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QUENCHED LIMITS FOR THE FLUCTUATIONS OF TRANSIENT
RANDOM WALKS IN RANDOM ENVIRONMENT ON Z

NATHANAËL ENRIQUEZ, CHRISTOPHE SABOT, LAURENT TOURNIER,
AND OLIVIER ZINDY

Abstract. We consider transient nearest-neighbour random walks in random environment on Z.
For a set of environments whose probability is converging to 1 as time goes to infinity, we describe

the fluctuations of the hitting time of a level n, around its mean, in terms of an explicit function

of the environment. Moreover, their limiting law is described using a Poisson point process whose

intensity is computed. This result can be considered as the quenched analog of the classical result

of Kesten, Kozlov and Spitzer (1975).

1. Introduction

Random walks in a one-dimensional random environment were first introduced in
the late sixties as a toy model for DNA replication. The recent development of
micromanipulation technics such as DNA unzipping has raised a renewed interest in
this model in genetics and biophysics, cf. for instance [3] where it is involved in a
DNA sequencing procedure. Its mathematical study was initiated by Solomon’s 1975
article [21], characterizing the transient and recurrent regimes and proving a strong
law of large numbers. A salient feature emerging from this work was the existence
of an intermediary regime where the walk is transient with a zero asymptotic speed,
in contrast with the case of simple random walks. Shortly after, Kesten, Kozlov and
Spitzer [15] precised this result by giving limit laws in the transient regime. When
suitably normalized, the (properly centered) hitting time of site n by the random walk
was proved to converge toward a stable law as n tends to infinity, which implies a limit
law for the random walk itself. In particular, this entailed that the ballistic case (i.e.
with positive speed) further decomposes into a diffusive and a subdiffusive regime.

Note that these results, except when they deal with almost sure statements, concern
only the annealed behavior. When dealing with applications, what we call the medium
is usually fixed during the experiment (e.g. the DNA sequence), and we are naturally
led to consider the quenched behavior of the walk. The first results in this direction
by Peterson and Zeitouni [18] and Peterson [16] were unfortunately negative results,
saying that, for almost all environment, the laws of the fluctuations of the walk along
the time have several accumulation points. However, it was shown by three of the
authors in [8], that, in the case of transient walks having 0 asymptotic speed, one can
get some quenched localization result by slightly relaxing the point of view. Namely,
for a set of media whose probability converges to 1 as time goes to infinity, the law of
the (suitably normalized) position of the walk is getting close to a discrete probability

2010 Mathematics Subject Classification. primary 60K37, 60F05, 82B41; secondary 60E07, 60E10.
Key words and phrases. Random walk in random environment, quenched distribution, Poisson

point process, fluctuation theory for random walks, Beta distributions.
This research was supported by the french ANR projects MEMEMO and MEMEMO2.

1



2 N. ENRIQUEZ, C. SABOT, L. TOURNIER, AND O. ZINDY

measure whose weights and support are expressed in terms of the environment. In
the same spirit, we focus in this work on the quenched fluctuations of hitting times
in the case of a general transient subdiffusive random walk in random environment.

Adopting Sinai’s now famous description of the medium by a potential [20], we
introduce a notion of valley. We then prove that the fluctuations of the hitting time
of x around its expectation mainly come from the times spent crossing a very small
number of deep potential wells. Since these wells are well apart, their crossing times
are almost independent. Moreover, it is shown that the laws of these crossing times
are well approximated by exponential variables whose expectations are functions of
the environment, functions which in turn happen to be closely related to the classical
Kesten renewal series.

Thus, our main result states that the law of the difference of a hitting time with
its expectation is close to the law of a sum of centered exponential variables which
are weighted by heavy-tailed functions of the environment. This makes it possible
to describe their law in terms of a Poisson point process whose intensity is explicitly
computed.

To make the exposition clearer, we first present the main results and notations
(Section 2) and defer to Section 3 the more precise description of the organization of
the paper along with a sketch of the proof.

2. Notations and main results

Let ω := (ωx, x ∈ Z) be a family of i.i.d. random variables taking values in (0, 1),
which stands for the random environment. Let Ω := (0, 1)Z and denote by P the
distribution of ω (on Ω) and by E the corresponding expectation. Conditioning on
ω (i.e. choosing an environment), we define the random walk in random environment
X := (Xt, t ∈ N) starting from x ∈ Z as a nearest-neighbour random walk on Z with
transition probabilities given by ω: if we denote by Px,ω the law of the Markov chain
(Xt, t ≥ 0) defined by Px,ω (X0 = x) = 1 and

Px,ω (Xt+1 = z |Xt = y) :=

 ωy, if z = y + 1,
1− ωy, if z = y − 1,
0, otherwise,

then the joint law of (ω,X) is Px( dω, dX) := Px,ω( dX)P ( dω). For convenience, we
let P := P0. We refer to [22] for an overview of results on random walks in random
environment. An important role is played by the sequence of variables

ρx :=
1− ωx
ωx

, x ∈ Z.(2.1)

We will make the following assumptions in the rest of this paper.

Assumptions.

(a) there exists 0 < κ < 2 for which E [ρκ0 ] = 1 and E
[
ρκ0 log+ ρ0

]
<∞;

(b) the distribution of log ρ0 is non-lattice.

Let us recall here that, under assumptions (a) and (b),Kesten, Kozlov and Spitzer [15]
proved a limit theorem toward a stable law of index κ, whose scaling parameter is
obtained in [7] for the sub-ballistic case and in [9] for the ballisitic case.
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We now introduce the hitting time τ(x) of site x for the random walk (Xt, t ≥ 0),

τ(x) := inf{t ≥ 0 : Xt = x}, x ∈ Z,
and the inter-arrival time τ(x, y) between sites x and y by

τ(x, y) := inf{t ≥ 0 : Xτ(x)+t = y}, x, y ∈ Z.

Following Sinai [20] (in the recurrent case), and more recently the study of the case
0 < κ < 1 in [7], we define a notion of potential that enables to visualize where the
random walk spends most of its time.

The potential, denoted by V = (V (x), x ∈ Z), is a function of the environment ω
defined by V (0) = 0 and ρx = eV (x)−V (x−1) for every x ∈ Z, i.e.

V (x) :=


∑

1≤y≤x log ρy, if x ≥ 1,
0, if x = 0,

−∑0
x<y≤0 log ρy, if x ≤ −1,

where the ρy’s are defined in (2.1). Under hypothesis (a), Jensen’s inequality gives
E[log ρκ0 ] ≤ logE[ρκ0 ] = 0, and hypothesis (b) excludes the equality case ρ0 = 1 a.s.,
hence E[log ρ0] < 0 and thus V (x)→ ∓∞ a.s. when x→ ±∞.

The potential is subdivided into pieces, called “excursions”, by its weak descending
ladder epochs (ep)p≥0 defined by e0 := 0 and

(2.2) ep+1 := inf{x > ep : V (x) ≤ V (ep)}, p ≥ 0.

The number of excursions before x > 0 is

(2.3) n(x) := max{p : ep ≤ x}.
Moreover, let us introduce the constant CK describing the tail of Kesten’s renewal

series R :=
∑

x≥0 ρ0 · · · ρx =
∑

x≥0 eV (x) (see [14]) that plays a crucial role in this
work:

P (R > t) ∼ CKt
−κ, t→∞.

Note that at least two probabilistic representations are available to compute CK nu-
merically, which are equally efficient. The first one was obtained by Goldie [11] and
a second one was obtained in [6].

Finally, recall the definition of the Wasserstein metric W 1 between probability
measures µ, ν on R:

W 1(µ, ν) := inf
(X,Y ):

X∼µ, Y∼ν

E[|X − Y |],

where the infimum is taken over all couplings (X, Y ) with marginals µ and ν. We will
denote by W 1

ω(X, Y ) the W 1 distance between the laws of random variables X and Y
conditional to ω, i.e. between the “quenched distributions” of X and Y .

Let us emphasize that the following results, which describe the quenched law of
τ(x) in terms of the environment, can be stated in different ways, depending on the
applications we have in mind, either practical or theoretical. We give two variants
and mention that the following results hold for any κ ∈ (0, 2) (so that the sub-ballistic
regime is also included, even though a finer study was led for κ ∈ (0, 1) in [8]).
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Theorem 1. Under assumptions (a) and (b) we have

W 1
ω

τ(x)− Eω[τ(x)]

x1/κ
,

1

x1/κ

n(x)−1∑
p=0

Eω[τ(ep, ep+1)]ēp

 P−probability−→
x

0,

with ēp := ep − 1, where (ep)p are i.i.d. exponential random variables of parameter 1
independent of ω; the terms Eω[τ(ep, ep+1)] can be made explicit (see (4.4) in the

Preliminaries), and n(x) may be replaced by
⌊

x
E[e1]

⌋
.

Theorem 2. Under assumptions (a) and (b), for every δ > 0 and ε > 0, if x is large
enough, we may enlarge the probability space so as to introduce i.i.d. random variables

Ẑ = (Ẑp)p≥0 such that

(2.4) P (Ẑp > t) ∼ 2κCU t
−κ, t→∞,

where CU := E[ρκ0 log ρ0]E[e1](CK)2, and

P

W 1
(ω,Ẑ)

τ(x)− Eω[τ(x)]

x1/κ
,

1

x1/κ

bx/E[e1]c∑
p=1

Ẑpēp

 > δ

 < ε,

with ēp := ep − 1, where (ep)p are i.i.d. exponential random variables of parameter 1

independent of Ẑ, and W 1
(ω,Ẑ)

(X, Y ) denotes the W 1 distance between the law of X

given ω and the law of Y given Ẑ.

By a classical result (cf. [5] p.152, or [19] p.138 for a general statement), the

set {n−1/κẐp | 1 ≤ p ≤ n} converges toward a Poisson point process of intensity
2κCUκx

−(κ+1)x. . It is therefore natural to expect the following corollary.

Corollary 1. Under assumptions (a) and (b) we have

L

(
τ(x)− Eω[τ(x)]

x1/κ

∣∣∣∣ω) W 1

−→
x

L

(
∞∑
p=1

ξpēp

∣∣∣∣∣ (ξp)p≥1

)
in law,

where the convergence is the convergence in law on the W 1 metric space of probability
measures on R with finite first moment, and (ξp)p≥1 is a Poisson point process of
intensity λκu−(κ+1)u. where

λ :=
2κCU
E[e1]

= 2κκE[ρκ0 log ρ0]C2
K ,

ēp := ep − 1 where (ep)p are i.i.d. exponential random variables of parameter 1, and
the two families are independent of each other. In the case κ = 1, λ = 2

E[ρ0 log ρ0]
, and

in the case where ω0 has a distribution Beta(α, β), with 0 < α− β < 2,

λ = 2α−β
Ψ(α)−Ψ(β)

(α− β)B(α− β, β)2
,

where Ψ denotes the classical digamma function Ψ(z) := (log Γ)′(z) = Γ′(z)
Γ(z)

and

B(α, β) :=
∫ 1

0
xα−1(1− x)β−1x. = Γ(α)Γ(β)

Γ(α+β)
.

Remarks.
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– Since the topology of convergence in W 1-distance is finer than the topology of
weak convergence restricted to probability measures with finite first moment, we may
replace W 1 by the topology of the convergence in law in the above limit.

– For every ε > 0, the mass of (ε,+∞) for the measure µ = λκ
u.

uκ+1 is finite, so that

it makes sense to consider a decreasing ordering (ξ(k))k≥1 of the Poisson process of
intensity µ. A change of variable then shows that

(2.5) ξ(p) = λ1/κ(f1 + · · ·+ fp)
−1/κ, p ≥ 1,

(fp)p being i.i.d. exponential random variables of parameter 1. In particular, by the
law of large numbers,

(2.6) ξ(p) ∼ λ1/κp−1/κ, p→∞, a.s.,

hence
∑

p(ξp)
2 =

∑
p(ξ

(p))2 < ∞ a.s. Thus, the random series
∑

p ξpēp converges
a.s. Furthermore, since its characteristic function is also an absolutely convergent
product, its law does not depend on the ordering of the points.

Corollary 1 can be easily deduced from the previous theorems. We give a short
proof of this result in Section 9.

While finishing writing the present article, we learned about the article [17] by
Peterson and Samorodnitsky giving a result close to Corollary 1. Another article
[4] by Dolgopyat and Goldsheid was also submitted, that establishes a similar result
(under the ellipticity condition). Our statement however gives the convergence in W 1

instead of the weak convergence and especially specifies the value of the constant λ
that appears in the intensity of the limiting Poisson point process. Furthermore, the
three proofs are rather different.

In the following, the constant C stands for a positive constant large enough, whose
value can change from line to line.

3. Sketch of the proof

Along the sequence (ep)p≥0, hitting times decompose into crossing times of a linear
number of excursions:

τ(x) =
∑

0≤p<n(x)

τ(ep, ep+1) + τ(en(x), x).

Although these terms are very correlated, the core of the proof consists in the fact
that, as far as fluctuations are concerned, the main contribution only comes from a
logarithmic subfamily of asymptotically i.i.d. terms, which correspond to so called
“high excursions” (or “deep valleys”). This property (stemming from the fact that
the random variables Eω[τ(ep, ep+1)] are heavy-tailed) enables the proof to be divided
into two parts detailed below.

3.1. Exit time from a deep valley (Section 5). The crossing time of the excursion
[ep, ep+1] will mainly depend on its height

Hp := max
ep≤x<ep+1

(V (x)− V (ep)) .
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0 e1

H

TH

V

Figure 3.1. Height of an excursion

As p grows, the law of V viewed from ep converges to P≥0 := P ( · | ∀x ≤ 0, V (x) ≥ 0),
and therefore the time τ(ep, ep+1) converges in law to τ(e1) under P≥0 which we have
now to study. A classical Markov chain computation gives (cf. Subsection 4.2)

Eω[τ(e1)] =
∑

0≤y<e1

∑
x≤y

(2− 1{x=y})e
V (y)−V (x).

When H := H0 is large, factorizing by the largest term 2eH leads to

Eω[τ(e1)] ' 2eH
∑
x

e−V (x)
∑
y

e−(H−V (y)),

where in the sums the significant terms are those indexed by values x close to 0 and
values y close to TH (cf. Figure 3.1). In particular, we have

Eω[τ(e1)] ' 2eHM1M2,

where M1,M2 are defined by (4.12). Due to the “locality” of M1 and M2, a key fact
from [6] is that, when H is large, M1, M2 and H are asymptotically independent and
M1, M2 have the same law. Now, Iglehart’s tail estimate on eH , see (4.10), yields

P≥0
(
Eω[τ(e1)] ≥ t

)
∼ 2κCIE[Mκ]2t−κ, t→∞,

where CI is given by (4.11). This is an important result of [6], rephrased in Lemma 2.

To complete the description of the law of the crossing time of a “high excursion”,
we furthermore prove in Section 5 that, for large H, the law of τ(e1), given ω, is
close to an exponential law with mean Eω[τ(e1)]. This follows from the fact that the
number of returns to 0 before reaching e1 follows a geometric law.

3.2. Deep and shallow valleys (Sections 6 and 7). As mentioned at the begin-
ning of the section, we try to focus the study on the crossing times of high excursions.
To this aim, we introduce a critical height hn, adapted to the space scale n, defined
by

hn :=
1

κ
log n− log log n.

Then, let (σ(i))i≥1 be the sequence of the indices of the successive excursions whose
heights are greater than hn. More precisely,

σ(1) := inf{p ≥ 0 : Hp ≥ hn},
σ(i+ 1) := inf{p > σ(i) : Hp ≥ hn}, i ≥ 1.
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0

V
b1 d1 b2 d2 · · · enbKn

dKn

Figure 3.2. High excursions (in bold) among the n first excursions

The high excursions (see Figure 3.2) are defined as the restriction of the potential to
[bi, di], where

bi := eσ(i), di := eσ(i)+1.

Note that, by Iglehart’s estimate, the probability P (H ≥ hn) is asymptotically equal
to CI e−κhn , hence the number of high excursions among the n first ones,

Kn := #{0 ≤ i ≤ n− 1 : Hi ≥ hn},
is of order (log n)κ.

It turns out that the crossing time τ(bi, di) involves mainly the environment between
ai and di where ai is defined as

ai := eσ(i)−Dn
and Dn is chosen in such a way that V (ai)− V (bi) is slightly greater than hn i.e.

(3.1) Dn :=

⌈
1 + γ

Aκ
log n

⌉
,

γ > 0 being arbitrary, and A being equal to E[−V (e1)] if this expectation is finite,
and being otherwise an arbitrary positive real number. The deep valleys are defined
as the restriction of the potential to [ai, di].

We successively prove that

– deep valley are asymptotically disjoint and their exit times τ(bi, di) are asymptot-
ically i.i.d. (Section 6);
– the contribution to fluctuations of the crossing times of low excursions is negligible
(Section 7).

This second point constitutes a novelty with respect to previous works in that the
contribution of the crossing times of the numerous small excursions is not negligible
with respect to τ(x) (for 1 ≤ κ < 2) but only their fluctuations are, and for this
reason we have to control their covariances.

The behavior summarized above is emphasized in the following formulation which
lies at the core of the proof: under assumptions (a) and (b),

(3.2) W 1
ω

τ(x)− Eω[τ(x)]

x1/κ
,

1

x1/κ

K(x)∑
i=1

Eω[τ(bi, di)]ēi

 P−probability−→
x

0,

with ēi := ei − 1 where (ei)i are i.i.d. exponential random variables of parameter 1,
independent of ω, and K(x) := Kn(x) where n(x) is defined by (2.3).
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Note that the terms Eω[τ(bi, di)] can be made explicit, see (4.4). Hence, this formula
is well suited to derive practical information about τ(x) which for instance appears
as an unzipping time in [3].

4. Preliminaries

This section divides into three independent parts. The first part quickly recalls a
stationarity property of the potential when suitably conditioned on Z−, which is used
throughout the paper. The second one recalls usual formulas about random walks in
a one-dimensional potential. Finally, the last part adapts the main results from [6] in
the present context.

4.1. Environment on the left of 0. It will be convenient to extend the sequence
(ep)p≥0 to negative indices by letting

(4.1) ep−1 := sup{x < ep : ∀y < x, V (y) ≥ V (x)}, p ≤ 0.

The structure of the sequence (ep)p∈Z will be better understood after Lemma 1.

We extend accordingly the sequence (Hp)p≥0 of heights:

Hp := max
ep≤x≤ep+1

(V (x)− V (ep)) , p ∈ Z.

Note that the excursions (V (ep + x) − V (ep))0≤x<ep+1−ep , p ≥ 0, are i.i.d.. Also,
the intervals (ep, ep+1], p ∈ Z, stand for the excursions of the potential above its past
minimum, provided V (x) ≥ 0 when x ≤ 0.

By definition, the distribution of the environment is translation invariant. However,
the distribution of the “environment seen from ep”, i.e. of (ωep+x)x∈Z, depends on
p ∈ Z. When suitably conditioning the environment on Z−, this problem vanishes.

Let us define the conditioned probabilities

P≥0 := P ( · | ∀x ≤ 0, V (x) ≥ 0) and P≥0 := Pω × P≥0(dω).

Then the definition of ep for p < 0 implies classically the following useful property.

Lemma 1. Under P≥0, the sequence of excursions (V (ep + x) − V (ep))0≤x≤ep+1−ep,
p ∈ Z, is i.i.d.. In particular, the sequence of potentials (V (ep + x)− V (ep))x∈Z (and
thus of environments (ωep+x)x∈Z), p ∈ Z, is stationary under P≥0.

4.2. Quenched formulas. We recall here a few Markov chain formulas that are of
repeated use in the paper.

Quenched exit probabilities. For any a ≤ x ≤ b, (see [22], formula (2.1.4))

(4.2) Px,ω(τ(b) < τ(a)) =

∑
a≤y<x eV (y)∑
a≤y<b eV (y)

.

In particular,

(4.3) Pa+1,ω(τ(a) =∞) =

(∑
y≥a

eV (y)−V (a)

)−1

.

Thus P0,ω(τ(1) = ∞) =
(∑

x≤0 eV (x)
)−1

= 0, P -a.s. because V (x) → +∞ a.s. when

x → −∞, and P1,ω(τ(0) = ∞) =
(∑

x≥0 eV (x)
)−1

> 0, P -a.s. by the root test (using
E[log ρ0] < 0). This means that X is transient to +∞, P-a.s.
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Quenched expectation. For any a < b, P -a.s., (cf. [22])

Ea,ω[τ(b)] =
∑
a≤y<b

∑
x≤y

αxye
V (y)−V (x),(4.4)

where αxy = 2 if x < y, and αyy = 1. Thus, we have

(4.5) Ea,ω[τ(b)] ≤ 2
∑
a≤y<b

∑
x≤y

eV (y)−V (x)

and in particular

(4.6) Ea,ω[τ(a+ 1)] = 1 + 2
∑
x<a

eV (a)−V (x) ≤ 2
∑
x≤a

eV (a)−V (x).

Quenched variance. For any a < b, P -a.s., (cf. [1] or [12])

Vara,ω(τ(b)) = 4
∑
a≤y<b

∑
x≤y

eV (y)−V (x)(1 + eV (x−1)−V (x))

(∑
z<x

eV (x)−V (z)

)2

,(4.7)

from where we get, after expansion, change of indices and addition of a few terms,

Vara,ω(τ(b)) ≤ 16
∑
a≤y<b

∑
z′≤z≤x≤y

eV (y)+V (x)−V (z)−V (z′).(4.8)

4.3. Renewal estimates. In this section we recall and adapt results from [6], which
are very useful to bound finely the expectations of exponential functionals of the
potential.

Let us first observe that hypothesis (a) implies that e1 is exponentially integrable.
Indeed, for all x ∈ N, for any λ > 0, P (e1 > x) ≤ P (V (x) > 0) = P (eλV (x) > 1) ≤
E[eλV (x)] = E[ρλ0 ]x, and E[ρλ0 ] < 1 for any 0 < λ < κ by convexity of s 7→ E[ρs0].

Let R− :=
∑

x≤0 e−V (x). Then, Lemma 3.2 from [6] proves that

(4.9) E≥0[R−] <∞,
and that more generally all the moments of R− are finite under P≥0.

The study of “high excursions” involves the following key result of Iglehart [13]
which gives the tail probability of H (recall H := H0), namely

(4.10) P (H ≥ h) ∼ CI e−κh, h→∞,
where

CI :=
(1− E[eκV (e1)])2

κE[ρκ0 log ρ0]E[e1]
.(4.11)

Let us define
TH := min{x ≥ 0 : V (x) = H},

and

(4.12) M1 :=
∑
x<TH

e−V (x), M2 :=
∑

0≤x<e1

eV (x)−H .

Let Z := M1M2eH . Theorem 2.2 (together with Remark A.1) of [6] proves that

(4.13) P≥0(Z > t,H = S) ∼ CU t
−κ, t→∞,



10 N. ENRIQUEZ, C. SABOT, L. TOURNIER, AND O. ZINDY

where CU was defined after (2.4) (cf. also the sketch in Subsection 4.3 for heuristics).
While the condition {H = S} was natural in the context of [6], we will need to remark
that we may actually drop it.

Lemma 2. We have

P≥0(Z > t) ∼ CU t
−κ, t→∞.

The proof of this lemma is postponed to the Appendix, see Subsection 10.1. We
will often need moments involving rather

M ′
1 :=

∑
x<e1

e−V (x),

instead of M1(≤ M ′
1). The next result is an adaptation of Lemma 4.1 from [6] to

the present situation, together with (4.10), with a novelty coming from the difference
between M ′

1 and M1.

Lemma 3. For any α, β, γ ≥ 0, there is a constant C such that, for large h > 0,

(4.14) E≥0[(M ′
1)α(M2)βeγH |H < h] ≤

 C, if γ < κ,
Ch, if γ = κ,

Ce(γ−κ)h, if γ > κ,

and, if γ < κ,

(4.15) E≥0[(M ′
1)α(M2)βeγH |H ≥ h] ≤ Ceγh.

The proof of this lemma is technical and therefore postponed to the Appendix, see
Subsection 10.1. Let us now give an important application of Lemma 3.

Lemma 4. We have, for all h > 0, if 0 < κ < 1,

(4.16) E≥0
[
Eω[τ(e1)]1{H<h}

]
≤ Ce(1−κ)h

and, if 0 < κ < 2,

(4.17) E≥0
[
Eω[τ(e1)]21{H<h}

]
≤ Ce(2−κ)h.

Proof. Since, by (4.5), we have Eω[τ(e1)] ≤ 2M ′
1M2eH , the result follows directly from

Lemma 3. �

5. Exit time from a deep valley

This section aims at proving that the quenched law of the crossing time

τ := τ(e1)

of an excursion is close to that of Eω[τ ]e, where e is an exponential random variable
independent of ω, when the height H of the excursion is high. Let us give a precise
statement. Define the critical height

ht := log t− log log t, t ≥ ee.

Heuristics suggest (and it would follow from later results) that when H > ht, τ
is on the order of eH > t

log t
. Proposition 1 shows that the distance between τ and

Eω[τ ]e (for a suitable coupling) is no larger than tβ � t
log t

in quenched average when

H > ht, in agreement with our aim.
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Proposition 1. We may enlarge the probability space in order to introduce an ex-
ponential random variable e of parameter 1, independent of ω, such that, for some
β < 1, as t→∞,

(5.1) P≥0

(
Eω

[∣∣τ − Eω[τ ]e
∣∣] > tβ, H ≥ ht

)
= o(t−κ).

This proposition can equivalently be phrased, using (4.10), as

P≥0
(
W 1
ω

(
τ, Eω[τ ]e

)
> tβ

∣∣∣H ≥ ht

)
= o
( 1

log t

)
,

where e is an exponential random variable of parameter 1 independent of ω.

5.1. “Good” environments. The proof relies on a precise control of the geometry
of a typical valley, namely that it is not too wide and smooth enough. Let us define
the maximal “increments” of the potential in a window [x, y] by

V ↑(x, y) := max
x≤u≤v≤y

(V (v)− V (u)), x < y,

V ↓(x, y) := min
x≤u≤v≤y

(V (v)− V (u)), x < y.

Then, we introduce the following events

Ω
(1)
t := {e1 ≤ C log t} ,

Ω
(2)
t :=

{
max

{
− V ↓(0, TH), V ↑(TH , e1)

}
≤ α log t

}
,

Ω
(3)
t :=

{
R− ≤ (log t)4tα

}
,

where max{0, 1− κ} < α < min{1, 2− κ} is arbitrary, and R− is defined by

R− :=
−1∑

x=−∞

(
1 + 2

0∑
y=x+2

eV (y)−V (x+1)

)(
e−V (x+1) + 2

x−1∑
y=−∞

e−V (y+1)

)
.

We define the set of “good” environments at time t by

(5.2) Ωt := Ω
(1)
t ∩ Ω

(2)
t ∩ Ω

(3)
t .

By the following result, “good” environments are asymptotically typical on {H ≥ ht}.
Lemma 5. The event Ωt satisfies

P≥0(Ωc
t , H ≥ ht) = o(t−κ), t→∞.

The proof of this result is easy but technical and therefore postponed to the Ap-
pendix, see Subsection 10.2.

5.2. Preliminary results. In order to estimate finely the time spent in a deep val-
ley, we decompose the passage from 0 to e1 into the sum of a random geometrically
distributed number, denoted by N , of unsuccessful attempts to reach e1 from 0 (i.e.
excursions of the particle from 0 to 0 which do not hit e1), followed by a success-
ful attempt. More precisely, N is a geometrically distributed random variable with
parameter 1− p satisfying

(5.3) 1− p =
ω0∑e1−1

x=0 eV (x)
=

ω0

M2eH
,
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and we can write τ(e1) =
∑N

i=1 Fi + G, where the Fi’s are the durations of the
successive i.i.d. failures and G that of the first success. The accurate estimation of
the time spent by each (successful and unsuccessful) attempt leads us to consider
two h-processes where the random walker evolves in two modified potentials, one

corresponding to the conditioning on a failure (this potential is denoted by V̂ in [7],
page 2494) and the other to the conditioning on a success (denoted by V̄ in [7], page
2497). Note that this approach was first introduced by three of the authors in [7]
to estimate the quenched Laplace transform of the occupation time of a deep valley
in the case 0 < κ < 1. We refer to [7] for more details on these two h-processes.
Moreover, using the properties of “good” environments introduced above, we can
prove the following useful lemmata, whose proofs are postponed to the Appendix, see
Subsection 10.2.

Lemma 6. For all t ≥ 1, we have on Ωt

Varω(F ) ≤ C(log t)4tα,(5.4)

M2 ≤ C log t,(5.5)

|M̂1 −M1| ≤ o(t−δ)M1,(5.6)

with δ ∈ (0, 1− α) and where M̂1 is defined by the relation Eω [F ] = 2ω0 M̂1.

Lemma 7. For all t ≥ 1, we have on Ωt

Eω[G] ≤ C(log t)4tα.

5.3. Definition of the coupling. We recall here the coupling from [8] between the
quenched distribution of the random walk before time τ and an exponential random
variable e of parameter 1 independent of ω. Given ω and e, let us define

N :=

⌊
− 1

log(1− p(ω))
e

⌋
,

where p(ω) = P0,ω(τ(0) < τ(e1)) (cf. (5.3)). Note that, conditionally on ω, N is a
geometric random variable of parameter 1 − p, just like the number of returns to 0
before the walk reaches e1.

Given ω and e (and hence N), the random walk is sampled as usual as a Markov
chain, except that the number of returns to 0 is conditioned on being equal to N ,
which amounts to saying that when the walk reaches 0 for the first N times, it is
conditioned on coming back to 0 before reaching e1 (this is still a Markov chain,

namely the h-process associated to V̂ , see Subsection 5.2), while on the (N + 1)-th
visit of 0 it is conditioned on reaching e1 first (this is the h-process associated to V̄ ).
Due to the definition of N , the distribution of the walk given ω only is P0,ω.

5.4. Proof of Proposition 1. We consider the same decomposition as in Subsec-
tion 5.2, i.e. τ = F1 + · · ·+FN +G. By Wald identity, Eω[τ ] = Eω[N ]Eω[F ] +Eω[G].
Thus, we have∣∣τ − Eω[τ ]e

∣∣ ≤ ∣∣F1 + · · ·+ FN −NEω[F ]
∣∣+ Eω[F ]

∣∣N − Eω[N ]e
∣∣

+G+ Eω[G]e.
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Let us consider each term, starting with the last two (with same Pω-expectation): If
we choose β such that α < β < 1, then by Lemmas 7 and 5 we have, for large t,

P≥0
(
Eω[G] ≥ tβ

4
, H ≥ ht

)
≤ P≥0

(
(Ωt)

c, H ≥ ht
)

= o
(
t−κ
)
.(5.7)

We turn to the first one. Conditioning first on N (which is independent of (Fi)i) and
then applying Cauchy-Schwarz inequality, we have

Eω

[∣∣F1 + · · ·+ FN −NEω[F ]
∣∣] ≤ Eω

[
Varω

(
F1 + · · ·+ FN

∣∣N)1/2
]

= Eω
[
N1/2

]
Varω(F )1/2.

Furthermore, Eω[N1/2] ≤ Eω[N ]1/2 = ((1 − p)−1 − 1)1/2 ≤ (M2)1/2eH/2ω
−1/2
0 and

ω0 ≥ 1
2
, P≥0-almost surely. Thus, using Lemma 6 to bound Varω(F ) we get

P≥0

(
Eω

[∣∣F1 + · · ·+ FN −NEω[F ]
∣∣] > tβ

4
, H ≥ ht

)
≤ P≥0

(
(Ωt)

c, H ≥ ht
)

+ P≥0
(

(M2)1/2e
H
2 ≥ tβ−

α
2

C(log t)2
, H ≥ ht

)
.

As before, the first term is o(t−κ). And the second one is less than

P (M2 ≥ (log t)2, H ≥ ht) + P
(

e
H
2 ≥ tβ−

α
2

C(log t)3

)
≤ P (H ≥ ht)

(log t)2
E[M2|H ≥ ht] + P

(
eH ≥ t2β−α

C2(log t)6

)
.

Each term is o(t−κ) if we additionally impose 1+α
2
< β < 1, due to (4.15) and (4.10).

Finally, we have∣∣N − Eω[N ]e
∣∣ =

∣∣∣∣⌊ 1

− log(1− p)e

⌋
−
(

1

p
− 1

)
e

∣∣∣∣
≤
(

1 +

∣∣∣∣− 1

log(1− p) −
1

p

∣∣∣∣)e + 1,

and the function x 7→ − 1
log(1−x)

− 1
x

extends continuously on [0, 1] and is thus bounded

by a constant C, hence

P≥0
(
Eω[F ]Eω

[∣∣N − Eω[N ]e
∣∣] ≥ tβ

4
, H ≥ Pt

)
≤ P≥0

(
Eω[F ] ≥ tβ

4C
, H ≥ ht

)
≤ P≥0

(
(Ωt)

c, H ≥ ht
)

+
8CP (H ≥ ht)

tβ
E≥0[M1|H ≥ ht]

for large t, due to (5.6), recalling that Eω [F ] = 2ω0 M̂1 (see Lemma 6). We conclude
as before that this is negligible compared to t−κ.

Therefore, gathering all these estimates gives Proposition 1.
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6. Independence of the deep valleys

The independence between deep valleys goes through imposing these valleys to be
disjoint (i.e. ai > di−1 for all i) and neglecting the time spent on the left of a valley
while it is being crossed (i.e. the time spent on the left of ai before di is reached).

NB. All the results and proofs from this section hold for any parameter κ > 0.

For any integers x, y, z, let us define

τ̃ (z)(x, y) := #{τ(x) ≤ k ≤ τ(y) : Xk ≤ z},
the time spent on the left of z between the first visit to x and the first visit to y, and

τ̃ (z) := #{k ≥ τ(z) : Xk ≤ z},
the total time spent on the left of z after the first visit to z.

Let us consider the event

NO(n) := {0 < a1} ∩
Kn−1⋂
i=1

{di < ai+1},

which means that the large valleys before en lie entirely on Z+ and don’t overlap. The
following two propositions will enable us to reduce to i.i.d. deep valleys.

Proposition 2. We have
P (NO(n)) −→

n
1.

Proof of Proposition 2. Choose ε > 0 and define the event

AK(n) := {Kn ≤ (1 + ε)CI(log n)κ}.
Since Kn is a binomial random variable of mean nqn ∼n CI(log n)κ, it follows from
the law of large numbers that P (AK(n)) converges to 1 as n → ∞. On the other
hand, if the event NO(n)c occurs, then there exists 1 ≤ i ≤ Kn such that there is
at least one high excursion among the first Dn excursions to the right of di−1 (with
d0 = 0). Thus,

P (NO(n)c) ≤ P (AK(n)c) + (1 + ε)CI(log n)κ(1− (1− qn)Dn)

≤ o(1) + (1 + ε)CI(log n)κqnDn = o(1).

Indeed, for any 0 < u < 1 and α > 0, we have 1 − (1 − u)α ≤ αu by concavity of
u 7→ 1− (1− u)α. �

Proposition 3. Under P≥0,

1

n1/κ

Kn∑
i=1

Eω[τ̃ (ai)(bi, di)] =
1

n1/κ

n−1∑
p=0

Eω[τ̃ (ep−Dn ))(ep, ep+1)]1{Hp≥hn}
(p)−→
n

0.

Proof. The equality is trivial from the definitions. Note that the terms in the second
expression have same distribution under P≥0 because of Lemma 1. AsEω[τ̃ (e−Dn )(0, e1)]1{H≥hn}
is not integrable for 0 < κ ≤ 1, we introduce the event

An := {for i = 1, . . . , Kn, Hσ(i) ≤ V (ai)− V (bi)}

=
n−1⋂
p=0

{Hp < hn} ∪ {hn ≤ Hp ≤ V (ep−Dn)− V (ep)}.



QUENCHED LIMITS FOR TRANSIENT RWRE 15

Let us prove that our choice of Dn ensures P≥0((An)c) = on(1). By Lemma 1, we have
P≥0((An)c) ≤ nP≥0(H ≥ hn, H > V (e−Dn)). Then, let us choose 0 < γ′ < γ′′ < γ

(cf. (3.1)) and define ln := 1+γ′

κ
log n. We get

P≥0((An)c) ≤ n
(
P (H ≥ ln) + P (H ≥ hn)P≥0(V (e−Dn) < ln)

)
.(6.1)

Equation (4.10) gives P (H ≥ ln) ∼n CIe
−κln = CIn

−(1+γ′) and P (H ≥ hn) ∼n
CIn

−1(log n)κ. Under P≥0, V (e−Dn) is the sum of Dn i.i.d. random variables dis-
tributed like −V (e1). Therefore, for any λ > 0,

P≥0(V (e−Dn) < ln) ≤ eλlnE[e−λ(−V (e1))]Dn .

Since 1
λ

logE[e−λ(−V (e1))] → −E[−V (e1)] ∈ [−∞, 0) as λ → 0+, we can choose λ > 0

such that logE[e−λ(−V (e1))] < −λA1+γ′′

1+γ
(where A was defined after (3.1)), hence

E[e−λ(−V (e1))]Dn ≤ n−λ
1+γ′′
κ . Thus, P≥0(V (e−Dn) < ln) ≤ n−λ

γ′′−γ′
κ . Using these

estimates in (6.1) concludes the proof that P≥0((An)c) = on(1).

Let us now prove the proposition itself. By Markov inequality, for all δ > 0,

P≥0

(
1

n1/κ

n−1∑
p=0

Eω[τ̃ (ep−Dn )(ep, ep+1)]1{Hp≥hn} > δ

)

≤ P≥0((An)c) +
1

δn1/κ
E≥0

[
n−1∑
p=0

Eω[τ̃ (ep−Dn )(ep, ep+1)]1{Hp≥hn}1An

]
≤ on(1) +

n

δn1/κ
E≥0

[
Eω[τ̃ (e−Dn )(0, e1)]1{H≥hn, H<V (e−Dn )}

]
.(6.2)

Note that we have Eω[τ̃ (e−Dn )(0, e1)] = Eω[N ]Eω[T1], where N is the number of cross-
ings from e−Dn+1 to e−Dn before the first visit at e1, and T1 is the time for the random
walk to go from e−Dn to e−Dn + 1 (for the first time, for instance); furthermore, these
two terms are independent under P≥0. Using (4.2), we have

Eω[N ] =
P0,ω(τ(e−Dn) < τ(e1))

Pe−Dn+1,ω(τ(e1) < τ(e−Dn))
=
∑

0≤x<e1

eV (x)−V (e−Dn ) = M2eH−V (e−Dn ),

hence, on the event {H < V (e−Dn)}, Eω[N ] ≤M2.

The length of an excursion to the left of e−Dn is computed as follows, due to (4.6):

Eω[T1] = Ee−Dn ,ω[τ(e−Dn + 1)] ≤ 2
∑

x≤e−Dn

e−(V (x)−V (e−Dn )).

The law of (V (x)−V (e−Dn))x≤e−Dn under P≥0 is P≥0 because of Lemma 1. Therefore,

E≥0[Eω[T1]] ≤ 2E≥0

[∑
x≤0

e−V (x)

]
= 2E≥0[R−] <∞,

with (4.9). Then, we conclude that the right-hand side of (6.2) is less than on(1) +
2δ−1n1−1/κE≥0[R−]E[M21{H≥hn}]. Since Lemma 3 gives E[M21{H≥hn}] ≤ CP (H ≥
hn) ∼n C ′e−κhn = C ′n−1(log n)κ, this whole expression converges to 0, which con-
cludes the proof of the proposition. �
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7. Fluctuation of interarrival times

For any x ≤ y, recall that the inter-arrival time τ(x, y) between sites x and y is
defined by τ(x, y) = inf{n ≥ 0 : Xτ(x)+n = y}. Then, let

τIA :=
Kn∑
i=0

τ(di, bi+1 ∧ en) =
n−1∑
p=0

τ(ep, ep+1)1{Hp<hn},

(with d0 = 0) be the time spent at crossing small excursions before τ(en). The aim
of this section is the following bound on the fluctuations of τIA.

Proposition 4. For any 0 < κ < 2, under P≥0,

1

n1/κ
Eω

[∣∣τIA − Eω[τIA]
∣∣] (p)−→

n
0.(7.1)

This Proposition holds for 0 < κ < 1 in a simple way: we have, in this case, using
Lemmas 1 and 4,

E≥0[Eω[τIA]] = nE≥0[Eω[τ(e1)]1{H<hn}] ≤ nE≥0[2M ′
1M2eH1{H<hn}]

≤ Cne(1−κ)hn = o(n1/κ),

hence n−1/κEω[τIA] itself converges to 0 in L1(P≥0)-norm and thus in probability.

We now consider the case 1 ≤ κ < 2. The proposition will directly follow from the
fact that, under P≥0,

1

n2/κ
Varω(τIA)

(p)−→
n

0,

which in turn will come from Lemma 9 proving E≥0[Varω(τIA)] = o(n2/κ). However,
a specific caution is necessary in the case κ = 1; indeed, Varω(τIA) in not integrable
in this case, because of the rare but significant fluctuations originating from the time
spent by the walk when it backtracks into deep valleys. Our proof in this case consists
in proving first that we may neglect in probability (using a first-moment method) the
time spent backtracking into these deep valleys; and then that this brings us to the
computation of the variance of τIA in an environment where small excursions have
been substituted for the high ones (thus removing the non-integrability problem).

Subsection 7.1 is dedicated to this reduction to an integrable setting, which is
only involved in the case κ = 1 of Proposition 4 and of the theorems (but holds in
greater generality), while Subsection 7.2 states and proves the bounds on the variance,
implying Proposition 4.

7.1. Reduction to small excursions (required for the case κ = 1). Let h > 0.
Let us denote by d− the right end of the first excursion on the left of 0 that is higher
than h:

d− := max{ep : p ≤ 0, Hp−1 ≥ h}.
Remember τ̃ (d−)(0, e1) is the time spent on the left of d− before the walk reaches e1.

Lemma 8. There exists C > 0, independent of h, such that

(7.2) E≥0[τ̃ (d−)(0, e1)1{H<h}] ≤ C

 e−(2κ−1)h, if κ < 1,
he−h, if κ = 1,
e−κh, if κ > 1.
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Proof. Let us decompose τ̃ (d−)(0, e1) into the successive excursions to the left of d−:

τ̃ (d−)(0, e1) =
N∑
m=1

Tm,

where N is the number of crossings from d−+1 to d− before τ(e1), and Tm is the time
for the walk to go from d− to d−+1 on the m-th time. Under Pω, the times Tm, m ≥ 1,
are i.i.d. and independent of N (i.e., more properly, the sequence (Tm)1≤m≤N can be
prolonged to an infinite sequence with these properties). We have, using Markov
property and then (4.2),

Eω[N ] =
P0,ω(τ(d−) < τ(e1))

Pd−+1,ω(τ(e1) < τ(d−))
=
∑

0≤x<e1

eV (x)−V (d−)

and, from (4.6), Eω[T1] = Ed−,ω[τ(d− + 1)] ≤ 2
∑

x≤d− e−(V (x)−V (d−)). Therefore, by
Wald identity and Lemma 1,

E≥0[τ̃ (d−)(0, e1)1{H<h}] = E≥0[Eω[N ]Eω[T1]1{H<h}]

≤ 2E

[ ∑
0≤x<e1

eV (x)1{H<h}

]
E≥0[e−V (d−)]E

[∑
x≤0

e−V (x)

∣∣∣∣Λ(h)

]
,(7.3)

where Λ(h) := {∀x ≤ 0, V (x) ≥ 0}∩{H−1 ≥ h}. The first expectation can be written
as E[M2eH1{H<h}]. For the second one, note that d− = e−W , where W is a geometric
random variable of parameter q := P (H ≥ h); and, conditional on {W = n}, the
distribution of (V (x))e−W≤x≤0 under P≥0 is the same as that of (V (x))e−n≤x≤0 under
P≥0(·|for p = 0, . . . , n− 1, H−p < h). Therefore,

E≥0[e−V (d−)] = E≥0
[
E[e−V (e1)|H < h]W

]
=

q

1− (1− q)E[eV (e1)|H < h]
,

and (1 − q)E[eV (e1)|H < h] converges to E[eV (e1)] < 1 when h → ∞ (the inequality
comes from assumption (b)), hence this quantity is uniformly bounded from above
by c < 1 for large h. In addition, (4.10) gives q ∼ CIe

−κh when h → ∞, hence
E≥0[e−V (d−)] ≤ Ce−κh, where C is independent of h.

Finally, let us consider the last term of (7.3). We have

E

[∑
x≤0

e−V (x)

∣∣∣∣Λ(h)

]
= E

[ ∑
e−1<x≤0

e−V (x)

∣∣∣∣H−1 ≥ h

]
+ E≥0

[ ∑
x≤e−1

e−(V (x)−V (e−1))

]
E[e−V (e−1)]

≤ E[M ′
1|H ≥ h] + E≥0[R−]E[eV (e1)],

hence, using Lemma 3, (4.9) and V (e1) ≤ 0, this term is bounded by a constant.
The statement of the lemma then follows from the application of Lemma 3 to the
expectation E[M2eH1{H<h}]. �
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The part of the inter-arrival time τIA spent at backtracking in high excursions can
be written as follows:

τ̃IA := τ̃ (d−)(0, b1 ∧ en) +
Kn∑
i=1

τ̃ (di)(di, bi+1 ∧ en)

=
n−1∑
p=0

τ̃ (d(ep))(ep, ep+1)1{Hp<hn},

where, for x ∈ Z, d(x) := max{ep : p ∈ Z, ep ≤ x, Hp−1 ≥ hn}. In particular,
d(0) = d− in the previous notation with h = hn.

Note that, under P≥0, because of Lemma 1, the terms of the above sum have the
same distribution as τ̃ (d(0))(0, e1)1{H<hn}, hence

E≥0[τ̃IA] = nE≥0[τ̃ (d(0))(0, e1)1{H<hn}].

Thus, for E≥0[τ̃IA] to be negligible with respect to n1/κ, it suffices that the expectation
on the right-hand side be negligible with respect to n1/κ−1. In particular, for κ = 1,
it suffices that it converges to 0, which is readily seen from (7.2). Thus, for κ = 1,

(7.4) n−1/κ E≥0[τ̃IA] −→
n

0,

hence in particular n−1/κEω[τ̃IA] → 0 in probability under P≥0. Note that (7.4)
actually holds for any κ ≥ 1.

Let us introduce the modified environment, where independent small excursions are
substituted for the high excursions. In order to avoid obfuscating the redaction, we
will only introduce little notation regarding this new environment.

Let us enlarge the probability space in order to accommodate for a new family of
independent excursions indexed by N∗ × Z such that for all n, k the excursion with
index (n, k) has same distribution as (V (x))0≤x≤e1 under P ( · |H < hn). Thus we
are given, for every n ∈ N∗, a countable family of independent excursions lower than
hn. For every fixed n, we define the modified environment of height less than hn by
replacing all the excursions of V that are higher than hn by new independent ones
that are lower than hn. Because of Lemma 1, this construction is especially natural
under P≥0, where it has stationarity properties.

In the following, we will denote by P ′ the law of the modified environment relative
to the height hn given in the context (hence also a definition of (P≥0)′, for instance).

Remark. Repeating the proof done under P≥0 for (P≥0)′, we see that R− still has
all finite moments in the modified environment, and that these moments are bounded
uniformly in n. In particular, the bound for E≥0[(M ′

1)α(M2)βeγH1{H<hn}] given in

Lemma 3 is unchanged for (E≥0)′ (writing M ′
1 = R− +

∑
0≤x<e1 e−V (x) and using

(a+ b)α ≤ 2α(aα + bα)). On the other hand,

E ′[R] =
∞∑
p=0

E ′[eV (ep)]E ′

 ∑
ep≤x<ep+1

eV (x)−V (ep)


=
∞∑
p=0

E[eV (e1)|H < hn]pE[M2eH |H < hn],
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and E[eV (e1)|H < hn] ≤ c for some c < 1 independent of n because this expectation is
smaller than 1 for all n and it converges toward E[eV (e1)] < 1 as n → ∞. Hence, by
Lemma 3,

(7.5) if κ = 1, E ′[R] ≤ Chn.

This is the only difference that will appear in the following computations.

Assuming that d(0) keeps being defined with respect to the usual heights, (7.2) (with
h = hn) is still true for the walk in the modified environment. Indeed, the change
only affects the environment on the left of d(0), hence the only difference in the proof
involves the times Tm: in (7.3), one should substitute (E≥0)′ for E[·|Λ(h)], and this
factor is uniformly bounded in both cases because of the above remark about R−.

We deduce that the time τ̃IA
′, defined similarly to τ̃IA except that the excursions

on the left of the points d(ei) (i.e. the times similar to Tm in the previous proof) are
performed in the modified environment, still satisfies, for κ = 1,

(7.6) n−1/κ E≥0[τ̃IA
′] −→

n
0.

Note now that

(7.7) τ ′IA := τIA − τ̃IA + τ̃IA
′

is the time spent at crossing the (original) small excursions, in the environment where
the high excursions have been replaced by new independent small excursions. Indeed,
the high excursions are only involved in τIA during the backtracking of the walk to
the left of d(ei) for some 0 ≤ i < n. Assembling (7.4) and (7.6), it is equivalent (for
κ = 1) to prove (7.1) or

n−1/κEω

[∣∣τ ′IA − Eω[τ ′IA]
∣∣] (p)−→

n
0,

and it is thus sufficient to prove E≥0[Varω(τ ′IA)] = on(n2/κ).

7.2. Bounding the variance of τIA. Because of the previous subsection, Proposi-
tion 4 will follow from the next lemma.

Lemma 9. We have, for 1 < κ < 2,

(7.8) E≥0[Varω(τIA)] = on(n2/κ),

and, for 1 ≤ κ < 2,
E≥0[Varω(τ ′IA)] = on(n2/κ).

We recall that the second bound is only introduced to settle the case κ = 1; it
would suffice for 1 < κ < 2 as well, but introduces unnecessary complication. The
computations being very close for τIA and τ ′IA, we will write below the proof for τIA

and indicate line by line where changes happen for τ ′IA. Let us stress that, when
dealing with τ ′IA, all the indicator functions 1{H·<hn} (which define the small valleys)
would refer to the original heights, while all the potentials V (·) appearing along the
computation (which come from quenched expectations of times spent by the walk)
would refer to the modified environment.
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Proof. We have

(7.9) τIA =
n−1∑
p=0

τ(ep, ep+1)1{Hp<hn},

and by Markov property, the above times are independent under Po,ω. Hence

Varω(τIA) =
n−1∑
p=0

Varω(τ(ep, ep+1))1{Hp<hn}.

Under P≥0, the distribution of the environment seen from ep does not depend on p,
hence

(7.10) E≥0[Varω(τIA)] = nE≥0[Varω(τ(e1))1{H<hn}].

We use Formula (4.8):

(7.11) Varω(τ(e1))1{H<hn} ≤ 16
∑

z′≤z≤x≤y≤e1, 0≤y

eV (y)+V (x)−V (z)−V (z′)1{H<hn}.

Let us first consider the part of the sum where x ≥ 0. By noting that the indices
satisfy z′ ≤ x and z ≤ y, this part is seen to be less than (M ′

1M2eH)21{H<hn}. Lemma

3 shows that its expectation is less than Ce(2−κ)hn . For τ ′IA: The same holds, because
of the remark p. 18.

It remains to deal with the indices x < 0. This part rewrites as

(7.12)
∑

z′,z≤x<0

eV (x)−V (z)−V (z′) ·
∑

0≤y<e1

eV (y)1{H<hn}.

Since V|Z+ and V|Z− are independent under P , so are the two above factors. The
second one equals eHM21{H<hn}. Let us split the first one according to the excursion
[ep−1, ep) containing x; it becomes

(7.13)
∑
p≤0

e−V (ep−1)
∑

ep−1≤x<ep

eV (x)−V (ep−1)

(∑
z≤x

e−(V (z)−V (ep−1))

)2

.

We have V (ep−1) ≥ V (ep) and, under P≥0, V (ep) is independent of (V (ep + x) −
V (ep))x≤0 and thus of (V (ep−1 + x)− V (ep−1))x≤ep−ep−1 , which has same distribution
as (V (x))x≤e1 . Therefore, the expectation of (7.13) with respect to P≥0 is less than∑

p≤0

E≥0[e−V (ep)]E≥0

 ∑
0≤x<e1

eV (x)

(∑
z≤x

e−V (z)

)2


≤ (1− E[eV (e1)])−1E≥0[eH(M ′
1)2M2].

Thus the expectation of (7.12) with respect to P≥0 is bounded by

(1− E[eV (e1)])−1E≥0[eH(M ′
1)2M2]E≥0[eHM21{H<hn}].

From Lemma 3, we conclude that this term is less than a constant if κ > 1. The
part corresponding to x ≥ 0 therefore dominates; this finishes the proof of (7.8). For
τ ′IA: The first factor is (1− E[eV (e1)|H < hn])−1, which is uniformly bounded because
it converges to (1− E[eV (e1)])−1 <∞ and, using Lemma 3, the two other factors are
each bounded by a constant if κ > 1 and by Chn if κ = 1 (cf. again the remark p. 18).
Thus, the part corresponding to x ≥ 0 still dominates in this case.
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We have proved E≥0[Varω(τIA)] ≤ Cne(2−κ)hn . Since ne(2−κ)hn = n2/κ

(logn)2−κ
, this

concludes the proof of (7.8). �

7.3. A subsequent Lemma. The proof of (7.8) entails the following bound for the
crossing time of one low excursion:

Lemma 10. For all h > 0 we have, if 1 < κ < 2:

E≥0[Eω[τ(e1)2]1{H<h}] ≤ Ce(2−κ)h,

and similarly for (E≥0)′ if 1 ≤ κ < 2.

Proof. We have Eω[τ(e1)2] = Varω(τ(e1)) + Eω[τ(e1)]2. Equation (7.10) and the re-
mainder of the proof of (7.8) give:

E≥0[Varω(τ(e1))1{H<h}] ≤ Ce(2−κ)h.

Together with Lemma 4, this concludes the proof. �

8. Proof of theorems 1 and 2

Note that we first prove the results under P≥0. We will also prove (3.2) as a tool.

8.1. Joint coupling. Extending what we did in Subsection 5.3, we introduce an
i.i.d. family (ei)i≥1 of exponential random variables of parameter 1 and define, for
i ≥ 1,

Ni :=

⌊
− 1

log(1− pi(ω))
ei

⌋
,

where pi(ω) = Pbi,ω(τ(bi) < τ(di)). Since, by Markov property, the numbers of returns
to bi before the walk reaches di are independent given ω, conditioning these numbers
to be equal to Ni realizes a coupling, as in Subsection 5.3.

8.2. Reduction to one valley. The above coupling enables us to give the following
bound:

W 1
ω

(
τ(en)− Eω[τ(en)],

Kn∑
i=1

Eω[τ(bi, di)]ēi

)
≤ Eω

[∣∣τ(en)− Eω[τ(en)]−
Kn∑
i=1

Eω[τ(bi, di)]ēi
∣∣]

≤ Eω

[∣∣τIA − Eω[τIA]
∣∣]+

Kn∑
i=1

Eω

[∣∣τ(bi, di)− Eω[τ(bi, di)]ei
∣∣],
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where τIA is defined in Section 7 (note that for the Kn high excursions the centerings
simplify). We deduce, for all δ > 0,

P≥0

(
W 1
ω

(
τ(en)− Eω[τ(en)],

Kn∑
i=1

Eω[τ(bi, di)]ēi

)
> δn1/κ

)
≤ P≥0

(
Eω

[∣∣τIA − Eω[τIA]
∣∣] > δ

2
n1/κ

)
+ P≥0

( n−1⋃
p=0

{
Eω

[∣∣τ(ep, ep+1)− Eω[τ(ep, ep+1)]ep
∣∣]1{Hp≥hn} ≥ δ

2Kn

n1/κ
})

.

By Proposition 4, the first term is known to converge to 0 as n→∞ (using for κ = 1
the same reduction as in Section 7). By Lemma 1, the last term is bounded by

P
(
Kn ≥ 2(log n)κ

)
+ nP≥0

(
Eω

[∣∣τ − Eω[τ ]e
∣∣] ≥ δ

4(log n)κ
n1/κ, H ≥ hn

)
,

where τ and e stand for τ(e1) (= τ(b1, d1) on {H ≥ hn}) and e1. By the proof of
Proposition 2, the first probability goes to 0, when n tends to infinity. As for the
other probability, it follows from Proposition 1 with t = n1/κ that it is o(n−1).

This yields, under P≥0,

W 1
ω

(τ(en)− Eω[τ(en)]

n1/κ
,

1

n1/κ

Kn∑
i=1

Eω[τ(bi, di)]ēi

)
(p)−→
n

0,(8.1)

which is the statement of (3.2) along the random subsequence x = en, and under P≥0

instead of P . Before proceeding to the interpolation from en to any x, let us show
how the statements of Theorems 1 and 2 can be quickly deduced from (8.1), modulo
the same restriction.

8.3. Addition of small excursions and independence of the high ones. More
specifically, if (with a convenient abuse of notation) we complete the i.i.d. sequence
(ēi)i≥1 to an i.i.d. sequence (ēp)p≥0 such that ēi = ēp for p = σ(i), the only addition
in Theorem 1 is the following term which we shall prove is negligible:

(8.2)
1

n1/κ

n−1∑
p=0

Zp1{Hp<hn}ēp,

where we define
Zi := Eω[τ(ei, ei+1)], i ≥ 0.

Note that (Zi)i≥0 is a stationary sequence under P≥0 (cf. Lemma 1).

For 0 < κ < 1, it suffices to note that the L1(Pω)-norm of this term is bounded by
n−1/κEω[τIA], (since Eω[|ēp|] = 2/e < 1), which converges to 0 in L1(P ) and thus in
probability in this case (cf. after Proposition 4).

For 1 < κ < 2, let us write that the L1(Pω)-norm of (8.2) is bounded, using
Cauchy-Schwarz inequality, by

1

n1/κ
Varω

( n−1∑
p=0

Zp1{Hp<hn}ēp

)1/2

=
1

n1/κ

( n−1∑
p=0

Z2
p1{Hp<hn}

)1/2

,
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hence

P≥0

(
Eω

[∣∣∣ 1

n1/κ

n−1∑
p=0

Zp1{Hp<hn}ēp

∣∣∣] ≥ δ

)
≤ 1

δ2n2/κ
nE≥0

[
Eω[τ ]21{H<hn}

]
.

Lemma 4 then shows that the last expectation is less than Cn
2
κ
−1(log n)−(2−κ) so that

the right-hand side converges to 0.

For κ = 1, we do the same as for κ > 1, by means of the reduction to the modified
environment (cf. Subsection 7.1): the decomposition τIA = τ ′IA − τ̃IA + τ̃IA

′ of (7.7)
induces a decomposition similar to (8.2) (with the only addition of quenched expec-
tations and weights). The terms corresponding to τ̃IA and τ̃IA

′ are neglected using
their first moment by the results (7.4) and (7.6) in Subsection 7.1, thus reducing the
problem to the modified environment, where Lemma 10 applies. This would conclude
the proof of Theorem 1, up to the previous restrictions.

To deduce Theorem 2 (along the random subsequence x = en and under P≥0) from
(8.1), we have to replace Zσ(i) = Eω[τ(bi, di)], i = 1, . . . , Kn, by independent terms
having the same distribution, and to add new terms corresponding to small excursions,

just like above but independent of each other. Note that the new independent terms Ẑp
will depend on n, even though their distribution doesn’t, which explains the wording
of Theorem 2.

To this aim, let us enlarge the probability space (Ω×ZN,B,P≥0) in order to intro-

duce a sequence (ω(p), (X
(p)
t )t∈N)p≥0 of environments and random walks coupled with

ω in the following way, for p ≥ 0:

– if Hp < hn, then ω(p) is an independent environment sampled according to the
distribution P≥0(·|H < hn);
– if Hp ≥ hn, i.e. p = σ(i) for some i ≥ 1, then ω(p) is built from the piece of ω
from di−1 + 1 to di, translated so that bi is now at 0, and bordered by independent
environments with law P on the right and law P≥0(·|H−1 ≥ hn, V|Z− ≥ −Ai) on the
left where Ai := V (di−1)− V (bi) (function of ω);

– for all p ≥ 0, conditionally on ω(p), (X
(p)
t )t∈N has law Pω(p) .

Due to the independence between the excursions of ω under P≥0, the sequence
(ω(p))p≥0 is seen to be independent. Furthermore, for every p ≥ 0, the construc-
tion ensures that ω(p) follows the law P≥0. We will denote with a superscript (p) the
quantities relative to ω(p) instead of ω.

We may thus introduce

Ẑp := Eω[τ (p)(e
(p)
1 )], p ≥ 0,

which is defined like Z1(:= Eω[τ(e1)]) but relatively to (ω(p), X(p)) instead of (ω,X).

By the previous claims, (Ẑp)p≥0 is a sequence of i.i.d. random variables distributed
like Z1 under P≥0.

For i ≥ 1, to compare Zσ(i) with Ẑσ(i), we further decompose

Zσ(i) =: Z̃σ(i) + Z∗σ(i) and Ẑσ(i) =:
̂̃
Zσ(i) + Ẑ∗σ(i),

where we let Z̃σ(i) := Eω[τ̃ (ai)(bi, di)] and similarly
̂̃
Zσ(i) is defined likeEω[τ̃ (e−Dn )(0, e1)]

with respect to ω(σ(i)) instead of ω, so that Z∗σ(i) is the quenched expectation of the
time to go from bi to di for a random walk reflected at ai and thus only depends on the
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environment between ai and di. Using this last remark, it is important to note that,

on the event NO(n) (cf. Proposition 2), Z∗σ(i) and Ẑ∗σ(i) are equal for i = 1, . . . , Kn.

Indeed, since P (NO(n))→n 1, this gives us directly

(8.3) W 1
ω

( 1

n1/κ

Kn∑
i=1

Z∗σ(i)ēσ(i),
1

n1/κ

Kn∑
i=1

Ẑ∗σ(i)ēσ(i)

)
(p)−→
n

0.

In addition, Proposition 3 and the triangular inequality give

(8.4) W 1
ω

( 1

n1/κ

Kn∑
i=1

Z̃σ(i)ēσ(i), 0
)

(p)−→
n

0.

It remains to prove that the same holds for
̂̃
Zσ(i) in order to get (8.1) with Ẑ(σ(i)) in

place of Z(σ(i)). And finally Theorem 2 will be proved (under the above-mentioned
restrictions) if furthermore the small independent excursions may be harmlessly in-
troduced, i.e. if

(8.5) W 1
ω

( 1

n1/κ

n−1∑
p=0

Ẑpēp1{H(p)<hn}, 0
)

(p)−→
n

0.

These two facts are given by the following Lemma.

Lemma 11. We have, under P≥0,

1

n1/κ

n−1∑
p=0

̂̃
Zp1{H(p)≥hn}

(p)−→
n

0

and

(8.6)
1

n1/κ

n−1∑
p=0

Ẑp1{H(p)<hn}ēp
(p)−→
n

0.

Proof. These results follow respectively from the proofs of Proposition 3 and (8.2),

made easier by the independence of the random variables Ẑ0, . . . , Ẑn−1. More precisely,
the proof of Proposition 3 holds in this i.i.d. context almost without a change, while
the above derivation of (8.2) did not involve the correlation between Z0, . . . , Zn−1 in
any way, hence the proof may as well be conducted for independent copies. �

8.4. Interpolation from τ(en) to τ(x). We now replace the subsequence τ(en) by
the whole sequence τ(x). We write the proof in the setting of Theorem 1, from which
the other cases follow, up to very minor modifications.

Choose 1
2
< α < min{1, 1

κ
}. For x ∈ N, we define the following event about the

environment:

Ax :=
{
e⌊x−xα

E[e1]

⌋ < x < e⌊x+xα
E[e1]

⌋}.(8.7)

Since α > 1
2
, it follows from the central limit theorem, applied to the i.i.d. sequence

(en+1 − en)n, that

P (Ax)→ 1, x→∞.(8.8)
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Starting from the version of Theorem 1 we have obtained so far, i.e. for every δ > 0,

P≥0

(∣∣∣τ(en)− Eω[τ(en)]−
n−1∑
p=0

Eω[τ(ep, ep+1)]ēp

∣∣∣ > δn1/κ

)
−→
n

0,

the limit still holds along the deterministic subsequences

n−x :=

⌊
x− xα
E[e1]

⌋
and n+

x :=

⌊
x+ xα

E[e1]

⌋
,

and according to (8.8) it is legitimate to restrict to the event Ax in the above proba-
bility for n = n±x . From that remark and n±x ∼x x

E[e1]
, we conclude that the result of

Theorem 1 will follow from (under P≥0)

1

x1/κ
Eω

[∣∣τ(x)− τ(en+
x

)
∣∣] (p)−→

x
0,

1

x1/κ

∣∣∣Eω[τ(x)]− Eω[τ(en+
x

)]
∣∣∣ (p)−→

x
0,

the corresponding limits for n−x and

1

x1/κ

∑
n−x ≤p≤n+

x

Eω[τ(ep, ep+1)]ēp
(p)−→
x

0.

Of course the second limit will follow from the first one. Furthermore on Ax we have

Eω

[∣∣τ(x)− τ(en±x )
∣∣] ≤ Eω

[
τ(en+

x
)− τ(en−x )

]
=

∑
n−x ≤p<n+

x

Eω[τ(ep, ep+1)],

so that the three limits will come as a consequence of the following application of
Markov inequality:

P≥0

( ∑
n−x ≤p≤n+

x

Eω[τ(ep, ep+1)] > δx1/κ

)

≤ P (∃n−x ≤ p ≤ n+
x , Hp ≥ hx) +

n+
x − n−x + 1

δx1/κ
E≥0

[
Eω[τ(e1)], H < hx

]
≤ 2xα

E[e1]
P (H ≥ hx) +

2xα + 1

δx1/κ
E≥0[2M ′

1M2eH , H < hx].

By (4.10) and α < 1, the first term goes to 0. By Lemma 3 and since α < 1
κ
, the

second term goes to 0 as well. This proves Theorem 1, under P≥0.

8.5. Conclusion. Let us finally discuss the change of probability from P≥0 to P .
In fact, it suffices to note that the quenched expectation of the time spent on Z− is
finite a.s. under P and P≥0, which follows from (4.3) and (4.6) (and E[log ρ] < 0)
since this expectation is E0,ω[τ(1)]P1,ω(τ(0) =∞)−1. This ends the proof of (3.2) and
Theorems 1 and 2.

Note that the tail estimate (2.4) of Ẑi (i.e. of Eω[τ(e1)] under P≥0) given in The-
orem 2, while not being exactly a consequence of Lemma 2, follows simply from it.

Indeed, the expression Eω[τ(e1)] = Eω[N ]Eω[F ] + Eω[G] = 2eHM̂1M2 + Eω[G], to-
gether with (5.6) and Lemma 7, gives the following, for some α < 1 and δ > 0:

P≥0
(

2Z ≥ t

1 + o(t−δ)

)
≤ P≥0(Eω[τ(e1)] ≥ t) ≤ P≥0(Ωc

t)+P
≥0
(

2Z ≥ t− C(log t)4tα

1 + o(t−δ)

)
,

and P≥0(Ωc
t) = o(t−κ) by Lemma 5 hence, with Lemma 2,

(8.9) P≥0
(
Eω[τ(e1)] ≥ t

)
∼ 2κCU t

−κ, t→∞.
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9. Proof of Corollary 1

We show here how Corollary 1 follows from Theorem 2. With the notations of this
theorem, it suffices to prove

L

(
1

x1/κ

x∑
p=1

Ẑpēp

∣∣∣∣∣(Ẑp)p≥1

)
W1

−→
x

L

(
∞∑
p=1

ξpēp

∣∣∣∣∣(ξp)p≥1

)
in law,

where (Ẑp)p≥1 are i.i.d., independent of (ēp)p≥1, such that P (Ẑ1 > t) ∼ 2κCU t
−κ, and

(ξp)p≥1 is a Poisson point process of intensity 2κCU κu
−(κ+1)u. , independent of (ēp)p≥1.

This reduction comes from the following easy property.

Lemma 12. If random variables (Xn)n, (Yn)n and Y take values in a metric space
(E, d), d(Xn, Yn)→n 0 in probability and Yn →n Y in law imply Xn →n Y in law.

Let us recall a simple result about order statistics of heavy-tailed random variables.

Proposition 5. Let (Zi)i≥1 be i.i.d. copies of a random variable Z ≥ 0 such that

(9.1) P (Z > t) ∼ CZt
−κ, t→∞,

for some constant CZ > 0. Then, if for every n ≥ 1 we denote by Z
(1)
n ≥ · · · ≥ Z

(n)
n

an ordering of the finite subsequence (Z1, . . . , Zn), we have, for every k ≥ 1,

1

n1/κ
(Z(1)

n , . . . , Z(k)
n )

law−→
n

(ξ(1), . . . , ξ(k)),

where ξ(k) = C
1/κ
Z (f1 + · · · + fk)

−1/κ for k ≥ 1, (fk)k being i.i.d. exponential random
variables of parameter 1 (cf. (2.5)).

Proof. Let Y
(i)
n := nCZ(Z

(i)
n )−κ, and Yn = nCZ(Z1)−κ. From (9.1) we deduce nP (Yn ∈

[a, b])→n b− a for all 0 < a < b. Then, for all t1, . . . , tk > 0,

P (t1 < Y (1)
n < t2 < Y (2)

n < · · · < tk < Y (k)
n )

= n(n− 1) · · · (n− (k − 1) + 1)P (Yn ∈ [t1, t2]) · · ·P (Yn ∈ [tk−1, tk])P (Yn /∈ [0, tk])
n−k

→n (t2 − t1) · · · (tk − tk−1)e−tk = P (t1 < f1 < t2 < f1 + f2 < · · · < tk < f1 + · · ·+ fk),

by a simple computation, from where the proposition follows. �

Thanks to the previous lemma and Skorohod’s representation theorem, there ex-

ists a copy (ξ̃(p))p≥1 of (ξ(p))p≥1 and, for all k ≥ 1, there exist random variables

(Z̃
(1)
k,n, . . . , Z̃

(k)
k,n)n≥k such that (borrowing notation from the lemma) for every n ≥ k

(Z̃
(1)
k,n, . . . , Z̃

(k)
k,n) is a copy of (Ẑ

(1)
n , . . . , Ẑ

(k)
n ), and

1

n1/κ
(Z̃

(1)
k,n, . . . , Z̃

(k)
k,n)

(p)−→
n

(ξ̃(1), . . . , ξ̃(k)).

We chose (ξ̃(p))p≥1 not depending on k to ease notation but this is unessential since

we only need to understand the convergences in probability Xn
(p)−→
n

X as properties

of the law of (Xn, X) for every n, no matter on which space Ωn this couple is defined.

We may also introduce additional random variables (Z̃
(k+1)
k,n , . . . , Z̃

(n)
k,n)n≥1 such that

for every n (Z̃
(1)
k,n, . . . , Z̃

(n)
k,n) is a copy of (Ẑ

(1)
n , . . . , Ẑ

(n)
n ).
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Then, by a diagonal argument, we can define (Z̃
(p)
n )1≤p≤n such that, for every n,

(Z̃
(p)
n )1≤p≤n is a copy of (Z

(1)
n , . . . , Z

(n)
n ) and, for every k,

(9.2)
1

n1/κ
(Z̃(1)

n , . . . , Z̃(k)
n )

(p)−→
n

(ξ̃(1), . . . , ξ̃(k)).

Indeed, there is an increasing sequence (N(k))k such that for all k ≥ 1, for n ≥ N(k),

P
(∥∥∥ 1

n1/κ
(Z̃

(1)
k,n, . . . , Z̃

(k)
k,n)− (ξ̃(1), . . . , ξ̃(k))

∥∥∥
1
>

1

k

)
<

1

k
,

(hence the same bound holds also for the first k′ ≤ k components) and then we define,

for n ≥ N(1) and 1 ≤ p ≤ n, Z̃
(p)
n = Z̃

(p)
k,n where k is given byN(k) ≤ n < N(k+1); and

for instance Z̃
(p)
n = Z̃

(p)
1,n when 1 ≤ p ≤ n < N(1). This is easily seen to satisfy (9.2).

We have, for all n ≥ k,

W 1
Z̃,ξ̃

(
n∑
p=1

Z̃
(p)
n

n1/κ
ēp,

∞∑
p=1

ξ̃(p)ēp

)
≤ EZ̃,ξ̃

[∣∣∣∣∣
n∑
p=1

Z̃
(p)
n

n1/κ
ēp −

∞∑
p=1

ξ̃(p)ēp

∣∣∣∣∣
]

≤ EZ̃

[∣∣∣∣∣
n∑

p=k+1

Z̃
(p)
n

n1/κ
ēp

∣∣∣∣∣
]

+ EZ̃,ξ̃

[∣∣∣∣∣
k∑
p=1

(
Z̃

(p)
n

n1/κ
− ξ̃(p)

)
ēp

∣∣∣∣∣
]

+ Eξ̃

[∣∣∣∣∣
∞∑

p=k+1

ξ̃(p)ēp

∣∣∣∣∣
]

≤

√√√√ n∑
p=k+1

( Z̃(p)
n

n1/κ

)2

+
k∑
p=1

∣∣∣∣∣ Z̃(p)
n

n1/κ
− ξ̃(p)

∣∣∣∣∣+

√√√√ ∞∑
p=k+1

(
ξ̃(p)
)2

,(9.3)

using E[|ēp|] = 2/e ≤ 1 and the inequality E[|W |]2 ≤ E[W 2] = Var(W ) for any
centered random variable W . Let εk > 0 be such that k−1/κ � εk � 1, when k →∞.
Since Ẑ

(k)
n ≥ Ẑ

(p)
n for p ≥ k,

P

(√√√√ n∑
p=k+1

( Ẑ(p)
n

n1/κ

)2

≥ δ

3

)
≤ P

(
Ẑ

(k)
n

n1/κ
≥ εk

)
+ P

( n∑
p=1

( Ẑp
n1/κ

)2

1
{ Ẑp

n1/κ
<εk}
≥
(δ

3

)2
)

≤ P

(
Ẑ

(k)
n

n1/κ
≥ εk

)
+

9

δ2
nE

[( Ẑ1

n1/κ

)2

1
{ Ẑ1

n1/κ
<εk}

]
,

hence, using (9.2) and (2.4), for all δ > 0,

lim sup
n

P

(√√√√ n∑
p=k+1

( Ẑ(p)
n

n1/κ

)2

≥ δ

3

)
≤ P (ξ(k) ≥ εk) +

9

δ2

2C

2− κε
1−κ

2
k =: ϕδ(k),

where C > CZ := 2κCU is arbitrary. Note that ϕδ(k) →k 0 due to the choice of
εk and to (2.6). We also have, respectively because of (9.2) and of

∑
p(ξ

(p))2 < ∞
a.s. (cf. (2.6)),

lim
n
P
( k∑
p=1

∣∣∣∣∣ Z̃(p)
n

n1/κ
− ξ̃(p)

∣∣∣∣∣ ≥ δ

3

)
= 0 and P

(√√√√ ∞∑
p=k+1

(ξ(p))
2 ≥ δ

3

)
=: ψδ(k) = ok(1).

Thus, from (9.3), for all δ > 0,

lim sup
n

P

(
W 1
Z̃,ξ̃

(
n∑
p=1

Z̃
(p)
n

n1/κ
ēp,

∞∑
p=1

ξ̃(p)ēp

)
≥ δ

)
≤ ϕδ(k) + ψδ(k)→k 0.
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Thanks to our diagonal argument, the left-hand side does not depend on k. Thus,

L

(
n∑
p=1

Z̃
(p)
n

n1/κ
ēp

∣∣∣∣∣ (Z̃(p)
n )1≤p≤n

)
W 1

−→
n

L

(
∞∑
p=1

ξ̃(p)ēp

∣∣∣∣∣ ξ̃
)

in probability,

and therefore in law. Since the convergence in law only deals with the laws of Z̃n for

n ≥ 1 and of ξ̃ (and not on their coupling), this concludes the proof of Corollary 1.

Finally, we mention that the expression of the parameter λ obtained for Dirichlet
environments (i.e. when ω0 has a distribution Beta(α, β), with 0 < α − β < 2) can
be easily deduced from a computation of CK by Chamayou and Letac [2] (see [7] for
more details).

10. Appendix

10.1. Proofs of Lemma 2 and Lemma 3.

Proof of Lemma 2. Comparing to (4.13), it suffices to prove that P≥0(Z > t, S >
H) = o(t−κ), which is understood as follows: when Z is large, the height H of the
first excursion tends to be large as well while the other excursions are independent
of Z, hence H gets likely to be the maximum S of V over all of Z+. More precisely:
first, for `t > 0,

P≥0(Z > t,H < `t) ≤ P≥0(M1M2 > te−`t) ≤ E≥0[(M1M2)2]

(te−`t)2
,

and all moments of M1M2 are finite under P≥0 (indeed, M2 ≤ e1, M1 ≤ e1 +R− and
the random variables e1 and R− have all moments finite under P≥0, cf. Subsection 4.3
and (4.9)). Thus if (recalling that κ < 2) we choose `t such that `t → ∞ and
tκ = o(t2e−2`t) as t →∞, we have P≥0(Z > t,H < `t) = o(t−κ). On the other hand,
Z is independent of S ′ := supx≥e1(V (x)− V (e1)) which is larger than S on the event
{H < S}, hence

P≥0(Z > t,H < S) = P≥0(Z > t,H ≥ `t, H < S) + o(t−κ)

≤ P≥0(Z > t)P≥0(S ′ > `t) + o(t−κ)

= P≥0(Z > t)o(1) + o(t−κ),

as t→∞, such that, using (4.13),

P≥0(Z > t) = P≥0(Z > t,H = S) + P≥0(Z > t,H < S)

= CU t
−κ + o(t−κ) + P≥0(Z > t)o(1) + o(t−κ),

which implies the lemma. �

Proof of Lemma 3 . The very first bound results simply from E≥0[(M ′
1)α(M2)βeγH ] <

∞ when γ < κ (by monotone convergence), where this integrability is a consequence,
via Hölder inequality, of the fact that all the moments of M ′

1 and M2 are finite under
P≥0 (because M ′

1 ≤ R−+ e1 and M2 ≤ e1), and of the fact that, due to (4.10), eH has
moments up to order κ (not included). Let us turn to the other bounds.

Note that, if M ′
1 and M2 were positive constants, then the bounds would follow by

an elementary computation from the tail estimate (4.10) and the classical formulas

E[eγH1{H≥h}] = eγhP (H ≥ h) +

∫ ∞
h

γeγuP (H ≥ u)u.
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and E[eγH1{H<h}] = 1− eγhP (H ≥ h) +
∫ h

0
γeγuP (H ≥ u)u. .

As recalled in Section 3, it was proved in [6] that indeed M1 and M2 depend little
on H, in that (Lemma 4.1 of [6]) for any integer r > 0 there is a constant C such that

(10.1) E≥0
[
(M1)r

∣∣bHc, H = S
]
≤ C,

and similarly for M2 (due to a symmetry property under P≥0(· |H = S), see Lemma
3.4 in [6]). Admitting that furthermore

(10.2) E≥0
[
(M ′

1)r
∣∣bHc, H = S

]
≤ C,

we would first obtain by Cauchy-Schwarz inequality that, letting M := (M ′
1)α(M2)β,

E≥0[M |bHc, H = S] ≤ E≥0[(M ′
1)2α|bHc, H = S]1/2E≥0[(M2)2β|bHc, H = S]1/2 ≤ C,

and, using conditioning on bHc, we conclude that

E≥0[MeγH1{H<h}|H = S] ≤ C ′E[eγ(bHc+1)1{bHc<h}] ≤ C ′′E[eγH1{H<h+1}],

and similarly E≥0[MeγH1{H≥h}|H = S] ≤ C ′′E[eγH1{H≥h−1}] which brings us back to
the situation where M ′

1 and M2 would be constants. Thus, it remains to prove (10.2)
and, first, justify why introducing the convenient condition {H = S} is harmless.

Like in Lemma 2, the condition {H = S} is typically satisfied when H is large;
thus it suffices to note that the contribution to the expectations of small values of H
is not too significant. Let ` = `(h) := 1

γ
log h. We have

(10.3) E≥0[MeγH1{H<h}] ≤ E≥0[M ]h+ E≥0[MeγH1{H<h,H>`}].

Since M and H are independent of S ′ := supx≥e1 V (x)− V (e1), and {S > H > `} ⊂
{S ′ > `}, we have on the other hand

E≥0[MeγH1{H<h,H>`}1{S>H}] ≤ E≥0[MeγH1{H<h}]P (S ′ > `)

and P (S ′ > `) = o(1) when h→∞, hence substracting this quantity to (10.3) gives

E≥0[MeγH1{H<h}](1 + o(1)) ≤ E≥0[M ]h+ E≥0[MeγH1{H<h}1{H=S}].

Given that P (H = S) > 0, and h ≤ e(γ−κ)h for large h when γ > κ, it thus suffices to
prove the last two bounds of (4.14) with E≥0[MeγH |H < h,H = S] as the left-hand
side. As for (4.15), the introduction of ` is useless to prove similarly (skipping (10.3))
that we may condition by {H = S}.

Let us finally prove (10.2). Let r > 0. We have M ′
1 = M1 +

∑
TH<x<e1

e−V (x). It

results from Lemma 3.4 of [6] that (H,
∑

TH≤x<e1 e−V (x)) has same distribution under

P≥0(·|H = S) as (H,
∑

T−H<x≤0 eV (x)−H) where T−H := sup{x ≤ 0 : V (x) > H}, and

we claim that there is C ′r > 0 such that, for all N ∈ N,

(10.4) E

( ∑
T−N<x≤0

eV (x)

)r ≤ C ′re
rN .

Before we prove this inequality, let us use it to conclude that

E≥0[(M ′
1)r|bHc, H = S] ≤ 2r

(
E≥0[(M1)r|bHc, H = S] + e−rbHcCer(bHc+1)

)
≤ C ′.(10.5)
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For readibility reasons, we write the proof of (10.4) when r = 2, the case of higher
integer values being exactly similar and implying the general case (if 0 < r < s,
E[Xr] ≤ E[Xs]r/s for any positive X). We have

(10.6) E

( ∑
T−N<x≤0

eV (x)

)2
 ≤ ∑

0≤m,n<N

en+1em+1E[ν([n, n+ 1))ν([m,m+ 1))],

where ν(A) := #{x ≤ 0 : V (x) ∈ A} for all A ⊂ R. For any n ∈ N, Markov property
at time sup{x ≤ 0 : V (x) ∈ [n, n+1)} implies that E[ν([n, n+1))2] ≤ E[ν([−1, 1))2].
This latter expectation is finite because V (1) has a negative mean and is exponentially
integrable; more precisely, ν([−1, 1)) is exponentially integrable as well: for λ > 0,
for all x ≥ 0, P (V (−x) < 1) ≤ eλE[eλV (1)]x = eλE[ρλ]x hence, choosing λ > 0 small
enough so that E[ρλ] < 1 (cf. Assumption (a)), we have, for all p ≥ 0,

P (ν([−1, 1)) > p) ≤ P (∃x ≥ p s.t. V (−x) < 1)

≤
∑
x≥p

P (V (−x) < 1) ≤ eλ(1− E[ρλ])−1E[ρλ]p.

Thus, using Cauchy-Schwarz inequality to bound the expectations uniformly, the
right-hand side of (10.6) is less than Ce2N for some constant C. This proves (10.4)
and therefore conclude the proof of Lemma 3. �

10.2. Proofs of Lemma 5, Lemma 6 and Lemma 7.

Proof of Lemma 5. By the union bound the proof of Lemma 5 boils down to showing
that for i = 1, 2, 3,

P ((Ω
(i)
t )c, H ≥ ht) = o(t−κ), t→∞.

The case i = 1 is trivial. Indeed, the fact that e1 has some finite exponential

moments (see Subsection 4.3) implies that P ((Ω
(1)
t )c) = o(t−κ) when t tends to infinity

(for C large enough). The case i = 2 can be proved by a minor adaptation of the
proof of Lemma 5.5 in [7].

Let us consider the last case i = 3. Since R− depends only on {V (x), x ≤ 0}, and
P (H > ht) ∼ CIt

−κ(log t)κ when t → ∞, it suffices to prove P≥0(R− > (log t)4tα) =
o((log t)−κ). This would follow (for any α > 0) from Markov property if E≥0[R−] <∞.
We have (changing indices and incorporating the single terms into the sums):

R− =
∑
x≤0

(
1 + 2

∑
x<y≤0

eV (y)−V (x)

)(
e−V (x) + 2

∑
z≤x−1

e−V (z)

)
≤ 4

∑
z≤x≤y≤0

eV (y)−V (x)−V (z),(10.7)

and this latter quantity was already seen to be integrable under P≥0, after (7.12),
when 1 < κ < 2. In order to deal with the case 0 < κ ≤ 1, let us introduce the event

At =
∞⋂
p=1

{H−p <
1

κ
log p2 + log t+ log log t}.
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On one hand, by (4.10), P ((At)
c) ≤∑∞p=1

C
p2(t log t)κ

=
(∑∞

p=1
C
p2

)
t−κ

(log t)κ
= o(t−κ). On

the other hand, proceding like after (7.12),

E≥0[R−1At ] ≤ 4
∑
p≤0

E≥0[e−V (ep)]E≥0[(M ′
1)2M2eH1{H< 1

κ
log p2+log t+log log t}]

and E≥0[e−V (ep)] = E[eV (e1)]p hence, using Lemma 3, when 0 < κ < 1,

E≥0[R−1At ] ≤ 4

(∑
p≤0

E[eV (e1)]p
1

(p2)(1−κ)/κ

)
(t log t)1−κ ≤ C(t log t)1−κ,

and when κ = 1,

E≥0[R−1At ] ≤ 4
∑
p≤0

E[eV (e1)]p
(

1

κ
log p2 + log t+ log log t

)
≤ C log t.

Finally, by Markov inequality,

P≥0(R− > tα(log t)4) ≤ P≥0((At)
c) +

1

tα(log t)4
E≥0[R−1At ]

is negligible with respect to (log t)−κ for any α ≥ 1− κ when 0 < κ < 1, and for any
α > 0 when κ = 1. �

Proof of Lemma 6. Since V arω(F ) ≤ Eω [F 2] , the proof of (5.4) is a consequence
of (5.10) in [7] together with a minor adaptation of Equation (5.26) in [7] and the
definition of Ωt. The proof of (5.5) is a direct consequence of the definitions of M2

(see Equation (4.12)) and Ωt (see Equation (5.2)). Finally, the proof of (5.6) is

straightforward by looking at the expression of Eω [F ] = 2ω0 M̂1 in terms of the

modified potential V̂ (see Lemma 5.2 in [7]) together with the properties of good
environments ω in Ωt. �

Proof of Lemma 7. The proof of Lemma 7 can be deduced from Lemma 5.4 in [7]
(which gives an upper bound for Eω[G] in terms of the modified potential V̄ ), the
definition of the modified potential V̄ (see Equation (5.15) in [7]) and the definition
of good environments ω in Ωt. �

10.3. An annealed result. The techniques of this paper enable to prove the follow-
ing annealed counterpart to (8.9) which has its own interest.

Proposition 6. The tail distribution of the hitting time of the first negative record e1

satisfies

(10.8) tκP≥0(τ(e1) ≥ t) −→ CT , t→∞,
where the constant CT is given by

(10.9) CT := 2κΓ(κ+ 1)CU .

Let us write τ for τ(e1) in this section. The idea of the proof is the following. We
first show that, on the event {τ ≥ t}, the height of the first excursion is typically larger
than the function ht (of order log t, defined in (5)). We may then invoke Proposition 1
to reduce the tail of τ to that of Eω[τ ]e and conclude.
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Lemma 13. We have

P≥0(τ(e1) ≥ t , H < ht) = o(t−κ), t→∞.

Proof. Let us first assume that 0 < κ < 1. Then, by Markov inequality, we get

P≥0(τ ≥ t,H < ht) = E≥0[Pω(τ ≥ t)1{H<ht}] ≤
1

t
E≥0[Eω[τ ]1{H<ht}]

≤ 1

t
E≥0[2M ′

1M2eH1{H<ht}] ≤
1

t
Ce(1−κ)ht ,

where the last inequality follows from Lemma 3. Since t−1e(1−κ)ht = t−κ(log t)−(1−κ),
this settles this case.

Let us now assume 1 < κ < 2. By Markov inequality, we get

P≥0(τ ≥ t,H < ht) ≤
1

t2
E≥0[Eω[τ 2]1{H<ht}].

Applying Lemma 10 yields P≥0(τ ≥ t,H < ht) ≤ Ct−2e(2−κ)ht , which concludes the
proof of Lemma 13 when κ 6= 1.

For κ = 1, neither of the above techniques works: the first one is too rough, and
Varω(τ) is not integrable hence the second doesn’t make sense as is. We shall modify
τ so as to make Varω(τ) integrable. To this end, let us refer to Subsection 7.1 and
denote by d− the right end of the first excursion on the left of 0 that is higher than
ht, and by τ̃ := τ̃ (d−)(0, e1) the time spent on the left of d− before reaching e1. By
Lemma 8 we have E≥0[τ̃1{H<ht}] ≤ Chte

−ht ≤ C(log t)2t−1. Let us also introduce τ̃ ′,
which is defined like τ̃ but in the modified environment, i.e. by replacing the high
excursions (on the left of d−) by small ones (cf. after Lemma 8). Then we have

P≥0(τ ≥ t,H < ht) ≤ P≥0(τ̃ ≥ (log t)3, H < ht) + P≥0(τ − τ̃ ≥ t− (log t)3, H < ht)

≤ 1

(log t)3
E≥0[τ̃1{H<ht}] + P≥0(τ − τ̃ + τ̃ ′ ≥ t− (log t)3, H < ht)

= o(t−1) + (P≥0)′(τ ≥ t− (log t)3, H < ht)

≤ o(t−1) +
1

(t− (log t)3)2
(E≥0)′[Eω[τ 2]1{H<ht}],

and Lemma 10 allows us to conclude just like in the case 1 < κ < 2. �

Proof of Proposition 6. From the tail of Eω[τ ] (cf. (8.9)), a simple computation
gives

(10.10) P≥0
(
Eω[τ ]e ≥ t

)
∼ CT t

−κ, t→∞.
Let us prove that this is also the tail of τ .

For any function t 7→ ut we have, using respectively the previous lemma for the first
bound, and Proposition 1 and Markov inequality (with respect to Pω) for the second,

P≥0(τ − Eω[τ ]e ≥ ut, τ > t) ≤ P≥0(τ − Eω[τ ]e ≥ ut, H ≥ ht) + o(t−κ)

≤ tβ

ut
P(H ≥ ht) + o(t−κ) = t−κ

(tβ log t

ut
(1 + o(1)) + o(1)

)
.
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If we choose ut such that tβ(log t)κ � ut � t then we get, assembling this with (10.10),

P≥0(τ > t) = P≥0(τ − Eω[τ ]e ≥ ut, τ > t) + P≥0(τ − Eω[τ ]e < ut, τ > t)

≤ o(t−κ) + P≥0(Eω[τ ]e ≥ t− ut) ∼ CT t
−κ.

The lower bound is identical, starting with

P≥0(τ > t) ≥ P≥0(Eω[τ ]e ≥ t+ ut)− P≥0(τ − Eω[τ ]e ≤ −ut, τ > t).

This concludes the proof of Proposition 6. �
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