernel to a fixed point. We apply our technique to

find intrinsic symmetries of shapes, match shapes undergo-

ing isometric deformations, as well as match partial and in-

complete models efficiently.

Perhaps the most interesting and challenging problem for fu-

ture work is to provide quantitative statements about the be-

havior of the Heat Kernel Map under near-isometries. Such

statements would, in principle, include the inverse Lipschitz

constant of the Heat Kernel Map, as well as an approxi-

mate version of Theorem 3.5. Finally, it is interesting to

Figure 9: Matching of incomplete models.

Figure 10: Matching shapes with different genus.

consider whether the space of near-isometries can also be

parametrized by a small set of correspondences.
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8. Appendix

Proof of Lemma 2.1 Consider a heat-kernel preserving map T . By

Varadhan’s Lemma, T must be distance preserving. To show that

the map T is an isometry, we only need to prove that it is surjective.

First note that the preservation of the eigenvalues, and Weyl’s local

law imply that the two manifolds are of the same dimension. The

distance-preserving property further implies that for almost every y

in M, the Jacobian JyT is well-defined and orthogonal. This allows

us to use the change-of-variable formula (which holds for maps that

are differentiable almost everywhere) for the integral of the function

y ∈ N 7→: kN
t (x,y) for a fixed x and t > 0, under the map T :

Z

M
|JyT |kN

t (T (x),T (y))dy =
Z

T (M)
kN

t (x,y)dy.

The orthogonality of JyT and the heat-kernel invariance of T imply

that the left-hand side of this equation is 1. Since the heat kernel has

full support for any t > 0, T (M) has full measure. By continuity of

T and compactness of M, this implies that T (M) = N.

Proof of Lemma 3.2: Suppose j = min j s.t. a j 6= 0. Then:

|a j| = |eλ jt a(t)−a j| ≤ c(t) := ∑
i> j

|ai|e
(λ j−λi)t

By absolute convergence, c(t) is well defined and decreasing. Set

µi = λi −λ j , and t = (h + 1)µ−1
j+1, for any h > 0. Then,

0 ≤ c(t) = ∑
i> j

|ai|e
−(h+1)

µi
µ j+1 ≤ e−hc(µ−1

j+1)

Thus, the limit of c is zero at infinity, and a j = 0.
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