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Non-homogeneous boundary value problems for

linear dispersive equations

Corentin Audiard

Institut Camille Jordan, Université Claude Bernard Lyon

Abstract

While the non-homogeneous boundary value problem for elliptic, hyperbolic
and parabolic equations is relatively well understood, there are still few results for
general dispersive equations. We define here a convenient class of equations com-
prising the Schrödinger equation, the Airy equation and linear ‘Boussinesq type’
systems, which is in some sense a generalization of strictly hyperbolic equations,
and for which we define a generalized Kreiss-Lopatinskĭı condition. From the con-
struction of generalized Kreiss symmetrizers (adapted from hyperbolic theory) we
deduce a priori estimates and well posedness for the pure boundary value problems
(BVP) on a half-space associated to this class of equations. The initial boundary
value problem (IBVP) is investigated too for the special case of the Schrödinger
equation, and possible generalizations of the proof for other problems are indicated.
Keywords: Boundary value problems, dispersive equations, Kreiss symmetrizers.

Introduction

The analysis of boundary value problems for dispersive equations like the Schrödinger
equation or the (non-linear) wave equation has received a lot of attention during the last
ten years. In the case of homogeneous Dirichlet or Neumann boundary conditions, sharp
results (Kato-smoothing of the trace and Strichartz estimates) have been obtained under
various geometric assumptions, see Burq-Gerard-Tzvetkov [5], Burq [4], Ivanovici [13],
Planchon-Vega [20]... For the non-homogeneous boundary conditions, the well-posedness
of the Korteweg-de Vries equation posed on a quarter plane or a strip was obtained
independently by Bona-Sun-Zhang [2, 3] and Faminskii-Larkine [8, 9]. These results
were based on a priori estimates following from explicit computations of the solutions of
linearized equations. In the same spirit, Fokas [10] proved the well-posedness of a large
class of one-dimensional linear scalar dispersive equations.
In several dimensions of space, these techniques do not apply, notably because of the
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occurence of ‘glancing points’ that make the analysis much more delicate. This difficulty
can be (formally) explained on the following simple example. Let u satisfy

{
(i∂t +∆)u = 0, (x′, xd, t) := (x, t) ∈ Rd−1 × R+ × R,
u|xd=0 = ϕ, ϕ and all its derivatives vanishing at t = 0 .

By Fourier-Laplace transform, we see that

u(x′, xd, t) =
1

(2π)d

∫∫

Rd−1×R

eγt+iδt+iξx′

e−
√

i(γ+iδ)−|ξ|2xdϕ̂(ξ, γ + iδ)dξdδ.

If the dimension of space is 1 there is no x′ and, letting γ → 0 the integral splits

u(x, t) =
1

2π

∫

R+

eiδte−i
√
δxϕ̂(iδ)dδ +

1

2π

∫

R−

eiδte−
√

|δ|xϕ̂(iδ)dδ,

from which the spacelike regularity of u can be deduced: on the first integral, using a
change of variable δ = σ2, we recognize a Fourier transform in x (this nice idea originates
at least to the seminal paper by Kenig, Ponce and Vega [14]), and it is easy to check
that for fixed t, this integral defines a function in Hs(R+) if ϕ ∈ Hs/2+1/4(R+). The
second integral may be controlled thanks to the exponential decrease, more specifically
by application of a lemma (lemma 3.1) in [2]. If the dimension is greater than 1, the
same kind of analysis can only be carried in the regions

E = {(δ, ξ) : −δ − |ξ|2 > 0}, and H = {(δ, ξ) : −δ − |ξ|2 < 0},

(they are usually called ‘elliptic’ and ‘hyperbolic’ regions). On the ‘glancing’ set {(δ, ξ) :
δ+ |ξ|2 = 0} (where 0 is a multiple root in ζ of −δ−|ξ|2+ζ2) there is neither exponential
decrease of the integrand nor an oscillating phase, which is a clear obstruction to the
derivation of a priori estimates.
For strictly hyperbolic first order systems, the same kind of technical difficulties was
overcome by Kreiss [15] thanks to the construction of a tool now called Kreiss sym-
metrizer. Our aim here is to extend the analysis of Kreiss to more general, although
constant coefficient, equations. In particular, while for hyperbolic equations it is con-
venient to work with the homogeneous principal part of the symbols, we shall work on
quasi-homogeneous symbols.
More precisely, if α ∈ Nd is an n-tuple we define |α| = ∑d

j=1 αj. We say that a partial
differential operator P (τ, ξ) is p-homogeneous of degree mp if it has the form

P (∂t, Dx) =
∑

0≤j≤m
pj+|α|=mp

aα,jD
α
x∂

j
t , (1)

where Dα
x =

∏d
j=1D

αj

j , Dj = ∂/(i∂xj). We define the p-degree of a monomial Dα
x∂

j
t as

|α| + pj. The p-degree of a partial differential operator is the maximal p-degree of its
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monomials. If P is a partial differential operator of (p−)order N , its p-principal part is
the operator obtained by keeping only terms of p-degree N , and we denote it by princ(P )
if no confusion can occur regarding p. We say that an operator is resolved (in ∂t) if its
p-degree is a multiple of p, say mp, and the coefficient of ∂mt is not 0. In order to include
simple equations like

∂tu+ c · ∇u+ i∆u = 0 , c ∈ R
d,

we will work on a larger class than p-homogeneous operators. Let P (∂t, Dx) be a matrix
of size n of partial differential operators of order (at most) mp. We say that it is purely
dispersive 1 if it is resolved and

σP (·, ξ) := det
(
P (·, ξ)

)
has only purely imaginary roots for ξ ∈ R

d. (Dp)

The operator is strictly dispersive if

P is purely dispersive and princ(σP )(·, ξ)
)

has distinct roots for ξ ∈ R
d \ {0}. (Ds)

Note that the idea of adaptating techniques from the hyperbolic field to quasi-homogeneous
equations appeared rather early, notably with the work of Gindikin and Volevic [25]. In
particular, they give a very nice discussion on the concept of symbols weakly correct in
the sense of Petrowskii in their book [12], and find a class of scalar dispersive equations
for which analysis of the mixed problem with variable coefficients is possible. Unfortu-
nately this is a very special class (basically multidimensional generalizations of the Airy
equation), and their analysis does not extend to systems.

Anisotropic weighted Sobolev spaces Hs
γ,p and a generalization of the uniform Kreiss-

Lopatinskĭı condition (UKL) are defined in section 1. Our main result concerns boundary
value problem of the form {

Pu = f,
Bγ(∂t, ∂x)u|xd=0 = ϕ,

(2)

with Bγ a boundary operator that we will be defined more precisely in section 1.

Theorem 1. If P =
∑

α,j
|α+pj≤mp

Aα,jD
α
x∂

j
t is strictly dispersive, the boundary is not charac-

teristic, that is A(0,··· ,0,mp),0 is invertible, and Bγ satisfies the uniform Kreiss-Lopatinskĭı
condition, then there exists Γ > 0 such that for any γ ≥ Γ and any

(ϕ, f) ∈ H
p−1
2

γ,p (Rd−1 × R)×Hp−1
γ,p (Rd−1 × R

+ × R);

1In not yet published lecture notes [http://www.math.lsa.umich.edu/ rauch/nlgonotes.pdf] , J.
Rauch defines the pure dispersivity for homogeneous hyperbolic problems as a condition of non-flatness
of the characteristic variety. This condition is fullfilled here because of the quasi-homogeneity.
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the problem (2) has an unique solution u ∈ Hmp−1
γ,p , and it satisfies the estimate

γ‖u‖2
Hmp−1

γ,p
+

mp−1∑

j=0

|∂jxd
u|2

H
mp−1−j+(p−1)/2
γ,p

≤ C

(
1

γ
‖f‖2

L2(Hp−1
γ,p )

+ |ϕ|2
H

(p−1)/2
γ,p

)
, (3)

The proof of theorem 1 relies on the derivation of the a priori estimate (3) thanks
to the construction of generalized Kreiss symmetrizers. The plan of this construction is
similar to the classical one performed by Kreiss and explained in details in [6] or [18],
but we have to deal with a new fact: lower order terms can not be neglected. This
leads to a slight, but noticeable modification of the original construction. In particular
it should be noted that the definition of a strictly dispersive operator involves the full
symbol, and not only its p-homogeneous principal part.

Once the estimate is proved, we construct a dual boundary value problem, and finally
prove the existence of a solution by standard Hahn-Banach arguments. The transition
from boundary value problems to initial boundary value problems is rather delicate.
In complete generality, we will only allow null initial data, but in the special case of
the Schrödinger equation we will prove a well-posedness result for H1 initial data and
H

3/2
γ (Rd−1 × R

+
t ) boundary data. To our knowledge, even for this simple case, this is a

new result when d > 1.
The paper is organized as follows.

• In section 1, we define a tangential differential calculus and functional spaces used
in the article. The problem (2) is reformulated in the simpler form

∂xd
U = GU + f̃ ,

with G a tangential Fourier multiplier, and we define the uniform Kreiss Lopatin-
skĭı condition thanks to the analysis of the stable subspace of G.

• Section 2 is devoted to the derivation of a priori estimates for the boundary value
problem. We introduce here the generalized Kreiss symmetrizers, whose lengthy
and technical construction is postponed to the appendix.

• In section 3, we use a dual boundary value problem and the a priori estimate of
section 2 to prove theorem 1.

• In section 4, we deduce from these results well-posedness for zero initial data. For
the non-homogeneous linear Schrödinger equation, the well-posedness of the mixed
problem with H1 initial data is also proved.

• In the appendix, we sketch the construction of generalized Kreiss symmetrizer,
give references for the classical construction in the hyperbolic case and we explain
what are the modifications needed to adapt it to our settings.



1 THE UNIFORM KREISS-LOPATINSKIĬ CONDITION 5

1 The Uniform Kreiss-Lopatinskĭı condition

Some notations From now on and until section 4 , we work on the pure boundary
value problem posed on the half space Rd−1 ×R+ ×Rt. For clarity, we write Rt instead
of R to insist on the fact that it corresponds to the time variable. Since the xd variable
has a special role, we note (x, t) = (x′, xd, t) ∈ Rd−1 × R+ × Rt.

Sobolev spaces and Fourier-Laplace multipliers

Tangential operators For Ω an open set of Rn, n ≥ 1 and γ ≥ 0 we introduce
the weighted in time L2 space

L2
γ(Ω× Rt) := {u ∈ L2

loc(Rt;L
2(Ω)) :

‖u‖2L2
γ
= ‖u‖2γ :=

∫∫

Ω×Rt

e−2γt|u|2dxdt <∞}, (4)

and the tangential Fourier-Laplace transform

u ∈ L2
γ(R

d−1 × R
+ × Rt) → û,

û(η, xd, γ + iδ) :=

∫∫

Rd−1×R+

e−γt−iδt−iη·x′

u(x′, xd, t)dx
′dt. (5)

For ϕ defined on Rd−1 × Rt, we write in the same way ϕ̂ the usual Fourier-Laplace
transform. A tangential Fourier multiplier Aγ with parameter γ ∈ R+ is defined by its
symbol a(γ + iδ, η) and the formula

Âγu(η, xd, iδ) := a(γ + iδ, η)û(η, xd, iδ).

For such an operator, we use the notation Aγ := eγtAγe−γt. In particular, we have the
formula

Âγu(η, xd, γ + iδ) = a(γ + iδ, η)û(η, xd, γ + iδ),

and call Aγ a tangential Fourier-Laplace multiplier, or for conciseness a Fourier multi-
plier. A Fourier multiplier will usually be denoted by a capital letter, and the correspond-
ing small letter will be its symbol expressed in terms of γ + iδ and η. For p ∈ N, p ≥ 2,
we denote by Λγ,p := eγtΛγ

pe
−γt the tangential Fourier-Laplace multiplier of symbol

λp(γ + iδ, η) := (γ2 + δ2 + |η|2p)1/(2p).

We denote generically τ = γ + iδ and say that the operator Aγ is of p-order n if its
symbol a(τ, η) satisfies |a(τ, η)| ≤ Cλnp . It is quasi-homogeneous if for r > 0, a(rpτ, rη) =
rna(τ, η).
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Finally let us point out the simple commutator identity for L a constant coefficient
differential operator

L(∂t, Dx′ , ∂xd
)(eγtu) = eγtL(∂t + γ,Dx′ , ∂xd

)u , (6)

which implies L̂u(η, xd, τ) = l(τ, η, ∂xd
)û(η, xd, τ) , (7)

(here l and L are of course the same polynomial, but we distinguish the symbol from
the operator).
In the rest of the paper, we will implicitly consider ∂t as an operator with parameter via
the identification ∂t = eγt(∂t + γ)e−γt.

Functional spaces We denote by S(Rd−1 × R+ × Rt) the set of restrictions on
Rd−1 × R+ × Rt of functions in S(Rd × Rt) (Schwartz class of smooth and rapidly
decaying functions), and Sγ := {u ∈ C∞ : e−γ tu ∈ S(Rd−1 × R+ × Rt)}. Their ‘trace
analogues’ are denoted in the same way Sγ(R

d−1 × Rt).
For s ≥ 0, we define the weighted anisotropic Sobolev spaces

Hs
γ,p(R

d × Rt) := {u ∈ L2
γ(R

d × Rt) :

∫∫

Rd×R

(|τ |2 + |ξ|2p)2n/p|û(ξ, τ)|2dξdδ <∞},

and underline that for r < s < t, Hs
γ,p can be seen as interpolated between Hr

γ,p and H t
γ,p.

the spaces Hs
γ,p(R

d−1×R+×Rt) are the spaces of restrictions of function in Hs
γ,p(R

d×Rt).
If s = n is an integer

Hm
γ,p = {u ∈ L2

γ(R
d−1 × R

+ × Rt) :

‖u‖2Hn
γ,p

:=
n∑

j=0

∫∫

Rd−1×R+×Rt

λp(τ, η)
2(n−j)|∂jxd

û(ξ, τ)|2dξdδ <∞}.

For s ≥ 0 we denote the ‘trace spaces’:

Hs
γ,p(R

d−1 × Rt) := {ϕ ∈ L2
γ(R

d−1 × Rt) : |ϕ|2Hs
γ,p

= |ϕ|2s,γ,p

:=

∫∫

Rd−1×R

ζ2sp |ϕ̂(η, τ)|2dηdδ <∞} .

In addition, Hs
0,γ,p is defined as the closure of C∞

c functions for the Hs
γ,p norm, and

the negative index spaces are defined by duality H−s
γ,p = (Hs

0,γ,p)
′. Clearly, any Fourier

multiplier Aγ of p-order n acts continuously from Hs
γ,p(R

d−1 × Rt) to Hs−n
γ,p (Rd−1 × Rt).

Finally, if u belongs to some functional space X(Rd−1 × R+ × Rt), we denote u|xd=0 its
trace (when it is defined), or u(0) if there is no ambiguity.
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Reformulated problem and stable subspaces

Reformulation Let u be a solution of (2) with

P (∂t, Dx) =
∑

k+|α|≤mp

Aα,kD
α
x∂

k
t =

mp∑

j=0

A′
mp−j(∂t, Dx′)∂jxd

, (8)

Bγ(∂t, Dx′ , ∂xd
) =

mp−1∑

j=0

Bmp−1−j, γ(∂t, Dx′)∂jxd
. (9)

where Bk, γ is a Fourier multiplier of order k and A′
k a constant coefficient differential

operator of order k and size n. Since we deal with noncharacteristic problems, we may
assume A′

0 = In (note that the multiplication of the system by a constant matrix does
not change the hypothesis (Ds) ). Let us introduce the new unknown

ũ :=




Λmp−1
γ,p u

Λmp−2
γ,p ∂xd

u
...

∂mp−1
xd

u


 , (10)

then ũ satisfies




∂xd
ũ =




0 Λγ,pIn
0 Λγ,pIn

. . . . . .

0 Λγ,pIn
−A′

mp ◦ Λ1−mp
γ,p −A′

mp−1 ◦ Λ2−mp
γ,p · · · −A′

1



ũ+




0

...

f




,

Fγũ|xd=0 = ϕ,

(11)

with Fγ :=
(
(Bmp−1(Λ

γ
p)

1−mp)γ (Bmp−2(Λ
γ
p)

2−mp)γ · · · B0,γ

)
.

Using (6), we have for 0 ≤ j ≤ mp− 1

A′
j(∂t, Dx′)Λ1+j−mp

γ,p = (A′
j(∂t + γ,Dx′)(Λγ

p)
1+j−mp)γ,

thus the problem (11) reads





∂xd
ũ = GγU + f ′ := Gγũ+



0
...
f


 ,

Fγũ|xd=0 = ϕ,

(12)
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with Gγ (resp. Fγ) a Fourier multiplier of order 1 (resp. 0), and of symbol

g(τ, η) :=




0 λp
0 λp

. . . . . .

0 λp
−(a′mpλ

1−mp
p )(τ, η) −(a′mp−1λ

2−mp
p )(τ, η) · · · −a′1(τ, η)



,

F (τ, η) :=
(
bmp−1λ

1−mp
p bmp−2λ

2−mp
p · · · b0

)
(τ, η).

We write F for the symbol of F instead of f in order to avoid any confusion with the
forcing term. Since g is a companion matrix, we have the identity

χg(τ,η)(ζ) := det(g(τ, η)− ζImpn)) = σP (τ, η, ζ/i) . (13)

By Fourier-Laplace transform, the problem rewrites for U = ̂̃u and fixed γ := Re(τ) > 0
as a family of ordinary differential equations

∀ (τ, η) ∈ {Re(τ) = γ} × R
d−1,





∂xd
U = g(τ, η)U + f̂ ′,

F (τ, η)U |xd=0 = ϕ̂,
lim

xd→+∞
U(η, xd, τ) = 0.

The last condition comes from the fact that in view of theorem 1 we look for square
integrable solutions. If we denote by E−(g(τ, η)) the stable subspace of g, that is the
space of vectors X such that

|egxdX| →xd→+∞ 0,

the system above simply rewrites

∀ (τ, η) ∈ {Re(τ) = γ} × R
d−1,





∂xd
U = g(τ, η)U + f̂ ′,

F (τ, η)U |xd=0 = ϕ̂,
U |xd=0 ∈ E−(g).

(14)

The Kreiss-Lopatinskĭı condition The previous analysis motivates the following
definition.

Definition 1. We say that the boundary operator F of (12) satisfies the generalized
Kreiss-Lopatinskĭı condition if there exists Γ > 0 such for any (τ, η) ∈ EΓ := {Re(τ) ≥
Γ} × Rd−1, F (τ, η) : E−(g(τ, η)) → Im(F ) is an isomorphism.
This condition is said to be uniform when F and F−1 : Im(F ) → E− are uniformly
bounded for (τ, η) ∈ {Re(τ ≥ Γ}×Rd−1. We refer to it as (KLU), and since F is defined
thanks to Bγ of (2), we say that Bγ satisfies the (uniform) Kreiss-Lopatinskĭı condition
if F does.
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The Kreiss-Lopatinskĭı condition is well known for hyperbolic boundary value prob-
lems since the work of Kreiss [15]. It is a necessary condition of well-posedness: if a
boundary value problem does not meet it, one can show (see [1] prop. 4.2 p.107 for
example) that it is ill-posed in the sense of Hadamard. In the hyperbolic frame there are
various stronger versions of this hypothesis implying well-posedness (possibly with loss
of derivatives, see M. Sablé-Tougeron [22] or J-F. Coulombel [7]). The so-called uniform
Kreiss-Lopatinskĭı condition is the strongest one and Kreiss proved that for strictly hy-
perbolic problems it implies well-posedness as well as a priori estimates without loss of
derivatives.
In the rest of this section, we focus on the derivation of a simpler definition for (KLU)
thanks to the study of E−(g).

Continuation of the stable subspace We first recall the Dunford-Taylor formula:
for a matrix A, if C is a contour of a part of A’s spectrum Sp(A), C ∩ Sp(A) = ∅, then
the projector on the corresponding eigenspace is given by

Π =
1

2iπ

∫

C

(A− zI)−1 . (15)

Proposition 1. If the operator P in (8) is purely dispersive (as defined in (Dp) p.3),
then for any (τ, η) ∈ E++ := {Re(τ) > 0}×Rd−1, g(τ, η) has no purely imaginary eigen-
value. In particular, E−(g) is exactly the sum of eigenspaces associated to eigenvalues
of negative real parts and its dimension on E++ remains constant.

Proof. According to (13), the characteristic polynomial of g is σP (τ, η, ζ/i). If ζ is a
purely imaginary eigenvalue, then Re(τ) = 0 since P is purely dispersive, and thus there
is no purely imaginary eigenvalue when Re(τ) > 0. By continuity in (τ, η) of the rooths
of P (τ, η, · ) and connexity of E++, we find that the number of roots of negative real
part remains constant on E++, and so does dim(E−).

According to the Dunford-Taylor formula, the projectors on E− are C∞ on E++,
and thus E− defines (the fibers of) a C∞ vector bundle of base space E++. An essential
point is the continuous extension of this bundle on a larger base. We first introduce some
convenient notations. Similarly to E++, we note E+ := {(τ, η) ∈ C×Rd−1 : Re(τ) ≥ 0}.
For (τ, η) such that λp(τ, η) ≥ 1, the ‘radial compactification’

(τ, η) → (τ/λpp, η/λp, 1/λp) =: (τ̂ , η̂, ε) (16)

defines a diffeomorphism

E+ ∩ {λp(τ, η) ≥ 1} → {(τ̂ , η̂, ε) : Re(τ̂) ≥ 0, (|τ̂ |2 + |η̂|2p)1/(2p) = 1, 0 < ε ≤ 1}
=: S

+
p ×]0, 1]
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For (τ, η) such that λ(τ, η) ≥ 1 and ψ a function of (τ, η), we will (abusively) write
ψ(τ, η) = ψ(τ̂ , η̂, ε). Since the radial compactification is a diffeomorphism, ψ(τ, η) and
ψ(τ̂ , η̂, ε) have the same level of regularity. Finally, we underline that h(τ̂ , η̂, ε) =
h(τ, η) := g(τ, η)/λp(τ, η) is C∞ on S+

p × [0, 1] with, if princ denotes the p principal
part as defined in the introduction,

h(τ̂ , η̂, 0) =




0 1
0 1

. . . . . .

0 1
−princ(a′mp)(τ̂ , η̂) −princ(a′mp−1)(τ̂ , η̂) · · · −princ(a′1)



.

We have E−(g(τ, η)) = E−(h(τ, η)) thus we may simply write E−(τ, η) with no risk of
confusion. The characteristic polynomial of h = εg(τ̂ , η̂, ε) is

χh(τ̂ ,η̂,ε)(ζ) = εmpnσP
( τ̂
εp
,
η̂

ε
,
ζ

iε

)
,

which is polynomial in (τ̂ , η̂, ε, ζ). In particular it is analytic even for ε = 0, where
χh(τ̂ ,η̂,0)(ζ) = princ(σP )(τ̂ , η̂, ζ/i).
From now on, we will state our results in the frame of the more convenient variables
(τ̂ , η̂, ε), although we are interested in their immediate counterpart for (τ, η). Note that
an immediate adaptation of Proposition 1 above shows that χh(τ̂ ,η̂,0)(·) has no purely
imaginary root if Re(τ̂) > 0, thus E−(h) has a constant rank and is smoothly defined on
the connected set S++

p × [0, 1]. We start with the following elementary but useful lemma.

Lemma 1. If P (∂t, Dx) is strictly dispersive, there exists C > 0 such that

∀ (τ̂ , ξ̂, ε) ∈ C× R
d × [0, 1], (|τ̂ |2 + |ξ̂|2p)1/(2p) = 1, ε ≤ 1/C,

εmnpσP
( τ̂
ε
,
ξ̂

ε

)
= 0 ⇒ τ̂ is a simple root of εmnpσP

( ·
ε
,
ξ̂

ε

)
.

Proof. Let us assume that there exists a sequence (τ̂k, ξ̂k, εk) with εk → 0 contradicting

the result. The sequence (τ̂k, ξ̂k) is bounded and we may extract a converging subse-

quence of limit (τ̂ , ξ̂) 6= 0. But since

εnmp
k (σP )

( ·
εk
,

·
εk

)
→ princ(σP )(·, ·) uniformly,

we find that τ̂ is a multiple root of princ(σP )(·, ξ), thus the strict dispersivity implies

ξ̂ = 0 and since the polynomial is resolved we have τ̂ = 0. This is a contradiction.
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Proposition 2. Let (ζj) be the roots of the characteristic polynomial of h(τ̂ , η̂, ε).
The application σ+ defined by

∀ (τ̂ , η̂, ε) ∈ S
++
p × [0, 1], σ+(ζ; τ̂ , η̂, ε) :=

∏

Re(λj(τ̂ ,η̂,ε))>0

(ζ − ζj)

has a continuous extension on S+
p × [0, 1]. If C is the constant of Lemma 1 and P is

strictly dispersive, then

E−(τ̂ , η̂, ε) = Im(σ+(g(τ̂ , η̂, ε); τ̂ , η̂, ε)),

defines a continuous extension of E− on S+
p × [0, 1/C].

Remark 3. Roughly speaking, this proposition gives a control of E−(τ, η) for high fre-
quencies.

Proof. The characteristic polynomial of h = εg(τ̂ , η̂, ε) is

εmpnσP
( τ̂
εp
,
η̂

ε
,
ζ

iε

)
,

polynomial in (τ̂ , η̂, ε, ζ) and in particular smooth on S+
p × [0, 1]. Thus the roots λj

are continuous functions of (τ̂ , η̂, ε) on this set and σ+ can be continuously extended
on S+

p × [0, 1] simply by density of S++
p × [0, 1] in S+

p × [0, 1]. If Re(τ̂) > 0 there is no
purely imaginary roots, χh(τ̂ ,η̂,ε)(ζ) = σ+(ζ; τ̂ , η̂, ε)σ−(ζ; τ̂ , η̂, ε) and σ− has only roots in
ζ of negative real part. By the Hamilton-Cayley theorem, E−(τ̂ , η̂, ε) = Ker(σ−(g)), this
implies then E−(τ̂ , η̂, ε) = Im(σ+).
Since σ+(h) is continuous on S+

p ×[0, 1], the continuity of the bundle E− on S+
p ×[0, 1/C] is

equivalent to the fact that σ+(h) has a constant rank on S+
p × [0, 1/C]. On S++

p × [0, 1/C]
this is an immediate consequence of the absence of purely imaginary roots (Prop. 2). If
(τ̂0, η̂0, ε0) ∈ S+

p × [0, 1/C] with Re(τ̂0) = 0, we denote

• The number m± of eigenvalues of h(τ̂0, η̂0, ε0) of positive/negative real part,

• The purely imaginary eigenvalues (iω1, · · · , iωr) of h(τ̂0, η̂0, ε0), and mj their alge-
braic multiplicity.

• The number m−
j of eigenvalues of h(τ̂0 + γ̂, η̂0, ε0) of negative real part that have

limit iωj when γ̂ → 0.

With these notations, we have clearly

µ := dim(E−(τ̂0 + γ̂, η̂0, ε0)) = m− +
r∑

j=1

m−
j ,
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and the operator σ+(h) has a constant rank if µ is the rank of

σ+(h, τ̂0; η̂0, ε0) =
∏

Re(ζj)>0

(h(τ̂0, η̂0, ε0)− ζj)
r∏

j=1

(h(τ̂0, η̂0, ε0)− iωj)
mj−m−

j .

After Jordan reduction one may see that that it is equivalent to the fact that every iωj

has geometric multiplicity 1, i.e. is only associated to one Jordan block.
We prove it by contradiction: if for some j, iωj has a geometric multiplicity greater than
2, then there is a change of basis such that hj reduces as

P−1hj(τ̂0, η̂0, ε0)P =




Jk1(iωj) 0 0
0 Jk2(iωj) 0
0 0 ⋆


 (17)

with Jki two Jordan blocks. Now since

det(P−1hj((τ̂ , η̂, ε)− iωj)P ) = χh(τ̂ ,η̂,ε)(iωj) = εmnpσP (
τ̂

εp
,
η̂

ε
,
ωj

ε
),

we find by differentiation and by using (17) that

∂σP
∂τ̂

(
τ̂0
εp0
,
η̂0
ε0
,
ωj

ε0
) = 0 ⇔ τ̂0/ε

p
0 is a multiple root of σP (·,

η̂0
ε0
,
ωj

ε0
) ,

which is a contradiction with Lemma 1.

As a first application of these results, we give a simpler form of (KLU).

Proposition 4. Let E− be the stable subspace of g, extended by Prop. 2 on S+
p ×[0, 1/C].

The condition (KLU) (Definition 1 p.8) is true for some Γ > 0 if and only if for any
(τ̂ , η̂) ∈ S+

p , F is an isomorphism E−(τ̂ , η̂, 0) → Im(F ).

Proof. We first check the necessity: (KLU) means that F : E− → Im(F ) and its inverse
are uniformly bounded for (τ, η) ∈ {Re(τ) ≥ Γ} × Rd−1. The ‘radial compactification’
of this set is Ω := {(τ̂ , η̂, ε) ∈ S+

p ×]0, 1/Γ] : Re(τ̂) ≥ εp Γ}. By uniform boundedness, F

is invertible on the closure of Ω, and since Ω ⊃ S+
p × {0}, this proves the necessity.

Conversely, if F (τ̂ , η̂, 0) is an isomorphism for (τ̂ , η̂) ∈ S+
p , then by (lower semi-) continu-

ity there exists ε0 small enough such that it is still an isomorphism for (τ̂ , η̂, ε) ∈ S+
p [0, ε0].

By compacity, F−1 is uniformly bounded on this set, which implies that F−1(τ, η) is uni-
formly bounded for Re(τ) ≥ 1/ε0.
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2 Kreiss symmetrizers and a priori estimates

We define here the generalized Kreiss symmetrizers and show how their existence implies
a priori estimates without loss of derivatives.

Definition 2. A generalized Kreiss symmetrizer for the boundary value problem (12) is
a Fourier multiplier Sγ of symbol s(τ, η) defined and smooth on Eγ for some Γ > 0. It
satisfies

• The operator S is of p-order 0 and for any (τ, η) ∈ EΓ, s∗ = s,

• There exists c(τ, η) > 0 such that (in the sense of the usual scalar product)

∀ (τ, η) ∈ EΓ, Re(sg(τ, η)) :=
sg + (sg)∗

2
≥ c(τ, η)Re(τ), (K1)

• There exists C > 0 such that

∀ (τ, η) ∈ EΓ, s(τ, η) ≥ I − CF ∗F (τ, η) . (K2)

Theorem 2. Let P be a strictly dispersive operator, let (12) be the first order boundary
value problem obtained from (2). If the boundary operator F satisfy (KLU) (note that
(KLU) depends on G) then there exists a generalized Kreiss symmetrizer for (12) with
c(τ, η) = α/λp−1

p , α > 0.
If moreover, the spatial part of P is elliptic, that is

∀ ξ ∈ R
d \ {0}, σP (0, ξ) 6= 0, (18)

then there exists a symmetrizer with c(τ, η) = α/|τ |(p−1)/p.

Remark 5. The usual Kreiss symmetrizers have homogeneous symbols of degree 0, and
they satisfy sg ≥ αRe(τ). The fact that here the lower bound goes to 0 as (τ, η) → ∞
is not a technical weakness of the construction but a natural (and unavoidable) fact due
to the dispersive nature of the equations. The analysis in appendix should clarify it.

We postpone the (sketch of) proof of this result to the appendix. The point of
generalized Kreiss symmetrizer lies in the following result.

Theorem 3. If the boundary value problem (12) admits a generalized Kreiss sym-
metrizer, then any ũ ∈ L2

γ solution of

{
∂xd

ũ−Gγũ = f ′ ∈ L2
(
R+; Hp−1

γ,p (Rd−1 × Rt)
)
,

(Fγũ)|xd=0 = ϕ ∈ H
p−1
2

γ,p (Rd−1 × Rt).
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admits a trace on {xd = 0} that is H
p−1
2

γ,p and ũ satisfies the estimate

∀ γ ≥ Γ, γ‖ũ‖2L2
γ(R

d−1×R+×Rt)
+ |ũ(0)|2

H
(p−1)/2
γ,p (Rd−1×Rt)

.
1

γ
‖∂xd

ũ−Gγũ‖2
L2
(
R+; Hp−1

γ,p (Rd−1×Rt)
) + |F ũ(0)|2

H
(p−1)/2
γ,p (Rd−1×Rt)

(ED)

Moreover, if ũ ∈ Sγ, we have for any s ∈ R,

∀ γ ≥ Γ, γ‖ũ‖2L2(R+;Hs
γ,p)

+ |ũ(0)|2
L2
(
R+; H

s+(p−1)/2
γ,p

)

.
1

γ
‖∂xũ−Gγũ‖2

L2
(
R+; Hs+p−1

γ,p

) + |F ũ(0)|2
H

s+(p−1)/2
γ,p

(EDs)

If the symbol P (or equivalently the characteristic polynomial of g, according to (13)) is
elliptic in space, then under the same hypotheses the estimates become

∀ γ ≥ Γ, γ‖ũ‖2L2
γ(R

d−1×R+×Rt)
+ |ũ(0)|2

L2(Rd−1;H
(p−1)/(2p)
γ (Rt))

.
1

γ
‖∂xd

ũ−Gũ‖2
L2
(
Rd−1×R+; H

(p−1)/p
γ (Rt)

) + |F ũ(0)|2
L2(Rd−1;H

(p−1)/(2p)
γ (Rt))

(EDell)

and
∀ γ ≥ Γ, γ‖ũ‖2L2(Rd−1×R+;Hs

γ(Rt))
+ |ũ(0)|2

L2
(
Rd−1×R+; H

(s+(p−1)/2)/p
γ (Rt)

)

.
1

γ
‖∂xũ−Gũ‖2

L2
(
Rd−1×R+; H

(s+p−1)/p
γ (Rt)

)+|F ũ(0)|2
L2
(
Rd−1×R+; H

(s+(p−1)/2)/p
γ (Rt)

) (EDell,s)

Remark 6. Note that in the ‘elliptic’ case, there is additional regularity at the boundary
only for the variable t, and the Sobolev spaces H

s+(p−1)/2
γ,p become L2(H

(p−1)/(2p)
γ ) without

p in index, since the anisotropic spaces have p times more regularity in space than in
time.
An other version of EDell, s) may be given with s additional regularity in x′ variables
too, we did not include it in order to shorten the (already tedious) list of estimates to
come.

Proof. As a first step we apply formally an energy method. We have by Fourier-Laplace
transform

∂xd
U − gU = f̂ ′ .

If we multiply this identity by the symbol s of the symmetrizer, take the inner product
with U , integrate in xd and take the real part we obtain

〈sU(η, 0, τ), U(η, 0, τ)〉+ Re

(∫ ∞

0

〈sgU(η, xd, τ), U(η, xd, τ)〉dxd
)

= −Re

(∫ ∞

0

〈sf̂ ′, U(η, xd, τ)〉dxd
)
.
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Now using (K1) and (K2) gives

|U(η, 0, τ)|2 + α

∫

R+

Re(τ)
|U(η, xd, τ)|2
λp(τ, η)p−1

dxd

≤ C|FU(η, 0, τ)|2d+
∫

R+

|f | |U(η, xd, τ)|dδdηdxd.

For the last term on the right hand side, we then use the Cauchy-Schwarz inequality
and Young’s inequality ab ≤ ra2/2 + b2/(2r):

|U(η, 0, τ)|2d+ α

2

∫

R+

Re(τ)
|U(η, xd, τ)|2
λp(τ, η)p−1

dxd ≤ C|FU(η, 0, τ)|2

+

∫

R+

λp(τ, η)
p−1|f |2dxd.

Finally, multiplying the inequality above by λp−1
p , integrating in (Im(τ), η) and using the

Plancherel theorem we obtain formally (ED). The estimate (EDs) follows from similar
arguments that we do not detail. All the calculus above are rigorous if ũ ∈ Sγ, and in
particular it proves (EDs).
The derivation of (ED) in the general case is much more delicate. In fact, even the
meaning of Fγũ|xd=0 is not clear if ũ ∈ L2

γ. To clarify it, we will use two results that are
proved later (Lemma 2):

• Let V := {v ∈ L2
γ(R

d−1 × R+ × Rt) : ∂xd
v − Gγv ∈ L2(R+;Hp−1

γ,p )}, normed by
‖v‖L2

γ
+ ‖(∂xd

−Gγ)v‖L2(Hp−1
γ,p ). The space C∞

c (Rd−1 × R+ × Rt) is dense in V .

• The operator of trace on {xd = 0}, defined on C∞
c (Rd−1 × R+ × Rt) admits two

continuous extensions

V → H−1/2
γ,p (Rd−1 × Rt),

and H1(R+;Hp−1
γ,p (Rd−1 × Rt)) → H(p−1)/2

γ,p (Rd−1 × Rt).

If ũ ∈ H1(R+; Hp−1
γ,p (Rd−1 × Rt)), let (ũn) ∈ C∞

c be a sequence converging to ũ in
the space H1(R+; Hp−1

γ,p (Rd−1 × Rt)). By continuity of the trace operator, ũn|xd=0 → ũ

in H
(p−1)/2
γ,p (Rd−1 ×Rt). Applying (ED) and passing to the limit, we obtain (ED) for ũ.

Now in the general case ũ ∈ L2
γ,p, we first note that Fγu|xd=0 = ϕ has a sense since u

has a trace H
−1/2
γ,p on {xd = 0}. We take ρn : Rd−1 × Rt → R+ a sequence of mollifiers

with respect to (x′, t) and consider ũn := ρn ∗ ũ. Since ũn is smooth in (x′, t), we have

∂xun = Gγun + ρn ∗ f ′ ∈ L2(R+;Hp−1
γ,p (Rd−1 × Rt)),
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and thus un ∈ H1(R+;Hp−1
γ,p (Rd−1 × Rt)). We then use

ρn ∗ f ′ → f ′ in L2(R+;Hp−1
γ,p (Rd−1 × Rt)),

ρn ∗ ϕ→ ϕ in H(p−1)/2
γ,p (Rd−1 × Rt).

The application of (ED) to ũn− ũm proves that ũn|xd=0 is a Cauchy sequence in the the

Banach space H
(p−1)/2
γ,p (Rd−1 ×Rt), and thus is convergent. Since the trace ũ|xd=0 exists,

by uniqueness of the limit we obtain u|xd=0 ∈ H
(p−1)/2
γ,p (Rd−1×Rt), and ũn|xd=0 → ũ|xd=0

in H
(p−1)/2
γ,p (Rd−1 × Rt). The inequality (ED) for u follows then from applying it to ũn

and passing to the limit in n.
The proofs of (EDell) and (EDell, s) are similar, and we do not detail them.

Lemma 2. The space C∞
c (Rd−1 ×R+ ×Rt) is dense in V := {v ∈ L2

γ(R
d−1 ×R+ ×Rt) :

∂xd
v −Gγv ∈ L2(R+;Hp−1

γ,p )} for the norm ‖v‖V := ‖v‖L2
γ
+ ‖(∂xd

−Gγ)v‖L2(Hp−1
γ,p ).

The trace operator

C∞
c (Rd−1 × R

+ × Rt) → C∞
c (Rd−1 × Rt),

u ∈ C∞
c (Rd−1 × R

+ × Rt) → u|xd=0,

extends continuously

for s ∈ R
+, H1(R+;Hs

γ,p(R
d−1 × Rt)) → Hs/2

γ,p (R
d−1 × Rt),

and V → H−1/2
γ,p (Rd−1 × Rt).

Proof. Let v ∈ V , we denote v its extension by 0 for xd < 0. Multiplying v by χv for χ
a truncature function, one may check that compactly supported functions are dense in
V . Thus we assume that v has compact support. We take a mollifying sequence of the
form ρn ⊗ ψn,

ρn : R −→ R, supp(ρ) ⊂]− 1, 0],

ψn : Rt × R
d−1 −→ R .

Let vn := (ρn ⊗ ψn) ∗ v. For xd > 0 we have

Lvn(x
′, xd, t) = L

∫∫
ρn(yd)ψn(y

′, s)v(x′ − y′, xd − yd, t− s)dyds

= L

∫

Rd−1×R

∫ 0

−1/n

ρn(yd)ψn(y
′, s)v(x′ − y′, xd − yd, t− s)dyds

=

∫

Rd−1×R

∫ 0

−1/n

ρn(yd)ψn(y
′, s)Lv(x′ − y′, xd − yd, t− s)dyds

= ((ρn ⊗ ψn) ∗ Lv)(x′, xd, t),
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(because of the choice supp(ρ) ⊂]− 1, 0], the region where Lvn is ‘stiff’ lies in xd ≤ 0).
Since ρn ⊗ ψn is a mollifying sequence, this implies

vn|xd>0 −→ v (L2(Rt × R
d−1 × R

+∗)),

(Lvn)|xd>0 = ((ρn ⊗ λn) ∗ Lv)|xd>0 −→ Lv (L2(R+∗;Hp−1
γ,p (Rt × R

d−1)) .

Since v is compactly supported so does vn and we conclude that C∞
c is dense in V .

We now turn to the trace result. Let v be smoothly defined on Rd−1 × R+ × Rt, vb :=
v|xd=0, we have

|ûb(τ, η)| = |
∫

R

û(η, ηd, τ)dηd|

≤
√∫

R

|û|2(γ2s/p + δ2s/p + |η|2s + η2ddηd

√∫

R

1

γ2s/p + δ2s/p + |η|2s + η2d
dηd.

Using the change of variables ηd = η̃d
√
γ2s/p + δ2s/p + |η|2s and integrating in (τ, η), we

obtain

‖ub‖2Hs/2
γ,p

=

∫ √
γ2s/p + δ2s/p + |η|2s |ûb|2dδdη

≤ π

∫

R

|û|2(γ2s/p + δ2s/p + |η|2s + η2d)dηddηdδ

≤ π‖u‖H1(R;Hs
γ,p)

.

This inequality allow us to define the trace on {xd = 0} for functions in the space
H1(R;Hs

γ,p), and then for v ∈ H1(R+;Hs
γ,p) by taking the trace of an extension v′ ∈

H1(R;Hs
γ,p) of v.

(Note that the trace does not depend on the chosen extension since it is the limit of
traces on {xd = y} for y → 0+.)
The second trace result can be proved by using the same kind of arguments and the
‘jump formula’ for distributions ∂xd

ψ = ∂xd
ψ+ψ|xd=0 ⊗ δ(xd), see for example [6] Prop.

4.6.II for a control of the second term in the (not really simpler) case of isotropic Sobolev
spaces.

3 Well-posedness of the BVP

In this section, we prove Theorem 1, that is, the existence and uniqueness of a solution
to (2) {

Pu = f, (x′, xd, t) ∈ Rd−1 × R+ × Rt,
B(∂t, ∂x)u|xd=0 = ϕ,
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under the hypotheses that P is a strictly dispersive non-characteristic operator, and B
satisfies the uniform Kreiss-Lopatinskĭı condition. The argument of the proof is based on
the existence of a dual problem for which we shall only sketch the construction. Indeed
the study of hyperbolic boundary value problems relies on the very similar construction
of a dual problem, the reader may find it detailed in [1] (§4.4 p.114).

The dual problem We denote by 〈·, ·〉 the scalar product on L2(Rd−1×R+×Rt), and
(·, ·) the scalar product on L2(Rd−1 × Rt). The product 〈u, v〉 will often be considered
as a dual product 〈e−γtu, eγtv〉 in Sobolev spaces without saying it explicitly.

Proposition 7. If Aγ is a tangential Fourier multiplier with parameter, we denote
γA := e−γtAγeγt. Let Γ be a positive large integer.
There exists smooth matricial symbols (F ′,m, n)(τ̂ , η̂, ε) defined on S+

p × [0, 1/Γ] and
corresponding operators γF

′, γM, γN of order 0 such that if ũ is a solution of
{
Lũ := ∂xd

ũ−Gγũ = f ′ ,
Fγũ|xd=0 = ϕ,

then we have the (formal) identity

〈Lũ, ṽ〉 = 〈ũ, L′ṽ〉+ (Fγũ(0), γMṽ(0)) + (Nγũ(0), γF
′ṽ(0)) , (19)

with L′ := −∂xd
− γG

∗. Moreover, m is an isomorphism Ker(F ′) → Im(m) for (τ̂ , η̂, ε) ∈
S+
p × [0, 1/Γ].

We call dual problem the system
{
L′ṽ = f ′

1, xd ≥ 0, t ∈ R ,

γF
′ṽ|xd=0 = ϕ1, t ∈ R ,

(20)

and define the backward in time Kreiss-Lopatinskĭı condition exactly as the Kreiss-
Lopatinskĭı condition but for operators of the form γA instead of Aγ. The boundary
operator −γF

′ satisfies backward (KLU) if and only if Fγ satisfies (KLU). If backward
(KLU) is satisfied, we have the backward analogous of (ED): for ṽ solution of (20) and
γ ≥ Γ large enough

γ‖ṽ‖2L2
−γ(R

d−1×R+×Rt)
+ |ṽ(0)|2

H
(p−1)/2
−γ,p (Rd−1×Rt)

.
1

γ
‖L′ṽ‖2

L2
(
R+; Hp−1

−γ,p(R
d−1×Rt)

) + |−γF
′ṽ(0)|2

H
(p−1)/2
−γ,p (Rd−1×Rt)

, (bED)

and the backwards analogous of (EDs)

∀ γ ≥ Γ, γ‖ṽ‖2L2(R+;Hs
−γ,p)

+ |ṽ(0)|2
L2
(
R+; H

s+(p−1)/2
−γ,p

)

.
1

γ
‖L′ṽ‖2

L2
(
R+; Hs+p−1

−γ,p

) + |γF ′ṽ(0)|2
L2
(
R+; H

s+(p−1)/2
−γ,p

) (bEDs)

stands too.
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Sketch of proof. Since 〈Lũ, ṽ〉 = 〈ũ, L∗ṽ〉 −
∫
Rd−1×Rt

ũ|xd=0ṽ|xd=0, it suffices to find sym-
bols F ′,m, n such that, if we still denote F the symbol of Fγ

m∗F + (F ′)∗n = −Imnp . (21)

Since F has a constant rank, there exists a smooth matrix n such that

(
F
n

)
∈ GLmpn

(this comes from the fact that the set S+
p × [0, 1/C] is contractible, and thus the vector

bundle E− is trivial). Let

(
F
n

)−1

:=
(
m∗(F ′)∗

)
, where F ′ has mnp− rank(F ) lines. It

is easily checked that for this choice of m,n, F ′ we have (21), and moreover Ker(F ′) =
Ker(F )⊥. The backward Kreiss-Lopatinskĭı condition amounts to

E−(−g∗) ∩ Ker(F ′) = {0},

and the equivalence with the Kreiss-Lopatinskĭı condition is in fact a consequence of the
-not completely straightforward- formula (again, see [1] §4.4 p.114 for details)

(E−(−g∗) + Ker(F ′))⊥ = E−(g) ∩ Ker(F ).

Using Proposition 4, we obtain similarly the equivalence between KLU for F and back-
ward KLU for F ′.

We show now how the existence of a solution to (12) can be deduced from the
proposition above. Let E := {ψ ∈ S−γ : γF

′ψ|xd=0 = 0}. We define the linear form

T : L′(E) → C,

L′(ψ) → 〈f, ψ〉 − (ϕ, γMψ|xd=0).

We use the condensed notation ‖θ‖s,γ,p := ‖θ‖L2(R+;Hs
γ,p(R

d−1×Rt)). Using the identification

(Hs
γ,p(R

d−1 × Rt))
′ = H−s

−γ,p(R
d−1 × Rt) and the a priori estimate (bEDs) we find

T (L′ψ) =≤ ‖f‖p−1,γ,p‖ψ‖1−p,−γ,p + |ϕ| p−1
2

,γ,p|ψ| 1−p
2

,−γ,p

. ‖L′ψ‖L2
−γ

(
1

γ
‖f‖p−1,γ,p +

1√
γ
|ϕ| p−1

2
,γ,p

)
.

Thus T is continuous for the L2
−γ norm. Hahn-Banach’s theorem and the Riesz’s repre-

sentation theorem give the existence of ũ ∈ L2
γ such that for any ψ ∈ E,

〈f, ψ〉 − (ϕ, γMψ|xd=0) = 〈u, L′ψ〉.

In particular, if ψ ∈ C∞
c (Rd−1 × R+∗ × Rt), we have

〈u, L′ψ〉 = 〈f, ψ〉,
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and thus Lũ = f in the sense of distribution. According to lemma 2, ũ|xd=0 exists and

belongs to H
−1/2
γ,p . Now, since the trace of ũ is defined we may use the identity (19):

∀ψ ∈ E, 〈f, ψ〉 − (ϕ, γMψ(0)) = 〈ũ, L′ψ〉
⇒ 〈Fγũ(0)− ϕ, γMψ(0)〉 = 0 .

It suffices to check that γM(E)|xd=0 is a space ‘large enough’ to conclude that Fγũ(0) =
ϕ.
We first note that any function in C∞

c (Rd−1×Rt) is the trace of a function in C∞
c (Rd−1×

R+ × Rt) (this is a consequence of Borel’s lemma). As m(τ̂ , η̂, ε) is an isomorphism
Ker(F ′(τ̂ , η̂, ε)) → Im(M) the compacity of S+

p × [0, 1/Γ] implies that m−1 is uniformly
bounded. If ψ ∈ C∞

c (Rd−1 × R+ × Rt, the boundedness of m−1 implies that the inverse

Fourier-Laplace transform of m−1ψ̂(−γ + iδ, η, xd) belongs to S−γ(R
d−1 ×R+ ×Rt) and

therefore γM(E)|xd=0 ⊃ C∞
c (Rd−1 × R+ × Rt). Finally by density of C∞

c in H
(p−1)/2
γ,p we

get Fγũ = ϕ.

To summarize:

• The problem (2) has been reformulated as (12),

• The existence of a solution for (12) is obtained thanks to Theorem 3 and the
construction of a dual problem,

• The uniqueness follows from theorem 3.

These three points imply the well posedness of the boundary value problems (12) and

(2). Now we recall that ũ =



Λmp−1

γ u
...

∂mp−1
xd

u


. In particular,

‖ũ‖L2
γ
= ‖u‖Hmp−1

γ,p
, |ũ(0)|

H
(p−1)/2
γ,p

=

mp−1∑

j=0

|∂jxd
u(0)|

H
mp−1−j+(p−1)/2
γ,p

,

and we see that the transcription of (ED) (p.14) for u is precisely (3), this ends the
proof of theorem 1.
In the special case of a symbol of elliptic spatial part, we introduce the spaces

∀ (s, r) ∈ R
+, Hs,r

γ,p,t(R
d × Rt) := {u ∈ L2

γ :

∫∫
(|τ |2r/p + |η|2s)|û|2dδdη <∞},

and Hs,r(Ω×Rt) is defined by restriction on Ω×Rt of functions in Hs,r
γ,p,t(R

d ×Rt). By
applying the same proof and the a priori estimates (EDell) and (EDell, s) (p.14), we
obtain the following result.
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Corollary 1. Under the same hypotheses as in Theorem 1, if moreover P has an elliptic
spatial part (see (18) then the problem (2) has an unique solution u ∈ Hmp−1

γ,p , and it
satisfies the estimate

γ‖u‖Hmp−1
γ,p

+

mp−1∑

j=0

|∂jxd
u|

H
mp−1−j,mp−1−j+(p−1)/2
γ,p

≤ C

(‖f‖
L2(Rd−1×R+;H

(p−1)/p
γ )

γ
+ |ϕ|

H
(0,p−1)/2
γ,p

)
.

Well-posedness with more regularity For ξ ∈ Rd (dual variable of x) we denote
ξ = (ξ′, ξd). We define the Sobolev spaces

∀ (s, r) ∈ R
+, Hs,r

γ,p,x′,t(R
d × Rt) := {u ∈ L2

γ :
∫∫ (

(|τ |2/p + |ξ′|2)r + |ξd|2s
)
|û|2dδdη <∞},

the spaces Hs,r
γ,p,x′,t(Ω× Rt) are defined by restriction.

Corollary 2. If the data (ϕ, f) belong to Hr+(p−1)/2
γ,p (Rd−1×Rt)×Hr,r+p−1

γ,p,x′,t (Rd−1×R+×Rt)
for r ≥ 1 integer, then the solution of (2) belongs to Hmp−1+r

γ,p .

In particular, if the data are in ∩r≥0

(
H

r+(p−1)/2
γ,p (Rd−1×Rt)×Hr,r+p−1

γ,p,x′,t (Rd−1×R+×Rt)
)
,

the solution is C∞.

Proof. We only show how to derive a priori estimates for smooth functions, the actual
proof being analogous, by density arguments, to the one for (ED). If r = 1, we use the
reformulation (12). If ũ ∈ Sγ the estimate (EDs) (p.14) implies

∀ γ ≥ Γ, ‖ũ‖2L2(R+;H1
γ,p)

. ‖f ′‖2
L2
(
R+; H1+p−1

γ,p

) + |ϕ|2
H

1+(p−1)/2
γ,p

. (22)

Since Gγ acts on the tangential variables (x′, t) and is of order 1, this implies

‖Gγũ‖L2
γ
. ‖f ′‖

L2
(
R+; H1+p−1

γ,p

) + |ϕ|
H

1+(p−1)/2
γ,p

,

then we use ∂xd
ũ−Gγu = f ′ with f ′ =



0
...
f


 to deduce

‖∂xd
ũ‖L2

γ
. ‖f‖2

L2
(
R+; H1+p−1

γ,p

) + |ϕ|
H

1+(p−1)/2
γ,p

, (23)
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(22) and (23) mean for u

‖u‖Hmp−1+1
γ,p

. ‖f‖
L2
(
R+; H1+p−1

γ,p

) + |ϕ|
H

1+(p−1)/2
γ,p

If r = 2, the same argument as above implies the analogue of (22)

∀ γ ≥ Γ, ‖ũ‖2L2(R+;H2
γ,p)

. ‖f ′‖
L2
(
R+; H2+p−1

γ,p

) + |ϕ|
H

2+(p−1)/2
γ,p

,

and the analogous of (23) for ∂xd
ũ. Then derivating ∂xd

ũ−Gγũ = f ′ with respect to xd
gives

‖∂2xd
ũ‖L2

γ
= ‖Gγ∂xd

ũ+ ∂xd
f ′‖L2

γ
. ‖∂xd

f ′‖L2(R+; H2+p−1
γ,p ) + |ϕ|

H
2+(p−1)/2
γ,p

,

the transcription of these estimates for u gives

‖ũ‖H2+mp−1
γ,p

. ‖f‖H1,2+p−1

γ,p,x′,t
+ |ϕ|

H
2+(p−1)/2
γ,p

.

The proof of similar estimates for r ≥ 3 follows by recurrence.

4 The initial boundary value problem

This section is divided in two paragraphs. In the first one, we prove that the boundary
value problem with zero initial data is well posed. This is merely a consequence of
the well-posedness for the pure boundary value problem and some technical lemmas.
Secondly we turn to the harder problem of incorporating non-zero initial data: for this
case we only give a result for the linear Schrödinger equation, although we believe that
our method of proof is general. This is in fact an adaptation of the method used by
Rauch [21] to prove pointwise time estimates for the solutions of strictly hyperbolic
boundary value problems.
In order to avoid excessive technicity we assume here that B is a constant matrix, but the
results may be extended (up to using a quasi-homogeneous pseudo-differential calculus
with parameter) to the case where B = Bγ is a tangential Fourier-Laplace multiplier of
p−order 0 (this assumption is only used for Proposition 8).

Zero initial data Our aim here is to prove the well posedness of





Pu = f,
Bγ(∂t, ∂x)u|xd=0 = ϕ,
u|t=0 = 0.

(24)
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Lemma 3. For k ≥ 0, if ψ ∈ Hk
γ,p(R

d−1×R+×Rt) and θ : Rt → R is a smooth bounded
function as well as its derivatives, then the mapping (x, t) → θ(t)ψ(x, t) is in Hk

γ,p, and
we have ‖θψ‖Hk

γ,p
≤ C‖ψ‖Hk

γ,p
, with C only depending on the L∞ norm of the derivatives

of ϕ of order ≤ [k/p] + 1 (where [·] denotes the integer part).

Proof. If k is a multiple of p, we have for u ∈ Hk
γ,p

̂
e−γt∂

k/p
t u(η, xd, iδ) = (γ + iδ)k/pû(η, xd, γ + iδ).

Therefore it suffices to replace u by θψ in the equation above and apply Leibniz’s formula.
The general case follows by interpolation.

Proposition 8. If Bγ is a constant matrix, there exists Γ > 0 such that for any γ ≥ Γ
the solution of (2) does not depend on γ.

Proof. Let γ1 < γ2 be real positive numbers, and u1 ∈ Hmp−1
γ1,p

and u2 ∈ Hmp−1
γ2,p

be the
corresponding solutions of the boundary value problem. We first assume that γ2−γ1 ≤ 1.
Let θ : Rt → R+∗ be a smooth function such that θ(t) = 1 for t ≤ −1, θ(t) = e(γ1−γ2)t

for t ≥ 0. Obviously θu2 ∈ Hmp−1
γ1,p

, and θu1 is still in Hmp−1
γ1,p

by Lemma 3. Since Pu1 = f
and Pu2 = f we have

θP (∂t, Dx)(u2 − u1) = 0 ⇒ P (∂t, Dx)(θ(u2 − u1)) + [θ, P ]

(
1

θ

(
θ(u2 − u1)

))
= 0.

Since P is of p-order mp and θ only depends on t, the commutator [θ, P ] is of p-order

p(m−1), and Lemma 3 implies that the operator v → [θ, P ]

(
1

θ
v

)
is continuous Hk

γ,p →

H
k−p(m−1)
γ,p (Rd−1 × R+ × Rt), with a norm independant of γ1, γ2 because of the choice

|γ1 − γ2| ≤ 1. If Bγ is a constant matrix, [θ, B] = 0 thus B
(
θ(u2 − u1)

)
= 0 (this is the

only point of having Bγ constant, in the general case, this would become a commutator

estimate). We now apply the a priori estimate (3) by considering [θ, P ]

(
1
θ

(
θ(u2−u1)

))

as a forcing term to obtain

γ1‖θ(u2 − u1)‖2Hmp−1
γ1,p

+

mp−1∑

j=0

|θ∂jxd
(u2 − u1)|2Hmp−1−j+(p−1)/2

γ1,p

≤ C

γ1
‖[θ, P ]

(
1

θ

(
θ(u2 − u1)

))
‖2
L2(Hp−1

γ1,p
)

≤ C ′

γ1
‖θ(u2 − u1)‖2Hmp−1

γ1,p
)
.

Now if Γ is large enough and γ1 + 1 ≥ γ2 ≥ γ1 ≥ Γ, the inequality above implies
θ(u2−u1) = 0 so u2 = u1 because θ does not cancel. The result for general γ1, γ2 greater
than Γ follows by connectedness of R.
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Lemma 4. Let u be the solution of
{
Pu = f,
Bγu|xd=0 = ϕ.

If for t ≤ 0, f ′ = 0 and ϕ = 0, then ũ = 0 for t < 0.

Proof. According to Proposition 8, there exists Γ > 0 such that for γ ≥ Γ u does not
depend on γ. Given any ε > 0

‖u‖L2
Γ(R

d−1×R+×]−∞,−ε]) ≤ e−(γ−Γ)ε‖u‖L2
γ(R

d−1×R+×]−∞,−ε]).

The a priori estimate (3) implies

e(γ−Γ)ε‖u‖L2
Γ(R

d−1×R+×]−∞,−ε]) .
1

γ
‖f‖L2Hp−1

γ,p
+ ‖ϕ‖

H
(p−1)/2
γ,p

,

and we see that if for any ε > 0

lim
γ→∞

e−(γ−Γ)ε

(
1

γ
‖f‖L2Hp−1

γ,p
+ ‖ϕ‖

H
(p−1)/2
γ,p

)
= 0 (25)

then u = 0 for t ≤ −ε arbitrarily in ε, which is the required result.
Let θ : R → R+ be such that θ(t) = e(Γ−γ)t for t ≥ 0, θ(t) = 0 for t ≤ −1. The
hypothesis of support for f and ϕ implies e(Γ−γ)tf = θf and e(Γ−γt)ϕ = θϕ. Moreover
by definition of the spaces Hs

γ,p , ‖ · ‖Hs
γ,p

≤ (γ/Γ)s‖e(Γ−γ)t · ‖Hs
Γ,p

, in particular

‖f‖Hp−1
γ,p

≤ (γ/Γ)s‖θf‖Hp−1
Γ,p
, ‖ϕ‖

H
(p−1)/2
γ,p

≤ (γ/Γ)s‖θϕ‖
H

(p−1)/2
Γ,p

.

But θ is bounded as well as its derivatives at most polynomially in γ, and finally Lemma
3 implies (25).

If J is an interval, similarly as in section 1 we can define Hs
γ,p(R

d−1×J) as the space
of restrictions on Rd−1 × J of functions in Hs

γ,p(R
d−1 × Rt), and Hs

0,γ,p as the closure of
C∞
c (Rd−1 × R

+∗
t . We define in the same way for Hs

γ,p(R
d−1 × R+ × J) as restrictions on

Rd−1 × R+ × J .
Before showing our well-posedness result for the initial boundary value problem, let

us explain what is the meaning of ‘∂m−1
t u|t=0’: by a slight modification of Lemma 2 one

may prove that for any u ∈ Hmp−1
γ,p (Rd×Rt) such that Pu = f ∈ L2

γ, (u, ∂tu, · · · , ∂m−1
t u)

admits a trace on {(x, t) ∈ Rd × {0} }, this fact may be localized by using suitable
smooth truncature functions, and then by partition of the unity this give a sense to the
trace of ∂m−1

t u on Rd−1 × R+∗ × {0}.



4 THE INITIAL BOUNDARY VALUE PROBLEM 25

Theorem 4. Under the same hypotheses as in Theorem 1 and the compatibility condi-
tions ϕ ∈ H

(p−1)/2
0,γ,p (Rd−1 × R

+
t ), f ∈ L2(R+;Hp−1

0,γ,p(R
d−1 × R

+
t ))





Pu = f, t > 0
Bγu|xd=0 = ϕ, t > 0
u|t=0 = ∂tu|t=0 = · · · = ∂m−1

t u|t=0 = 0,

admits an unique solution that satisfies moreover the a priori estimate

γ‖u‖Hmp−1
γ,p (Rd−1×R+×R

+
t ) +

mp−1∑

j=0

|∂jxd
u|

H
mp−1−j+(p−1)/2
γ,p (Rd−1×R

+
t )

≤ C

(
1

γ
‖f‖L2(R+;Hp−1

γ,p )(R
d−1 × R

+
t )) + |ϕ|

H
(p−1)/2
γ,p

(Rd−1 × R
+
t ))

)
, (26)

Proof. By assumption on (f, ϕ), their extensions (f, ϕ) by 0 for t < 0 belong to L2(R+; Hp−1
γ,p (Rd−1×

Rt))×H
(p−1)/2
γ,p (Rd−1 × Rt). Let v be the solution of the boundary value problem

{
Pv = f,
Bγv|xd=0 = ϕ,

(27)

By Lemma 2, v = 0 for t < 0, thus ∂tv, · · · , ∂m−1
t v vanish too for t < 0. The

discussion on traces preceeding the theorem and the jump formula implies then that
(v, ∂tv, · · · , ∂m−1

t v)|t=0 = 0. Taking u = v|t≥0 we obtain the existence of a solution.
Now if u1 is another solution, the hypothesis u1|t=0 = · · · = ∂m−1

t u1|t=0 = 0 implies
that its extension u1 by 0 for t < 0 is in Hmp−1

γ,p (Rd−1 × R+ × Rt), and is a solution of
the boundary value problem (27). The uniqueness part of theorem 1 implies u1 = v,
implying itself u1 = u.

Corollary 3. 1) In Theorem 1, the result is still true if we replace Rt by ]−∞, T ] for
any T ∈ R.
2) In Theorem 4, the result is still true if we replace [0,∞[ by [0, T ] for any T > 0, and
assume that ϕ, resp. f , is the restriction on Rd−1 × [0, T ], resp. Rd−1 ×R+ × [0, T ] of a
function in H

(p−1)/2
0,γ,p (Rd−1 × R

+
t ), resp. L2(R+;Hp−1

0,γ,p(R
d−1 × R

+
t )).

3) The results for higher regularity of Corollary 2 are still true if Rt is replaced by [0, T ]
or [0,∞[ in the case of zero initial data.

Proof. 1) We have to prove the well posedness of
{
Pu = f, (x, t) ∈ Rd−1 × R+×]−∞, T ],
Bu|xd=0 = ϕ, (x′, t) ∈ Rd−1×]−∞, T ]

(28)

Let f1, resp. ϕ1, be in L2(R+;Hp−1
γ,p (Rd−1 × Rt)), resp. H

(p−1)/2
γ,p (Rd−1 × Rt), such that

f1 = f and ϕ1 = ϕ for t ∈]−∞, T ] (they are extensions of f, ϕ). Let u1 be the solution of
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the boundary value problem posed on Rd−1×R+×Rt with forcing term f1 and boundary
data ϕ1. The restriction of u1 to Rd−1 ×R+×]−∞, T ] defines a solution of (28) and we
prove now its uniqueness. If u2 is another solution, by linearity u2 − u1 is the solution
of a boundary value problem with boundary data and forcing term vanishing for t < T .
Lemma 4 then implies u2 = u1 for t < T .
The proof of 2) is similar. The point 3) is easily deduced from corollary 3) applied to u1
above.

The case of the Schrödinger equation The study of the boundary value problems
for the Schrödinger equation has several motivation: although in the classical physical
context it is considered on the whole space, the equation may appear in fluid mechanics
(e.g. as an approximation of equations for rogue waves) where the boundedness is an
obvious choice, and anyway, in view of numerical analysis, it is clearly necessary to know
wether given boundary conditions define a well-posed problem.
The aim of this paragraph is to prove the following result.

Theorem 5. Let (u0, f, ϕ) ∈ H1
0 (Ω)×H1

γ,2(Ω× [0,∞[)×H
3/2
0 (∂Ω× [0,∞[). If f is the

limit in H1
γ,2 of C∞

c (Ω×]0, T ]) functions, then the initial boundary value problem





∂tu+ i∆u = f, (x′, xd, t) ∈ Rd−1 × R+ × R
+
t ,

u|xd=0 = ϕ, (x′, t) ∈ Rd−1 × R
+
t ,

u|t=0 = u0, x ∈ Rd−1 × R+.
(29)

admits an unique solution u ∈ C(Rt;H
1(Ω) that satisfies the estimate

∀T > 0, e−γT‖u(T )‖H1(Ω) + ‖u‖L2
γ([0,T ];H1) + |∂xd

u(0)|
H

1/2
γ,2

. ‖f‖H1
γ,2(Ω×[0,T )

+ |ϕ|
H

3/2
γ,2 (∂Ω×[0,T [)

.

We first wish to give a few historical hints that should enlight the ideas of proof
hidden in technical arguments. Let P (∂t, ∂x) be a scalar differential operator, we denote
by ∂P/∂τ the operator which has for symbol ∂P (τ, η)/∂τ . In 1956 L. Gårding [11]
pointed out that for scalar strictly hyperbolic operators, if Pu = f then (∂P/∂τ)u is a
‘good multiplier’ to obtain a priori estimates for u. In fact, the algebraical identities
initially obtained to study the strictly hyperbolic Cauchy problem proved to be sharp
enough to study the IBVP too: this method was continuated by J. Rauch [21] (and
Sakamoto [23, 24]) who obtained the well-posedness of the initial boundary value problem
for strictly hyperbolic first order systems and L2 initial data.
For the Schrödinger equation, we have (∂τ (τ − i|ξ|2) = 1, thus the multiplier is simply
u. Even though it is here an obvious choice for the energy method, we believe that this
method could be applied in less immediate cases.
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To begin with, we investigate the pure boundary value problem:

{
∂tu+ i∆u = f, (x′, xd, t) ∈ Rd−1 × R+ × Rt,
u|xd=0 = ϕ, (x′, t) ∈ Rd−1 × Rt.

(30)

Clearly, the Schrödinger operator is 2-homogeneous and strictly dispersive. Moreover,
the Dirichlet boundary conditions satisfy (KLU), indeed the reformulated problem (12)
reads 




∂xd

(
Λγ,2u
∂xd

u

)
=

(
0 Λγ,2

(i∂t −∆′)Λ−1
γ,2 0

)(
Λγ,2u
∂xd

u

)
+

(
0

−if

)
,

Λγ,2u = Λγ,2ϕ.

with ∆′ = ∂2x1
+ · · · + ∂2xd−1

. It is easily seen that the stable subspace of G(τ, η) =
(

0 λ2
(iτ + |ξ′|2)/λ2 0

)
is generated by the vector

(
1

−
√

iτ+|η|2
λ2

)
, where

√· is the determi-

nation on C \ iR− such that
√
1 = 1. For the coordinates (τ̂ , η̂, ε) the eigenvector reads(

1

−
√
iτ̂ + |η̂|2

)
. According to Prop. 4, (KLU) is satisfied because F :=

(
1 0

)
is clearly

an isomorphism E− → C for (τ̂ , η̂) ∈ S
+
2 . In particular, this implies well-posedness of

the pure boundary value problem (30) for the Schrödinger equation, as well as for the
dual problem associated which, as shown subsequently, is in fact the same Schrödinger
equation.

Remark 9. If d ≥ 2, due to the cancellation of the eigenvalues when τ = iδ, δ = |η|2,
the Neumann boundary conditions do not satisfy (KLU) (at those ‘glancing’ points, the
trace of ∂xd

û has to vanish, preventing the existence of a solution for arbitrary boundary
data).

By the identity

∫∫

Rd−1×R+×Rt

(∂tu+ i∆u)v = −
∫∫

Rd−1×R+×Rt

u(∂tv + i∆v)

− i

∫

Rd−1×Rt

∂xd
u(0)v(0) + i

∫

Rd−1×Rt

u(0)∂xd
v(0)

we see that the dual problem for the Schrödinger BVP with Dirichlet conditions is just
itself. For conciseness, we will denote Ω := Rd−1 × R+∗.
The proof of Theorem 5 is made in four steps (of unequal difficulty):

• With Proposition 10 we prove a pointwise in time estimate for the dual BVP,

• This estimate implies an L2([0, T ];H1(Ω)) estimate (42) for the solution of the
IBVP (this is the most significant part),
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• The method to prove Proposition 10, enhanced with the L2([0, T ];H1) estimate,
is applied again to obtain a pointwise in time estimate for the IBVP,

• The well-posedness is then obtained by density arguments.

Note that if f, ϕ are C∞
c (Ω × R

+
t ) and vanish near xd = t = 0, there exists a smooth

solution: let χ(t) ∈ C∞
c (R+) with χ(0) = 1, uc = χu0. The function uc|xd=0 is smooth

and compactly supported, if ub is the solution of the initial boundary value problem with
zero initial data, boundary data ϕ − uc|xd=0 and forcing term −(∂t + i∆)uc + f , then
uc + ub is a solution of (29).

Proposition 10. Let T ∈ R, (ϕ1, f1) ∈ C∞
c (∂Ω × [T,∞[) × C∞

c (Ω × [T,∞[), v be the
smooth solution of the (dual) boundary value problem

{
∂tv + i∆v = f1, (x′, xd, t) ∈ Rd−1 × R+ × Rt,
v|xd=0 = ϕ1, (x′, t) ∈ Rd−1 × R

+
t ,

then for γ ≥ Γ large enough it satisfies the pointwise a priori estimate

e2γT‖v(T )‖2L2(Ω) + γ‖v‖2L2
−γ(Ω×[T,∞[) +

1∑

j=0

|∂jxd
v|2

H
1/2−j
−γ,2 (∂Ω×[T,∞[)

≤ C

(
1

γ
‖f1‖2L2

−γ(Ω×[T,∞[) + |ϕ1|2H1/2
−γ,2(∂Ω×[T,∞[)

)
. (31)

Proof. Note that if we forget the term e2γT‖v(T )‖2L2(Ω) this is simply a weakened version

of (bEDs) (p.18) for s = −1, thus we only need to prove that this term is controlled by
the right hand side (and possibly the other terms of the left hand side). If we multiply
the equation by v, integrate over Ω× [T,∞[ and take the real part we obtain

e2γT
∫

Ω

|v(T )|2 + γ

∫∫

Ω×[T,∞[

e2γt|v|2 = Re

(
− i

∫

∂Ω×[T,∞[

e2γt∂xd
vv

+

∫∫

Ω×[T,∞[

e2γtf1v

)
. (32)

To deal with the first term on the right hand side, we use the duality inequality

|
∫

∂Ω×[T,∞[

e2γt∂xd
vv| ≤ |eγt∂xd

v|
H

−1/2,γ
2

|eγtv|H1/2,γ

= |∂xd
v|

H
−1/2
−γ,2

|v|
H

1/2
−γ,2

where Hs,γ
2 (Rd−1×Rt) := {w ∈ L2 :

∫∫
(|γ|+ |δ|+ |η|2)s|ŵ(δ)|2dδ <∞} and Hs,γ

2 (Rd−1×
[T,∞[) is defined by restriction. We have used here that the topological dual ofH

1/2,γ
2 (Rd−1×
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[T,∞[) is H
−1/2,γ
2 , which is not a trivial fact. It relies on the identification for standard

Sobolev spaces Hs([a, b]) = Hs
0([a, b]) when 0 ≤ s < 1/2 (see the first chapter of the

classical book of Lions and Magenes [16] for a reference on this). The term ‖∂xd
v‖

H
−1/2
γ,2

is estimated with (bEDs) for s = −1:

|∂xd
v|

H
−1/2
−γ,2

. |ϕ1|H1/2
−γ,2

+ ‖f1‖L2
−γ

(33)

The second term of the right hand side is more easily controlled, indeed a simple Cauchy-
Schwarz inequality gives

∫∫

Ω×[T,∞[

e2γtf1v ≤ ‖v‖L2
−γ

‖f1‖L2
−γ

(34)

Finally, gluing (32, 33, 34) we obtain (31).

We deduce an a priori estimate for the initial boundary value problem in negative
norms. The presence of boundary terms will make the analysis in negative norms rather
tedious: we define the dual norm

‖u‖
H

(−s)
γ

:= sup
ϕ∈Hs

γ,2

∫∫

Ω×[T,∞[)

uϕ,

and underline that since the functions ϕ above do not necessarily cancel on the boundary,
this norm is not the usual norm of H−s

γ,2, in fact we have obviously

‖ · ‖
H

(−s)
γ,2

≤ ‖ · ‖H−s
γ,2
.

Proposition 11. Let (ϕ, f) ∈ C∞
c (∂Ω × R) × C∞

c (Ω × R), u be the smooth solution of
the IBVP 




∂tu+ i∆u = f, (x′, xd, t) ∈ Rd−1 × R+ × R
+
t ,

u|xd=0 = ϕ, (x′, t) ∈ Rd−1 × R
+
t ,

u|t=0 = u0, x ∈ Rd−1 × R+.
(35)

then for γ ≥ Γ large enough it satisfies the a priori estimate

‖u‖2L2
γ,2(Ω×[0,∞[) +

1∑

j=0

|∂jxd
u|2

H
1/2−j
γ,2 (∂Ω×[0,∞[)

. ‖f‖2L2
γ,2(Ω×[0,∞[)

+ |ϕ|2
H

1/2
γ,2 (∂Ω×[0,∞[)

+ ‖u0‖2H(−1) . (36)

Remark 12. Although this estimate is not pontwise in time, it is essential because it
shows that the solution of the boundary value problem with initial data satisfies an
‘IBVP analogous’ of (ED) (p.14). Of course, a norm of the initial data had to be added
in the right hand side.
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Proof. We proceed by duality. For f1 ∈ C∞
c (Ω× [0,∞[), let v be the solution of the dual

BVP {
−∂tv − i∆v = f1, (x

′, xd, t) ∈ Rd−1 × R+ × Rt,
v|xd=0 = 0, (x′, t) ∈ Rd−1 × R

+
t .

Then
∫∫

Ω×[0,∞[

u f1 =

∫∫

Ω×[0,∞[

fv − i

∫

∂Ω×[0,∞[

ϕ∂xd
v

+ i

∫

∂Ω×[0,∞[

∂xd
u 0 +

∫

Ω

u0v|t=0

⇒ |
∫∫

Ω×[0,∞[

u f1| ≤ ‖f‖L2
γ,2
‖v‖L2

−γ,2
+ |ϕ|

H
(1/2)
γ,2

|∂xd
v|

H
−1/2
−γ,2

+ ‖u0‖L2‖v|t=0‖L2 .

Using (31) gives

|
∫∫

Ω×[0,∞[

u f1| . (‖f‖L2
γ,2

+ ‖u0‖L2
γ,2

+ |ϕ|
H

1/2
γ,2

) ‖f1‖L2
−γ
,

and taking the supremum over f1 ∈ C∞
c , we obtain by density the first part of the desired

inequality:

‖v‖2L2
γ,2(Ω×[0,∞[) . ‖f‖2L2

γ,2(Ω×[0,∞[) + |ϕ|2
H

1/2
−γ,p(∂Ω×[0,∞[)

+ ‖u0‖2L2 .

To evaluate the boundary terms, we use the solution still denoted v of the dual BVP

{
−∂tv − i∆v = 0, (x′, xd, t) ∈ Ω× Rt,
v|xd=0 = ϕ1, (x

′, t) ∈ ∂Ω× Rt.

with ϕ1 ∈ C∞
c (∂Ω× Rt).

The same procedure as above gives

|
∫

∂Ω×[0,∞[

∂xd
uv| ≤

∣∣
∫∫

Ω×[0,∞[

fv
∣∣+
∣∣
∫

∂Ω×[0,∞[

ϕ∂xd
v
∣∣+
∣∣
∫

Ω

u0v|t=0

∣∣ .

. (‖f‖L2
γ,2

+ ‖u0‖L2
γ,2

+ |ϕ|
H

1/2
γ,2

) ‖ϕ1‖H1/2
−γ,2

,

and again taking the supremum gives the second part of the desired inequality.

We are now left to raise the inequality (36) to H1 regularity. Some simplifying
hypotheses (in fact strong compatibility conditions) are made:

• the function f , resp. ϕ, is in C∞
c (Ω×]0,∞[), resp. C∞

c (∂Ω×]0,∞[),
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• the function u0 is in C∞
c (Ω) .

Since ∂ju satisfies the Schrödinger equation




∂t∂ju+ i∆∂ju = ∂jf, (x
′, xd, t) ∈ Rd−1 × R+ × R

+
t ,

∂ju|xd=0 = ∂ju|xd=0, (x
′, t) ∈ Rd−1 × R

+
t ,

∂ju|t=0 = ∂ju0, x ∈ Rd−1 × R+,

the a priori estimate (36) implies for j 6= d

‖∂ju‖2L2
γ,2(Ω×[0,∞[) +

1∑

r=0

|∂rxd
∂ju|2H1/2−j

γ,2 (∂Ω×[0,∞[)
. ‖∂jf‖2L2

γ(Ω×[0,∞[)

+ |∂jϕ|2H1/2
γ,2 (∂Ω×[0,∞[)

+ ‖∂ju0‖2L2(Ω) .

and

‖∂du‖2L2
γ,2(Ω×[0,∞[) . ‖∂df‖2L2

γ(Ω×[0,∞[) + |∂du(0)|2H1/2
γ,2 (∂Ω×[0,∞[)

+ ‖∂du0‖2L2(Ω) .

In particular,

‖u‖L2
γ(R

+
t ;H1(Ω)) . ‖f‖L2

γ(R
+
t ;H1(Ω)) + |ϕ|

H
3/2
γ,2

+ ‖u0‖H1(Ω) + |∂xd
u(0)|

H
1/2
γ,2
, (37)

|∇′∂xd
u(0)|

H
−1/2
γ (∂Ω×R

+
t )

. ‖f‖L2
γ(R

+
t ;H1(Ω)) + |ϕ|

H
3/2
γ,2

+ ‖u0‖H1(Ω). (38)

To close the estimate, it remains to control |∂xd
u(0)|

H
1/2
γ,2

. We state an inequality that

can be proved by following the demonstration of (31) and using simply (bED) (p.18)
instead of (bEDs):

e2γT‖v(T )‖2H1(Ω) + γ‖v‖2H1
−γ,2(Ω×[T,∞[) +

1∑

j=0

|∂jxd
v|2

H
3/2−j
−γ,2 (∂Ω×[T,∞[)

. |ϕ1|2H3/2
−γ,2(∂Ω×[T,∞[)

, (39)

and derive an estimate for ∂t∂du(0) by following the proof of (36). Indeed ∂tu is the
solution of a Schrödinger equation, and if v is the solution of

{
−∂tv − i∆v = 0, (x′, xd, t) ∈ Ω× Rt,
v|xd=0 = ϕ1, (x

′, t) ∈ ∂Ω× Rt.

we find (the hypotheses on the support of f, ϕ, u0 are essential here)

|
∫

∂Ω×[0,∞[

∂t∂xd
uϕ1| ≤

∣∣
∫∫

Ω×[0,∞[

fv
∣∣+
∣∣
∫

∂Ω×[0,∞[

∂tϕ∂xd
v
∣∣+
∣∣
∫

Ω

u0v|t=0

∣∣ .

. (‖f‖H1
γ,2

+ ‖u0‖H1
γ,2

+ |ϕ|
H

3/2
γ,2

) ‖ϕ1‖H3/2
−γ,2

⇒ ‖∂t∂xd
u(0)|

H
−3/2
γ,2 (Ω×R

+
t )

. ‖f‖H1
γ,2

+ ‖u0‖H1
γ,2

+ |ϕ|
H

3/2
γ,2
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Let ∂xd
u(0) be the extension by 0 for t < 0 of ∂xd

u(0). By the hypotheses on the supports

this defines a smooth extension, thus ∂t∂xd
u(0) = ∂t∂xd

u(0) and

|∂t∂xd
u(0)|

H
−3/2
γ,2 (∂Ω×R

+
t )

=

∫

Rd−1×R

1

λ32
|τ |2|∂̂xd

u(0)|2dηdδ .

The inequality above combinated with (38) imply

∫

Rd−1×R

( |τ |2
λ32

+
|η|2
λ2

)
|∂̂xd

u(0)|2dηdδ . ‖f‖H1
γ,2

+ ‖u0‖H1
γ,2

+ |ϕ|
H

3/2
γ,2

⇔
∫

Rd−1×R

(|τ |+ |δ|2)1/2|∂̂xd
u(0)|2dηdδ . ‖f‖H1

γ,2
+ ‖u0‖H1

γ,2
+ |ϕ|

H
3/2
γ,2

⇔ |∂xd
u(0)|

H
1/2
γ,2 (∂Ω×R

+
t )

. ‖f‖H1
γ,2

+ ‖u0‖H1
γ,2

+ |ϕ|
H

3/2
γ,2

. (40)

The injection of this inequality in (37) finally gives

‖u‖L2
γ(R

+
t ;H1(Ω)) + |∂xd

u(0)|
H

1/2
γ,2

. ‖f‖H1
γ,2(R

+
t ×Ω) + |ϕ|

H
3/2
γ,2

+ ‖u0‖H1(Ω), (41)

To obtain the same inequality with [0,∞[ replaced by [0, T ] for some T > 0 it suffices
to follow the proof of Corollary 3 (p.25), namely:

• prove a causality principle ‘same data on [0, T ] implies equality of the solutions on
[0, T ]’,

• for (f, ϕ) defined on [0, T ], use compactly supported extensions by reflection (fr, ϕr)
on [0,∞[ (this is possible because (f, ϕ) are supported in t > 0) and apply (41)

‖u‖L2
γ([0,T ];H1) + |∂xd

u(0)|
H

1/2
γ,2

. ‖fr‖H1
γ,2(Ω×[0,∞[) + |ϕr|H3/2

γ,2 (∂Ω×[0,∞[)

. ‖f‖H1
γ,2(Ω×[0,T ) + |ϕ|

H
3/2
γ,2 (∂Ω×[0,T [)

. (42)

We do not detail it. The same argument applied with inequality (36) also gives

‖u‖L2
γ([0,T ]×Ω) + |∂xd

u(0)|
H

1/2
γ,2

. ‖f‖L2
γ(Ω×[0,T ) + |ϕ|

H
1/2
γ,2 (∂Ω×[0,T [)

. (43)

From the inequalities above, we deduce the key estimate with the following Proposi-
tion.

Proposition 13. Let u be the smooth solution of (35). It satisfies the a priori estimate

∀T > 0, e−γT‖u(T )‖H1(Ω) + ‖u‖L2([0,T ];H1) + |∂xd
u(0)|

H
1/2
γ,2

. ‖f‖H1
γ,2(Ω×[0,T )

+ |ϕ|
H

3/2
γ,2 (∂Ω×[0,T [)

. (44)
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Proof. It is basically a repetition of the proof of (31), where we integrate on [0, T ] instead
of [T,∞[. We only show how to obtain an estimate for ‖∂xd

u(T )‖L2(Ω) since it is the most
significant point. The function ∂xd

u satisfies a Schrödinger equation, the application of
(43) gives

|∂2xd
u|

H
−1/2
γ,2

. ‖∂xd
f‖L2

γ(Ω×[0,T ] + |∂xd
u(0)|

H
1/2
γ,2 (∂Ω×[0,T [)

.

Multiplying ∂t∂xd
u+ i∆∂xd

u = ∂xd
f by e−2γt∂xd

u, integrating over Ω× [0, T ] and taking
the real part we obtain

e−2γt‖∂xd
u(T )‖2L2(Ω) . |∂xd

u(0)|2
H

1/2
γ,2 (∂Ω×[0,T ])

+ ‖∂xd
f1‖2L2

γ(Ω) + ‖∂xd
u0‖2L2(Ω) .

Then with (42) applied to u we find the expected estimate

e−2γt‖∂xd
u(T )‖2L2(Ω) . |ϕ|2

H
3/2
γ,2 (∂Ω×[0,T ])

+ ‖∂xd
f1‖2L2

γ(Ω) + ‖∂xd
u0‖2L2(Ω) .

We can now conclude.

Proof of Theorem 5. Let (Un, fn, ϕn) ∈ C∞
c (Ω)×C∞

c (Ω×R
+∗
t )×C∞

c (∂Ω×R
+∗
t ) converging

to (u0, f, ϕ) in H1
0 (Ω)×H1

γ,2(Ω× [0,∞[)×H
3/2
0 (∂Ω× [0,∞[). Let un be the solution of

the boundary value problem





∂tun + i∆un = fn, (x
′, xd, t) ∈ Rd−1 × R+ × R

+
t ,

un|xd=0 = ϕn, (x
′, t) ∈ Rd−1 × R

+
t ,

un|t=0 = Un, x ∈ Rd−1 × R+.
(45)

By Proposition 13, un is a Cauchy sequence in C([0, T ];H1(Ω)) as well as the trace
∂xd

un|xd=0, and we obtain the existence of a solution with the appropriate estimates.
The uniqueness is proved by duality arguments as for (36). If u is solution of





∂tu+ i∆u = 0, (x′, xd, t) ∈ Rd−1 × R+ × R
+
t ,

u|xd=0 = 0, (x′, t) ∈ Rd−1 × R
+
t ,

u|t=0 = 0, x ∈ Rd−1 × R+,
(46)

using the dual problem

{
−∂tu− i∆u = f1, (x

′, xd, t) ∈ Rd−1 × R+ × R
+
t ,

u|xd=0 = 0, (x′, t) ∈ Rd−1 × R
+
t ,

(47)

we find that

∫

Ω×[0,∞[

uf1 = 0 for any f ∈ C∞
c (Ω× [0,∞[), which implies u = 0.
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Remark 14. It should be underlined (if it is not clear yet) that Theorem 5 is a very
rough result. The vanishing of all data on the neighbourhood of xd = t = 0 is a
too strong condition, more realistic compatibility conditions should be investigated.
Moreover the regularity needed on f is quite excessive, since we did not use any dispersive
regularization result. In fact simply solving separately the abstract Cauchy problem





∂tu+ i∆u = f, (x′, xd, t) ∈ Rd−1 × R+ × R
+
t ,

u|xd=0 = 0, (x′, t) ∈ Rd−1 × R
+
t ,

u|t=0 = 0, x ∈ Rd−1 × R+.
(48)

with semi groups arguments would very likely have allowed to suppress the time regu-
larity of f . We did not go this way for conciseness reasons, and also because this would
have lead to loss of regularity for ∂xd

u|xd=0.

Conclusion: The method of Kreiss symmetrizers has allowed us to derive a priori
estimates for a wide class of pure boundary value problems under a natural generalized
Kreiss-Lopatinskĭı condition. From these estimates we have deduced well-posedness
results for the pure boundary value problem, and the boundary value problem with zero
initial data. The regularity of the trace is higher than the one expected simply from
trace theorems, this is certainly an unavoidable dispersive effect (see the results on KdV
[2, 9] for example) although it is not clear yet wether we worked here in ‘optimal’ spaces.
The analysis for the Schrödinger equations poses several ‘immediate’ problems:

• can this analysis be repeated for any strictly dispersive equations?

• what are the ‘good’ compatibility conditions?

We underline moreover that the derivation of a priori estimates relies quite heavily on
the fact that we work with constant coefficients on a half space. The investigation of
more realistic non-homogeneous boundary value problems (variable coefficients for the
leading terms as well as curved boundary) remains a difficult question.

A Construction of Generalized Kreiss symmetrizers

We sketch here the proof of theorem 2. It consists in constructing local Kreiss sym-
metrizer, i.e. a symbol defined on the neighbourhood of points (τ̂ , η̂, ε) satisfying
(K1, K2) (p.13) reformulated for (τ̂ , η̂, ε) variables, and then use a partition of unity
to obtain a symbol defined on S+

p × [0, ε0] for ε0 small enough. The diffeomorphism

(16) then gives a symbol defined on E1/εp0 which is the symbol of a generalized Kreiss
symmetrizer.
We first perform the easy but significant construction for non glancing points, which ex-
plains why the natural minorant is c(τ, η) = α/λp−1

p . The notations are those of section
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1: g(τ, η) is a smooth symbol, such that det(g−iωInmp) is a polynomial in (τ, η, ζ) whose
roots in τ are purely imaginary and simple for (η, ω) ∈ Rd \ {0}. It is more convenient
to work with the variables

(τ̂ , η̂, ε) :=

(
τ

λpp
,
η

λp
,
1

λp

)
,

and the bounded matrice h((τ̂ , η̂, ε)) = εg((τ̂ , η̂, ε)), which is smooth for (τ̂ , η̂, ε) ∈
S+
p × [0, 1]. Since τ̂ = τ/λpp, the hypotheses (K1), K2) p.13 can be rewritten for c(τ, η) =
α/λp−1

p as
Re(sh) ≥ αRe(τ̂), s(τ̂ , η̂, ε) ≥ I − CF ∗F (τ̂ , η̂, ε) .

We denote χ(ζ; (τ̂ , η̂, ε)) := χh(τ̂ ,η̂,ε)(ζ) = det(h((τ̂ , η̂, ε))− ζI) the characteristic polyno-
mial of h. Note that it is a polynomial in (τ̂ , η̂, ε).

The case of non-glancing points: the point (τ̂0, η̂0, 0) is said to be non-glancing if
the purely imaginary roots in ζ of χ(ζ; τ̂0, η̂0, 0) are simple. If there are purely imagi-
nary eigenvalues Proposition 1 implies Re(τ̂) = 0, thus we may assume without loss of

generality that (τ̂ , η̂, ε) = (iδ̂, η̂, 0). If the purely imaginary eigenvalues are simple, by
continuity they remain simple on a neighbourhood of (τ̂0, η̂0, 0). Thus there is a smooth
change of basis such that on a neighbourhood of (τ̂0, η̂0, 0) the matrix h((τ̂ , η̂, ε)) has the
form

h′ := P−1hP =




λ1 0
0 λ2

. . .

λr
e−

e+




with e± square matrices of size µ±, spectrum Sp(e±) ⊂ {±Re(z) > 0}, λ(τ̂0, η̂0, ε0) =
iωj ∈ iR. Let r−, resp r+, be the number of λj such that

Re(λj((τ̂ , η̂, ε)) > 0 if Re(τ̂) > 0, resp. Re(λj((τ̂ , η̂, ε)) < 0 if Re(τ̂) > 0.

Up to a reindexation, h′ reads

h′ =




λ−1 0

0
. . .

λ−r−
λ+1

. . .

λ+r+
e−

e+






A CONSTRUCTION OF GENERALIZED KREISS SYMMETRIZERS 36

For the construction of symmetrizers, the blocks e± are easily handled, and the natural
idea for the purely imaginary eigenvalue is to give them the ‘good sign’. The next
proposition quantifies this.

Proposition 15. The exists a neighbourhood of (τ̂0, η̂0, 0), positive hermitian matrices
s± and κ > 0 large enough such that

s :=




−Ir−
κIr+

−s−
κs+




defines a local symmetrizer for h′ with c(τ̂ , η̂, ε) = εp−1α.

Proof. The existence of s± positive hermitians such that Re(s±e±) ≥ I is classical, see
for example lemma 9.2 p.238.
The simplicity of the purely imaginary eigenvalues and the hypothesis (Ds) imply

∂τ̂χ(iω
±
j , (τ̂0, η̂0, 0)) 6= 0, ∂ζχ(iω

±
j , (τ̂0, η̂0, 0)) 6= 0.

We deduce from the implicit functions theorem that

∂τ̂λ
±
j ((τ̂0, η̂0, 0)) ∈ R

∗ and thus ± Re(λ±j ((τ̂ , η̂, ε))) ≥ αRe(τ̂),

for some α > 0. This gives then for κ ≥ 1

Re(sh′) =




−Re(λ−1 ) 0

0
. . .

Re(λ+1 )
. . .

Re(s−e−)
Re(s+e+)




≥



αRe(τ̂)Ir−+r+

Iµ−

Iµ+


 ≥ min(α, 1)Re(τ̂) ,

which is exactly (K1) .
The verification of (K2) is based on more algebraical arguments since by continu-
ity it is sufficient to check it at the point (τ̂0, η̂0, 0). First of all, it is clear that
the vectors of the extended stable subspace E−((τ̂0, η̂0, 0)) are precisely of the form
(x1, · · · , xr− , 0, · · · , 0, y1, · · · , yµ−

, 0, · · · , 0). If Π− is the projection on E−, we write
X = Π−X + (I − Π−X) := X− +X+. Then

sX ·X ≥ κ|X+|2 −max(1, ‖e−‖) |X−|2 (49)
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We now use the inequality

|X|2 ≤ C(|FX|2 + |X+|2) (50)

which is a consequence of (KLU): indeed if it is false we could find Xn with |Xn| = 1
and |FXn| + |(Xn)+| → 0. Up to extracting a subsequence it has a limit X∞ such
that|X∞| = 1, (X∞)+ = 0 and FX∞ = 0. This implies X∞ = Π−X∞ and from (KLU)
we have X∞ = 0, this is a contradiction.
Injecting (50) in (49) we get

sX ·X ≥ κ|X|2 − Cκ|FX|2 −max(1, ‖e−‖) |X−|2 ≥ |X|2 − C|FX|2,

provided κ ≥ 1 + max(1, ‖e−‖).

The general case: The construction for the neighbourhood of glancing points occur
is notably harder than in the previous paragraph. In fact it relies heavily on the fact that
the roots in τ of χ(iω, τ̂ , η̂, ε) are simple, and thus does not work for any ε. Nevertheless,
the simplicity assumption is always true when ε = 0, and it may be proved by following
the method of Kreiss [15] (see also [6]) that on the neighbourhood of (τ̂0, η̂0, 0) the
matrice has a particular block structure: if V(τ̂0, η̂0, 0) is a neighbourhood of (τ̂0, η̂0, 0),
then

∃P ∈ C∞(V(τ̂0, η̂0, 0)) : ∀(τ̂ , η̂, ε) ∈ V(τ̂0, η̂0, 0),

P−1hP (τ̂ , η̂, ε) =




e+
e−

e1
. . .




with ±Sp(e±) ⊂ {Re(z) >} and the ej’s satisfy

ej(τ̂0, η̂0, 0) =




iωj i
. . . . . .

iωj i
iωj,




moreover the lower left hand coefficient of ∂Re(τ̂)ej is in R∗.
In the hyperbolic frame this is the so called ‘block structure condition’, introduced by
Majda [17] who proved that the existence of such a structure is sufficient to perform the
local construction of Kreiss symmetrizers.
The reader may find in [15] or [6] a full proof of the existence of local symmetrizer in
the hyperbolic frame. For the reader already used to Kreiss symmetrizers, we emphasize
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here a noticeable difference: in the hyperbolic settings, the method of Kreiss consists
in building symmetrizers which are homogeneous functions of (τ, η), and in fact the
construction is only made on the half sphere S+

p (this is underlined by Metivier in [19]
paragraph 2.3 or Benzoni and Serre [1] 9.1.3). Because c(τ, η) → 0 when λp → ∞, one
may check that it is not possible to only consider the p-principal symbol and neglect lower
order terms (the example of ∂t + c∂xu + i∂2xu = 0 for c ∈ C is quite enlightening) and
thus the symmetrizer can not be a p-homogeneous function. Fortunately the method of
Kreiss is flexible enough to construct local symbols on the neighbourhood in S+

p × [0, 1] of
any point (τ̂0, η̂0, 0) (this is of course stronger than the construction on a neighbourhood
in S+

p × {0}). Note that it is indeed what we have done for the simpler case of non
glancing points in the previous paragraph. By compacity of S+

p , there exists a finite
family of neighbourhoods Vj := V(τ̂j, η̂j, 0) such that the projection on S+

p of the Vj’s
covers S+

p , it is then easy to check that ∪Vj contains S+
p × [0, ε0] for some ε0 > 0 small

enough.
Let sj be the local symmetrizers corresponding to Vj, each of them satisfies (on its
domain of definition)

Re(sjg(τ̂ , η̂, ε)) ≥
αj

ε
Re(τ̂),

sj(τ̂ , η̂, ε) ≥ I − CjF
∗F .

With a partition of unity χj we obtain a global symbol s =
∑
χjsj defined on S+

p × [0, ε0]
which satisfies (K1, K2):

Re(sg) =
∑

Re(χjsjg) ≥
min(αj)

ε
Re(τ̂),

s =
∑

χjsj ≥ I −max(Cj)F
∗F .

The diffeomorphism between S+
p ×]0, ε0] and {(τ, η)E+ : λp(τ, η) ≥ 1/ε0} then gives a

symmetrizer defined on EΓ for Γ = 1/εp0.

The case of operators with ‘elliptic spatial part’: We consider here operators
such that the determinant of their symbol σP (τ, ξ) satisfies σP (0, ξ) 6= 0 for any ξ ∈
Rd \ {0}. Our aim is here to prove that for such an operator, the symmetrizer satisfies
sg ≥ α/|τ |1−1/p for some α > 0. The proof relies on two facts

• for δ small enough and |ξ| = 1, princ(σP (iδ, ξ) 6= 0,

• if the characteristic polynomial of h χ(ζ; (τ̂ , η̂, ε)) has no purely imaginary roots
in ζ, then the symmetrizer constructed on the neighbourhood of (τ̂ , η̂, ε) satisfies
sh ≥ c with c a positive constant only depending on the neighbourhood.
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The first point is a direct consequence of the definition and the compacity of {ξ : |ξ| = 1},
the second point may be deduced from the construction performed for non glancing
points. Indeed, since there are no purely imaginary roots ((τ̂ , η̂, ε) is said to be an

elliptic point) after a change of basis we can reduce h to the simpler form

(
e−

e+

)

and we have Re(sh′) =

(
s−e−

s+e+

)
& 1. From the first point we deduce that there

exists β > 0 such that for δ̂0 < β, the point (δ̂0, η̂0, 0) is an elliptic point. We recall too
that, by Lemma 1, any (τ̂0, η̂0, 0) with Re(τ̂0) > 0 is an elliptic point.
Thus on the set {(τ̂ , η̂, 0) ∈ S+

p × {0} : |Im(τ̂)| < β}, the local symmetrizers satisfy
sh ≥ c, while on its complement we have the same estimate as before sh ≥ αRe(τ̂).
This rewrites for the original variables for (τ, η) ∈ EΓ, Γ large enough

if |δ| < βλpp ⇒ sg ≥ cλp ≥ c
(
Re(τ)

)1/p ≥ cRe(τ)/|τ |(p−1)/p,

else sg ≥ α/λp−1
p ,

the condition δ > βλpp implies |δ| & |η|p, which means for sg

sg ≥ αRe(τ)/(|τ |2 + |η|2p)(p−1)/(2p) & αRe(τ)/|τ |1−1/p .

Finally, up to decreasing α we have, for any (τ, η) ∈ EΓ, Re(sg) ≥ αRe(τ)/|τ |1−1/p, this
completes the proof.
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