Corentin Audiard 
  
On the mixed problem for non strictly hyperbolic operators

The classical theory of strictly hyperbolic boundary value problems has received several extensions since the 70's. One of the most noticeable is the result of Metivier establishing that Majda's "block structure condition" for constantly hyperbolic operators, which implies well-posedness for the initial boundary value problem (IBVP) with zero initial data. The well-posedness of IBVP with non zero initial requires that "L 2 be a continuable initial data". For strictly hyperbolic systems, this result was proven by Rauch. We prove here by using classical matrix theory that his fundamental a priori estimates are valid for constantly hyperbolic IBVP.

Introduction

In his seminal paper [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF] on hyperbolic initial boundary value problems, H.O. Kreiss performed the algebraic construction of a tool, now called Kreiss symmetrizer, that leads to a priori estimates. Namely, if u is a solution of    ∂ t u + d j=1 A j (x, t)∂ xj u = f, (t, x) ∈ R + × Ω, Bu = g, (t, x) ∈ ∂R + × ∂Ω, u| t=0 = 0, [START_REF] Benzoni | Multidimensional hyperbolic partial differential equations[END_REF] where the operator ∂ t + d j=1 A j ∂ xj is assumed to be strictly hyperbolic and B satisfies the uniform Lopatinskiȋ condition, there is some γ 0 > 0 such that u satisfies the a priori estimate

√ γ u L 2 γ (R + ×Ω) + u L 2 γ (R + ×∂Ω) ≤ C f L 2 γ (R + ×Ω) + g L 2 γ (R + ×∂Ω) , (2) 
for γ ≥ γ 0 . Here above, L 2 γ is the usual L 2 space with a weight e -γt ,

L 2 (R + × O) = {u :
R + ×O e -2γt |u| 2 dxdt < ∞} .

(J.V. Ralston [START_REF] Ralston | Note on a paper of Kreiss[END_REF] then extended this result to the case of complex coefficients.) J. Rauch proved that the initial boundary value problem is in fact well posed for arbitrary L 2 initial data. More precisely, if u 0 is the initial data, he obtained the fundamental a priori estimate

e -γT u(T ) L 2 (Ω) + √ γ u L 2 γ ([0,T ]×Ω) + u L 2 γ ([0,T ]×∂Ω) ≤ C u 0 L 2 (Ω) + f L 2 γ (R + ×Ω) + g L 2 γ (R + ×∂Ω) (3) 1 
for Friedrichs symmetrizable systems (in his thesis) and soon after for strictly hyperbolic systems [START_REF] Rauch | L 2 is a continuable initial condition for Kreiss' mixed problems[END_REF]. Motivated by non strictly hyperbolic physical systems and by characteristic IBVPs, A. Majda and S. Osher [START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF] pointed out that the construction of Kreiss symmetrizers can be performed as soon as the system of equations satisfies the so called 'block structure condition' (see also [START_REF] Majda | The stability of multidimensional shock fronts[END_REF]).

More recently, G. Metivier [START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF] thoroughly investigated algebraic properties of the symbol of constantly hyperbolic operators.

Definition 1. Let L be a first order operator

L = ∂ t + d j=1 A j (x, t)∂ xj , (4) 
with

A j : (x, t) → A j (x, t) ∈ M r (C).
It is said to be constantly hyperbolic if the symbol A(η) = d j=1 A j η j is diagonalizable with real eigenvalues, and the multiplicity of the eigenvalues remains constant for η ∈ R d \ {0}.

The main result of Metivier in [START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF] is that, if L is a constantly hyperbolic differential operator, then it satisfies the block structure condition. The proof relies on a factorization of the determinant of the symbol τ + A j η j as in the Weierstrass preparation theorem. Here we will need a slightly different result proved in [START_REF] Benzoni | Multidimensional hyperbolic partial differential equations[END_REF] that we shall state in the third part. The aim of our second part is to rapidly explain the scheme of proof of Rauch's theorem. In particular we emphasize where the strict hyperbolicity assumption is necessary. In the third part we describe a modification of Rauch's proof that adapts it to constantly hyperbolic IBVPs.

Rauch's theorem

The proof of estimate (3) is rather long in [START_REF] Rauch | L 2 is a continuable initial condition for Kreiss' mixed problems[END_REF]. It is based on an a priori estimate for strictly hyperbolic scalar equations whose proof relies on the method of Leray and G ȧrding (see [START_REF] Ȧrding | Solution directe du problème de Cauchy pour les équations hyperboliques[END_REF]). We recall that a scalar operator P (t, x, ∂ t , ∂ x ) is strictly hyperbolic (with respect to the timelike direction) if its principal symbol P m (t, x, iτ, iη) has roots in τ real and distinct for η ∈ R d \ {0}.

Lemma 1. Let P (t, x, ∂ t , ∂ x ) be a scalar strictly hyperbolic differential operator of order k, with smooth coefficients constant outside a compact set. There is a constant C such that for all T > 0, any φ ∈ H k (J × Ω) and any ε > 0 small enough

φ(T ) H k-1 (Ω) ≤ C ε P φ L 2 (]-∞,T ]×Ω) + 1 ε φ H k-1 (]-∞,T ]×Ω) + k-1 j=0 ∂ j x d φ H k-1-j (]-∞,T ]×∂Ω) . (5) 
The transition from scalar equations to first order sytems is made thanks to the following property, which is only proved with the help of Lemma 1, Kreiss's estimates (2), and Sobolev spaces theory. Proposition 1. Let u be a solution of the boundary value problem

Lu = f, (t, x) ∈ R × Ω, Bu = g, (t, x) ∈ R × ∂Ω. ( 6 
)
Let r be the size of the system. If L is strictly hyperbolic then for γ > 0 large enough we have the pointwise estimate

e -γT u(T ) H r-1 (Ω) ≤ C f H r-1 γ (]-∞,T ]×Ω) √ γ + g H r-1 γ (]-∞,T ]×∂Ω) , (7) 
where the H m γ spaces are the spaces built over L 2 γ as follows

H m γ (R t × Ω) = {u ∈ L 2 γ : |µ|≤m Ω×R + |D µ u| 2 e -2γ t dxdt < ∞} .

Sketch of proof:

We denote by L co the transposed comatrix of L seen as a matrix of differential operators. Then we have L co L = det(L)I+lower order terms. Each diagonal coefficient is a strictly hyperbolic scalar operator thus Lemma 1 may be applied to each coordinate u j , this gives

e -γT u(T ) H k-1 (Ω) ε L co Le -γ• u L 2 (]-∞,T ]×Ω) + 1 ε e -γ• u H k-1 (]-∞,T ]×Ω) + k-1 j=0 e -γ• ∂ j x d u H k-1-j (]-∞,T ]×∂Ω) . (8) 
The trace terms

k-1 j=0 e -γ• ∂ j x d u H k-1-j (]-∞,T ]×∂Ω) are estimated thanks to the identity ∂ x d u = A -1 d -∂ t u - d-1 j=1 A j ∂ xj u + f , the continuity of the trace H m (Ω) → H m-1 (∂Ω)
, and the analogous of (2) on ] -∞, T ] (proved in [START_REF] Rauch | L 2 is a continuable initial condition for Kreiss' mixed problems[END_REF]). Finally, using the inequality

e -γT u H k-1 (]-∞,T ]×Ω) ≤ u H k-1 γ (]-∞,T ]×Ω) ,
we obtain [START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF].

The derivation of (3) from this proposition is quite cumbersome, it is based on a series of analogous inequalities involving the boundary problem as well as a dual problem. Thankfully, this part does not use the strict hyperbolicity assumption and we shall therefore not describe it. As we see, the strict hyperbolicity assumption is only needed to apply Lemma 1 and Kreiss's estimate [START_REF] Gantmacher | The theory of matrices[END_REF]. Since the results of Métivier in [START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF] show that the estimate (2) is true for constantly hyperbolic boundary value problems, we are left to show how to adapt Lemma 1.

The case of constantly hyperbolic systems

Rauch's proof of Proposition 1 is not valid for non-strictly hyperbolic operator L. Even if L is a constantly hyperbolic operator, the diagonal coefficients of L co L is not strictly hyperbolic, and lemma 1 does not apply, as can be seen on the trivial example of two independant transport equations

∂ t u + ∂ x 0 0 ∂ x u = 0 . (9) 
Here

L co L = (∂ t + ∂ x ) 2 0 0 (∂ t + ∂ x ) 2 .
Even though (7) holds true for L = (∂ t + ∂ x )I, it can not be deduced from the scalar equations

det(L)u j = (∂ t + ∂ x ) 2 u j = 0, j = 1, 2 .
In fact, to generalize the proof of proposition 1, it suffices to find an operator L such that LL = P I+ lower order terms, where P is a strictly hyperbolic operator (of course the degree of P will not be the size r of the system, except in the case of strict hyperbolicity). We will need the proposition 1.7 (p.46) from [START_REF] Benzoni | Multidimensional hyperbolic partial differential equations[END_REF] on the factorization of constantly hyperbolic operators, Proposition 2. If L is constantly hyperbolic, the determinant of the symbol τ I + A j η j factorizes as

K k=1 P k (τ, η) q k ,
where the P k 's satisfy

• Each P k is a homogeneous polynomial of (τ, η),

• The P k 's are irreducible, pairwise distinct,

• For η ∈ R d \ {0}, the roots of P k (•, η) are real distinct,

• For η ∈ R d \ {0} and k = l, P k (•, η) and P k (•, η) have no root in common.

We can now show that an L can indeed be found. Proposition 3. In the framework of Proposition 2 we have

• For η ∈ R d \ {0}, the minimal polynomial of d j=1 A j η j is K 1 P k (-τ, η).
In particular the associated operator P k (x, t, ∂ t , ∂ x ) is strictly hyperbolic.

• The coefficients of the matrix

L(τ, η) = L(τ, η) co K k=1 P q l -1 k (τ, η) belong to C[τ, η]. Thus we can define a differential operator L(t, x, ∂ t , ∂ x ) that satisfies LL = K 1 P k (t,
x, ∂ t , ∂ x )I r +lower order terms. In particular, the diagonal coefficients are strictly hyperbolic differential operators.

Proof. Since K k=1 P q k k (-τ, η) is the characteristic polynomial of A j η j , Proposition 2 and the diagonalizability of A j η j immediately imply that the polynomial K k=1 P k (-τ, η) is the minimal polynomial of A j η j (recall that a matrix is diagonalizable over C if and only if its minimal polynomial has no multiple roots). Since the roots of P k (•, ξ) are real, simple, and the P k 's have no root in common, we have the strict hyperbolicity of K k=1 P k . We now consider L(τ, η) = τ + A j η j as a matrix with coefficients in C(η)[τ ], the ring of polynomial in τ over the field C(η). In order to simplify the notation, we do not write their dependence in (t, x). Since C(η)[τ ] is a principal ring, we can define for 0 ≤ k ≤ r (where r is the size of the system) D k the gcd of the minors of L of order k. Note that D r = det(L) is to be seen as the minor of order r. In particular, if r is the size of the system, D r-1 divides in C(η)[τ ] each coefficient of L co . Now according to the theory of elementary divisors (see for example Gantmächer [START_REF] Gantmacher | The theory of matrices[END_REF] chapter V I section 3 or Serre [START_REF] Serre | Matrices[END_REF] 

chapter 6 'invariant factors'), D r-1 |D r and more precisely τ → D r D r-1 (-τ, η) is the minimal polynomial of A j η j . There- fore D r D r-1 = K k=1 P k , which implies that D r-1 = K k=1 P q k -1 k . ( 10 
)
By definition, the coefficients of L co are up to the sign the minors of L of order

k -1. Thus each coefficient of L(τ, η) = L(τ, η) co P q k -1 k belongs to C(η)[τ ]. It remains to prove that they are in fact in C[η][τ ]. Let l be any coefficient of L, l = r j (η)τ j = l K k=1 P q k -1 k , l ∈ C[τ, η], r j ∈ C(η).
Let q be the lcm of the denominators of the r j 's. Then we have

l = l 1 q , with l 1 ∈ C[η][τ ], q ∈ C[η].
For Q in C[η][τ ] (polynomial in τ with coefficients in the factorial ring C[η]), we denote by c(Q) ∈ C[η] the gcd of its coefficients. According to Gauss's lemma we have c(Q

1 Q 2 ) = c(Q 1 )c(Q 2 ) .
Since the degree of P j is the same as the degree of P j as a polynomial in τ , c(P j ) = 1, we get c(l 1 )c(

K 1 P q k -1 k ) = c(l)c(q), hence c(l 1 ) = c(l)q , (11) 
thus q|c(l 1 ). However, by construction we have gcd(q, c(l 1 )) = 1. This implies that q = 1.

Finally, l = q l = l 1 ∈ C[η, τ ] is a polynomial, the matricial differential operator L is well defined, and L(τ, η)L(τ, η) = (we recall that the lower order terms come from the fact that we work on variable coefficients operators).

K 1 P

 1 k (τ, η) implies that L(∂ t , ∂ x )L(∂ t , ∂ x ) = K k=1 P k (∂ t , ∂ x )I r + differential operators of degree < r ,

Using Proposition 3 we obtain that (7) is valid for constantly hyperbolic IBVP's, and, according to the procedure in parts 3 and 4 of [9], L 2 is a continuable initial data for constantly hyperbolic IBVPs.