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Abstract. The SACRES project is dealing with the development of new
design methodologies and associated tools for safety critical embedded
systems. Emphasis is put on formal techniques for modular verification
of the specifications, distributed code generation, and generated code
validation against specifications. This is allowed by using a single formal
model which is that of the Dcy format, which provides a common seman-
tic framework for all tools as well as end user specification formalisms.
Modular and distributed code generation is the main subject of this pa-
per. Distributed code generation aims at reducing the dependency of the
design with respect to the target architecture. Modularity helps reuse of
existing designs, and makes it possible to address much larger systems.

1 Introduction

The overall objective of the SACRES project is to provide designers of embedded
control systems, in particular safety critical systems, with an enhanced design
methodology supported by a toolset significantly reducing the risk for design
errors and shortening overall design times. This is achieved through the use of
the maximum degree of automation, especially in respect of code generation and
verification [6]. SACRES architecture is depicted in figure 1. The SACRES toolset
combines the following main groups of tools:

— The command-level interface permits the tools to be invoked. Some of the
tool launch facilities are also available through the menus from the specifi-
cation tools.

— The specification front-end tools are mostly self-contained graphical tools
for building models. As software requirements for embedded systems typi-
cally involve a mixture of state oriented and dataflow oriented descriptions,
SACRES offers the possibility of mized formalism design, by combining ex-
pressive power of Statecharts [12] from the STATEMATE tool, and SIGNAL
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Fig. 1. SACRES architecture

[15] based dataflow diagrams from the SILDEX tool. SSL is a textual lan-
guage, used for assembling models with components from different specifica-
tion tools. It is mainly available from the graphical editors of the specification
tools.

— The Dcy representation is a global model format [19]. These files are not
expected to be read by the user, just to be passed between tools in the
toolset.

— Code generation tools include an interface for defining target architecture
and code distribution as well as the code generation engine itself.

— Code validation provides a formal correctness check for the code generation
translation.

— The verification tools allow automatic checking of the models that are pro-
duced from the specification tools, and manage the results of the proof.

This paper is dedicated to a presentation of the methodology adopted in SACRES
for modular and distributed code generation. The main add-on of the method-
ology is to allow automatic generation of efficient distributed code from the
specification, entirely replacing the manual coding phase still employed in cur-
rent industrial design flows. A requirement for that is, at the front-end level,
the use of specification tools that are based on a formal semantical model. This
is the case of both Statecharts and SIGNAL formalisms. Further, since mized
designs are favoured in SACRES, using together both state-based and dataflow
specification styles, a common representation was in some way mandatory. In



SACRES, this common representation is the D¢, format. This format imple-
ments the paradigm of synchronous programming [8,11] in its full generality.
Although very close in its syntax of the synchronized dataflow model advocated
by the SIGNAL language, it constitutes a model for the semantic integration of
SIGNAL [10] and Statecharts specifications [13]. In particular, translations from
Statecharts to D¢y have been defined in SACRES [4, 5].

The semantical basis of the Dcy format is that of Symbolic Transition Sys-
tems presented in the next section. This model includes in particular scheduling
specifications, which are used to represent causality relations, schedulings, and
communications. The compilation of programs expressed in D¢y results in a
hybrid structure which allows to represent both control and scheduling of the
programs, and to study important properties such as endochrony. Part of this
structure is a directed graph with boolean conditions on nodes and dependences.
From section 3, we will use a more macroscopic view of this directed graph, with
the help of diagrams, to present the methodology of code distribution. In sec-
tion 3, we give an overview of the approach and in section 4, we present the
main steps of the method.

2 The DC+ model

SACRES relies on a strong formal modelling basis, which is that of Symbolic
Transition Systems with Scheduling specifications [17, 18]. This abstract model
is used as the model of the D¢, concrete format.

2.1 Symbolic Transition Systems with Scheduling specifications

Symbolic Transition Systems We assume a vocabulary V which is a set of
typed variables. All types are implicitly extended with a special element L to
be interpreted as “absent”. Some of the types we consider are the type of pure
flows with domain {T}, and booleans with domain {T,F} (recall both types are
extended with the distinguished element ).

We define a state s to be a type-consistent interpretation of V, assigning to
the set of all variables, a value for it over its domain. For a subset of variables
V CV, we define a V-state to be a type-consistent interpretation of V. Thus a
V-state assigns to the set V' a value s[V] for it over its domain; also, for v € V
a variable, we denote by s[v] its interpretation by state s.

We define a Symbolic Transition System (STS) to be a system

¢ =(V.0,p)
consisting of the following components:

— V is a finite set of typed variables,
— O(V) is an assertion characterizing initial states.



— p = p(V~,V) is the transition relation relating past and current states s~
and s, by referring to both past and current versions of variables V'~ and
V. For example the assertion x = = + 1 states that the value of z in s is
greater by 1 than its value in s—. If p(s~ [V], s[V]) = T, we say that state s~
is a p-predecessor of state s.

A runo : sg,s1,582,...18 a sequence of states such that

s0 = O /\ Vi>0, (si1,8i) F p
The composition of two STS & = &; /\ P, is defined as follows:
V:V1UV2 ,9:@1/\@2 ,p:pl/\pz,

the composition is thus the pairwise conjunction of initial and transition rela-
tions. Note that, in STS composition, interaction occurs through common vari-
ables only. Hence variables that are declared private to an STS will not directly
contribute to any external interaction.

Notations for STS:

— ¢,v,w,... denote STS variables, these are the declared variables of the sTs;
useful additional variables are the following:
— for v a variable, h, € {T, L} denotes its clock:

[hy # 1] & v # 1]
— for v a variable, £, denotes its associated state-variable, defined by:
if h, then &, =v else §, =&

Values can be given to sg[{, | as part of the initial condition. Then, &, is
always present after the 1st occurrence of v. By convention, &, is private
to the sTS in which it is used. Thus state-variables play no role in STS-
composition. Also, note that &, = §,, thus “state-state-variables” need not
to be considered.

Transition relations for STS are naturally specified using conjunction of pred-
icates.

Modularity. As modularity is wanted, it is desirable that the pace of an STS is
local to it rather than global. Since any STS is subject to further composition in
some yet unknown environment, this makes the requirement of having a global
pace quite inconvenient. This is why we prohibit the use of clocks that are always
present. This has several consequences. First, it is not possible to consider the
“complement of a clock” or the “negation of a clock”: this would require referring
to the always present clock. Thus, clocks will always be variables, and we shall
be able to relate clocks only using A (intersection of instants of presence), V
(union of instants of presence), and \ (set difference of instants of presence).



Scheduling specifications Modular code distribution, and in the same way,
separate compilation, clearly require to be able to reason about causality, schedul-
ings, and communications. This is why we enrich the sTS model as follows.

Preorders to model causality relations, schedulings, and communications. We
consider again a set V' of variables. A preorder on the set V is a relation (gener-
ically denoted by <) which is reflexive (z < z) and transitive (z < y and y < z
imply # < z). Preorders are naturally specified via (possibly cyclic) directed
graphs:

x—y for z,yeV .

The conjunction of two preorders is the minimal preorder which is an extension
of the two considered conjuncts.

A labelled preorder on V is a preorder, together with a domain for each v € V.
Call domy the domain of the set V of variables. Denote by Ay the set of all
labelled preorders on V. A state s is now a type consistent interpretation of the
labelled preorder, i.e., a preorder on V together with a value s[V] for the set of
all variables belonging to V. Denote by dom,, the domain in which states take
their value.

STS with scheduling specifications. Now we consider an sTs & = (V, 0, p) as be-
fore, but with the following modification for the transition relation p = p(V =, V):

p Cdomy x domy, , (1)

i.e., transition relations relate the value for the t-uple of previous variables to
the current state. As before, runs are sequences sg, s, So2, ... that are consistent
with transition relation (1).

STS involving such type of preorder relation will be called sTS with scheduling
specifications. STS with scheduling specifications are just like any other sTS, hence
they inherit their properties, in particular they can be composed.

Notations for scheduling specifications: for b a variable of type boolU {1}, and
u,v variables of any type, the following generic conjunct will be used:

if b then u

> v ,resp. if belseu

>V

also written:

u >vresp. u ————> 0

In [9], it is shown that scheduling specifications have the following properties:

b b
x >y/\y C iz L>z (2)

b b
T >y/\a: ¢ >y =T L>y (3)



Properties (2,3) can be used to compute input/output abstractions of scheduling
specifications. This is illustrated in figure 2. In this figure, the diagram on the
left depicts a scheduling specification involving local variables. These are hidden
in the diagram on the right, using rules (2,3).

(@av(bA c)A k

bAl

hAcA k

® ® hA 4

® S ®

Fig. 2. Input/output abstractions of scheduling specifications

Syntax The following restricted set of generic basic conjuncts is sufficient to
encode all known synchronous languages:

ifbthenw =uelsew =v

u > w @)
w = f(ug,..., ug)
hy = hyy, = = hy,

In addition to the set (4) of primitives, state-variable &, associated with variable
v can be used on the right hand side of each of the above primitive statements.
The third primitive involves a conjunction of statements that are considered
jointly.

Ezxamples

aselector: if bthenz=uelsez=v

aregister : if h, thenv =¢; elsev =1

a synchronization constraint : (b = T) = (h, = T)

For the selector, the “else” part corresponds to the property “[b=F] VvV [b = L]”.
The more intuitive interpretation of the second statement is “v, = z,_1”, where
index “n” denotes the instants at which both v and z are present (their clocks
are equal). Clearly, this models a register. This statement implies the equality
of clocks: h, = h,. The synchronization constraint means that the clock of u is
the set of instants at which boolean variable b is true.



Inferring schedulings from causality analysis The schedulings that can be
inferred from an STS specification result from 1/ explicit scheduling specifica-
tions, and 2/ dataflow dependences that result from causality analysis. The idea
supporting causality analysis of an STS specification is quite simple. On the one
hand, a transition relation involving only the types “pure” and “boolean” can be
solved by unification and thus made executable. On the other hand, a transition
relation involving arbitrary types is abstracted as term rewriting, encoded via
directed graphs. For instance, relation y = 2uv? (involving, say, real types) is
abstracted as (u,v) > y, since y can be substituted by expression 2uv?.

Scheduling specifications associated with the primitive statements 4 are given
in [9]. For example:

(5)

Given an STS specified as the conjunction of a set of basic statements, for each
conjunct we add the corresponding scheduling specification to the considered
sTS. This yields a new sTs sched(P), for which it is possible to give sufficient
conditions so that P is executable: roughly, sched(P) is provably circuitfree at
each instant, and sched(P) has provably no multiple definition of variables at
any instant. Then sched(P) provides (dynamic) scheduling specifications for the
run of P.

2.2 Endochrony

The sTS model is the semantical model of D¢, programs. We need to give some
sketch of the compilation of these programs in order to complete the internal
representation structure of programs: one face is a directed graph, the other
one is a clock hierarchy allowing to represent the control of the program. This
structure is the basis for studying endochrony.

A Dcy program describes a reactive system whose behavior along time is
an infinite sequence of instants which represent reactions, triggered by external
or internal events. The main objects manipulated by a Dcy program are flows,
which are sequence of values synchronized with a clock. A flow is a typed object
which holds a value at each instant of its clock. The fact that a flow is currently
absent is represented by the bottom symbol L (cf. section 2.1). Clocks are pure
or boolean flows. A clock has the value T if and only if the flow associated with
the clock holds a value at the present instant of time. Actually, any expression
erp in the language has its corresponding clock hegp which indicates whether
the value of the expression at the current instant is different from L.

Clock hierarchy. Directed graphs obtained by causality analysis such as pre-
sented above are one of the objects used to represent programs and to calculate
on them. The other very important object that has to be obtained is a repre-
sentation of the clock hierarchy.



A first step of the Dc, compilation is the construction of a system of equa-
tions on clocks. The system is solved, the result gives inclusion between clocks.
The clocks are then organized in a hierarchy (i.e. a collection of trees) where if a
clock hy is under a clock hy (called its father), then h; cannot be present if ho is
not. In the clock hierarchy represented on figure 3, b, ¢ denote boolean variables,

~—

ho ko
| [b1] | | [ci] |
[b2] [c2]

Fig. 3. Clock hierarchy

[b], [¢] denote corresponding clocks composed of the instants at which b,c = T
holds, respectively. Finally, h, k are also clocks (i.e., variables of type pure). The
down-arrows hg — [b1], [b1] = [b2], etc., indicate that boolean variable b; has a
clock equal to hg and only needs variables with clock hg for its evaluation, and
so on. In doing so, a tree is built under each of the clocks hg, ko, . . ., this yields
the so-called clock hierarchy in the form of a “forest”, i.e., a collection of trees.
Roots of the trees are related by some clock equation, this is depicted as the
bidirectional arrow relating hg, ko, ... Then each flow of the program (and its
definition) is attached to its clock in the hierarchy. This structure is detailed in
[1] [2], where it is shown to be a canonical form for representing clock equations.
The combination of clock equations and scheduling specifications of a program is
represented by the combination of the clock hierarchy and of the directed graph.

Endochrony. An important property that will be determined on the clock hierar-
chy is endochrony. An STS is called endochronous if its control, i.e., the primary
decision in executing a reaction, depends only on 1/ the previous state, and 2/ the
values possibly carried by environment flows, but not on the presence/absence
status of these flows. If an STS is not endochronous (it is exochronous), then the
primary decision in executing a reaction consists in deciding upon relative pres-
ence/absence of clocks which are source nodes of the associated directed graph.
In contrast, for an endochronous STS, only one activation clock is a source node
of the graph. Hence no test for relative presence/absence of environment flows
is needed.



It is shown in [9] that if a program P has a clock hierarchy consisting in a
single tree, then it is endochronous.

Boolean Dcy. In practice, the calculation of the clock hierarchy of a program
is a key tool of the Dcy compiler; it is called the clock calculus. After the clock
calculus, clocks can be defined as boolean flows in a sub-format of Dcy called
BDC,: a boolean b represents the clock [b] composed of the instants at which
b,c = T holds, and is defined itself at the clock which is the father of [b] in the
clock hierarchy.

2.3 Issues for modular and distributed code generation

Two major issues need to be considered for modular and distributed code gen-
eration:

1. Relaxing synchrony is needed if distribution over possibly asynchronous me-
dia is desired without paying the price for maintaining the strong synchrony
hypothesis via costly protocols.

2. Designing modules equipped with proper interfaces for subsequent reuse, and
generating a correct scheduling and communication protocol for these mod-
ules, is the key to modularity.

It is shown in [9] that a solution to the first issue is to restrict ourselves
to endochronous programs. Another aspect that has to be considered is that
of maintaining synchronous semantics of composition while using asynchronous
communication media. Requirement for such a medium is that: 1/ it should
not loose messages, and, 2/ it should not change the order of messages. The
condition for this is the isochrony of the considered couple of programs. This is
not detailed here, see [9].

The scheduling specifications we derive from causality analysis still exhibit
maximum concurrency. Actual implementations will have to conform to these
scheduling specifications. In general, they will exhibit less (and even sometimes
no) concurrency, meaning that further sequentialization has been performed to
generate code. Of course, this additional sequentialization can be the source of
potential, otherwise unjustified, deadlock when the considered module is reused
in the form of object code in some environment. We shall see in 4 that a careful
use of the scheduling specifications of an sTs will allow us to decompose it into
modules that can be stored as object code for further reuse, whatever the actual
environment and implementation architecture will be.

Enforcing endochrony. Since endochrony is a key feature for programs we have
to implement, we must consider the question of moving from exochronous to
endochronous programs. As shown above, an answer is to make the roots of the
clock hierarchy belonging to some single clock tree. The idea for a simple exam-
ple such as that of the figure 4 is to add to the considered STS a monitor which
delivers the information of presence/absence via the b, b’ boolean variables with



identical clock h, i.e., {k = T} = {b = T}, and similarly for £’,b'. The resulting
STS is endochronous, since boolean variables b, b’ are scrutinized at the pace of ac-
tivation clock h. Intuitively, moving from exochrony to endochrony corresponds

(input clock) /h\
b b’

(input data)
(ot her) hi lh
k

N/ N/
O £

Fig. 4. Enforcing endochrony

to equipping the original P program with a suitable communication protocol () in
such a way that the compound program P A @ becomes endochronous. However,
in the general case, this transformation is not unique [9].

3 Distributed code generation: overview of the SACRES
approach

3.1 A first glance at the method

The overall method [6,7,16] is illustrated in the figures 5 and 6.

Figure 5 shows what the designer has to do. The designer has on her/his
screen (at least) three windows (those of the top part of the figure). The first
window—top left—is the (SIGNAL, or Dcy, or Activity Charts in STATEMATE)
program editor. In this window, a dataflow diagram is depicted. The arrows
would typically depict flows of data, but also could correspond to scheduling
requests. In the bottom right window, icons are shown which allow the de-
signer to specify her/his target architecture. This architecture has two types
of constitutive elements. The first one (on the left) is a processor, i.e. a ma-
chine that complies with the synchronous model of execution, in which a run
is a sequence of atomic reactions. Thus processors can be pieces of sequential
code (C/C4-procedures, threads, etc.), or alternatively parallel machines run-
ning according to the model of perfect synchrony (e.g., synchronous hardware).
Other icons refer to (generally asynchronous) communication media. Using these
two windows, the designer builds, in the third window (top right), her/his exe-
cution architecture: the source dataflow diagram is partitioned as shown in the
figure, and corresponding subdiagrams are mapped onto “processors” by click-
and-point. Also, models of communication links are specified by the designer,
by clicking-and-pointing to the appropriate icon. The result of this mapping is
built automatically as illustrated in the bottom part of the figure.

Figure 6 shows what the tool generates for each processor. From the specifica-



PUSH_

PLAYER{1}

L ] I

MASTER{}

|PLAYER DX
PusH_ ! ;

MATH

RES_A
RES_B

[ @@Oo

PUSH_A r
|PLAYERC 13

MAIN 3 RES_A

MASTERC) : o

>

PUSH_B

[PLnYER(z) ]
L

Fig. 5. Code generation: what the designer does

tions provided by the designer as in figure 5, the tool will generate, for embedding
into each processor, the following: 1/ a suitable communication protocol which
guarantees that the semantics of synchronous communication will be preserved
even though an asynchronous communication medium is used; 2/ a structuring
of the code into pieces of sequential code and a scheduler, aiming at guaranteing
separate compilation and reuse.

Finally, the whole model (processors and channel models) can be used for
architecture simulation and profiling.

3.2 Summary of the data needed to model the architecture

In the SACRES method, the path from the specification to the implementation
goes through the Doy format. In this context, distributing an application con-
sists in distributing a Dcy program representing a functional graph of flows,
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operators and dependences. The target architecture is composed of a set of pos-
sibly heterogeneous set of execution components (processors, micro-controllers,
ASIC. ..). At the level considered here, processor will be used as a generic name
in the following.

We do not address the partitioning/scheduling problem against quantitative
optimizations (as for traditional understanding in hardware/software partition-
ing). Conversely, we assume that an allocation function is given for nodes and
flows to processors and links. Moreover, the user interface provided to describe
this allocation function differs for specific environments (SILDEX, STATEMATE)—
in the figure 5, the Inria environment for SIGNAL is used. These functions are
ultimately given in pragma features of a D¢, description.

We summarize here which data have to be provided by the users of
architecture-dependent implementation of applications in the SACRES environ-
ment. A general comment is that the level of detail at which the architecture
needs to be known depends quite a lot on the refinement of the mapping to the
architecture chosen. This means that in the simplest cases, the amount of data
required is fairly small, and simple to assess:

— the set of processors or tasks, and the mapping from operations or sub-
processes in the application specification to those processors or tasks. This in-
formation enables the partitioning of the D¢, graph into sub-graphs grouped
according to the mapping.

— the topology of the network of processors, the set of connections between
processors, and a mapping from inter-process communications to these com-
munication links. This is useful in the case of flows exchanged between pro-
cesses located on different processors or tasks, if several of them have to be
routed through the same communication medium.

— a definition of the set of system-level primitives used e.g. for communications
(readings and writings to the media). Roughly, this amounts to the profiles
of the library of functions to which the code will have to be linked.



The concrete form to be given to this information is a question at two levels:
the level of Dcy (which is where we actually perform the compilation work) and
the user-level:

— the description of the location mapping can be made by having pragmas
associated with nodes, defining their assigned location.

— the description of the architecture can be made using D¢, describing the
graph of the network as a Dcy graph, with nodes for processors, nodes
for communication links, edges for connections, and pragmas for attaching
information to the nodes.

— at the user-level, tools and interfaces for entering this information are pro-
vided within the existing interfaces to SILDEX and STATEMATE.

The kind of information mentioned above supports the logical distribution
of an application. In the perspective of having a more refined code generation,
with further degrees of refinement of architecture-adaptation, more information
has to be gathered on the architecture:

— concerning processors, taking into account the types of the different proces-
sors can lead to a code generation taking advantage of specific characteristics.

— concerning communications, the type and nature of the links (that could
be implemented using shared variables, synchronous—blocking—or asyn-
chronous communications. . . ).

If the architecture targeted to features an OS, then in order to be able to
generate code using its functionalities, the model needed consists basically in the
profile of the corresponding functions, e.g., according to the degree of use of the
OS, synchronization gates, communications (possibly including routing between
processors) or tasking functions (in the case of un-interruptible tasks: starting
and stopping; in the case of interruptible tasks: suspension and resuming, as-
signment and management of priority levels), etc.

4 Modular approach to the distributed code generation:
main steps

When an application is executed on more than one processor, or in more than
one task on a single processor, it is necessary to insure that the generated code
is a correct implementation of the source specification. This correction has to be
proved as far as possible. As long as the implementation process is some refine-
ment in a single formally defined formalism, this proof results from theorems in
this theory. Such an approach is adopted in the SACRES method.

We focus this presentation on synchronization and causality in the context of
a structural decomposition of a synchronous program targeted on an optimized
distributed code.

The code distribution is seen as a user activity allowed by providing a set of
formally defined transformations using properties of the semantic model: com-
mutativity, associativity, idempotence of the composition operator. The concept



of static abstraction of a behavior (types of the flows plus their clocks and de-
pendences) and parameterisation techniques make possible a modular approach
to the distributed code generation.

Assumptions

— As mentioned above, we assume that a locate function gives the mapping
from functional to physical architectures.

— We suppose the BDC code of the program provided with a well formed tree
of clocks: every flow z, including all the clocks but a single one (named tick)
is associated with a boolean clock b,. Each clock ¢ is a boolean input or has
an explicit circuitfree definition.

— Every flow which is not an input is functionally defined (no circular defini-
tion, the program is deterministic).

4.1 Virtual mapping

p[P1 P2

| P11 t—PI P12 ls\ m
e

>
o P24 1P
\§;

P23

P| P14

Fig.7. P = (P1 \ P2)

Given:

— a source program P = (PP AP, A\ ...\ P,), in which each of the P, may
recursively be composed of sub processes (Pjy A Pia A ... A\ Pin), (in the ex-
ample of figure 7, solid lines represent data-flow)

— a set of processors ¢ = {q1, 42, ..., ¢m }, and

— a function locate: {P;} — P(q) associating with each atomic process P; a
non empty subset of processors,

a process @ = (Q1 A\... A Q@) is built (cf. figure 8); each process @; (source
code to be implemented on the processor ¢;) is the parallel composition of the
set of atomic processes Py such that ¢; belongs to locate(Py,). It is easy to prove
that @ is equivalent to P. As shown by the profile of the locate function, ) may
include redundant processes (this is allowed by idempotence). We call s-task such
a @; process.
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4.2 'Traceable compilation

In the process of distributed code generation, we have to care about the structure
of the graph after restructuring. This graph is built in such a way that each sub-
graph will be executed on a location. The compilation process must preserve
this structure. As usual (cf. section 2.2) the first step of the compilation is the
construction of a system of clock equations. Clocks are from the overall program.
We next solve this system and build a clock hierarchy. The compilation of the
virtual mapping is done without splitting the @Q; s-tasks; this compilation builds
a global clock system and a global multi-graph.

Instead of splitting the graph across this hierarchy, we will project the hi-
erarchy of clocks onto each sub-graph. Boolean clock definitions generated by
the compiler are composed with the @; (located on processor ¢;) with respect to
some heuristic such that each one of the resulting @} has a local tree of boolean
clocks (BDc, endochronous code); the root of this tree is the upperbound of
the clocks in @}. We prune the clock hierarchy on each sub-graph to obtain a
minimal one, but preserving a BDC, structure.

We finally prune the clock hierarchy of the graph of sub-graphs conserving
only the fastest clock of each sub-graph.

4.3 Local interface abstraction
Each @); is associated with an interface containing:

— as inputs, the input flows of P (thick solid arrows in figure 8) and the flow
computed in another @;, used in @;, (thick dashed arrows in figure 8)



— as outputs, the output flows of P and the flows computed in ();, and used
in another Q;,

— the clock tree of the input/output flows,

— the clocked dependences between external flows (inputs and outputs of Q;).
For that purpose, a transitive closure has to be calculated.

Transitive closure. Inside a sub-graph, a transitive closure allows to know prece-
dence relations between input flows and output flows (we know if an output flow
is preceded by an input flow); however we do not have any information on the
other way around (i.e. between an output and an input, through the environ-
ment). The transitive closure on the whole graph is the only way to take a global
view of the program.

In the case of a dataflow graph, the transitive closure is a well known algo-
rithm. In the case of the Dcy graph it is a little more complex one. We know that
a dependence between flows is valid only at certain instants. All dependences of
the transitive closure are also valid at certain instants and then associated with
a clock. To obtain this clock, we have to apply rules (2,3) given in 2.1.

To avoid deadlocks at execution time, we have to add, in each sub-graph,
precedence information resulting from the projection of the transitive closure
on input and output flows. The code generation of a sub-graph must take into
account these dependence relations to avoid making a dependence cycle when
sub-graphs are executed together.

4.4 Local black box abstraction, sensitivity analysis

At the level of a s-task, we have to build a scheduling of the nodes of this s-task.
The cost of dynamic execution leads us to reduce as much as possible dynamism.
To do that, we will gather nodes is such a way that they can be considered in an
atomic way. In this case, the scheduler only has to manage sets of nodes instead
of nodes themselves.

Sensitivity equivalence

Definition We say that two nodes N1 and No are sensitively equivalent if and
only if for each input i:
there is a causality path from i to N1 < there is a causality path from i to N.

Note that in this definition, we do not take clocks of dependences into ac-
count.

Two equivalent nodes wait for the same set of inputs: they can be executed
in an atomic action depending upon this set of inputs. In this way, we build the
classes of nodes transitively depending on subsets of input flows. For instance,
the s-task @) built above has two classes Cy and C3 as shown in figure 9.

Up to now, the applied transformations keep the program semantics un-
changed.



Note that in the worst case, n input flows lead to 2" sensitivity equivalence
classes. In this case, the management of classes is almost as hard as the man-
agement of nodes themselves. Another way to do the partitioning into classes
is to consider two or more input flows as atomic (considering two flows atomic
is considering that they will be read or written at the same physical moment).
Then the partitioning is done on subsets of atomic sets of input flows.

Q1
C1
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Fig. 9. Sensitivity classes in Q1

Local code generation All the nodes of a sensitivity class can be executed as
soon as the subset of its input flows is available. We can generate any scheduling
inside a class without modifying the observable behavior of the overall initial
program. Thus, we will generate a sequential code, assuming that input values
are available each time a new step starts for the class.

All the local flows, but state variables, can freely be implemented in registers
or variables. State variables have to be implemented in remanent memory.

Black box abstraction We have said that inside a sensitivity class, we can
generate any scheduling which respects dependences. This means that for any
such class, the only dependences that we have to consider are that any input
precedes any output at any time. For the sake of scheduling, a class is seen as a
procedure call. The scheduling of classes in then done without taking into account
what is inside, just the above property. For each class C;, we just consider an
interface in which all inputs precede all outputs. The abstraction of a class is
a black box abstraction. For example, in the ()1 sub-graph we obtain the result
represented on figure 10, in which causality arcs have been substituted to the
original dataflow sub-graphs Cy and Cs.

4.5 Grey box abstraction for a s-task

If s-tasks are implemented as a single task on an execution entity, communication
of internal data is done in the form of variable reads and writes in the same
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Fig. 10. Sub-graph abstractions

memory space. If s-tasks are implemented as a set of tasks, communication
corresponds to inter-tasks communications as supported by the tasking system.

From the point of view of the environment, the kind of implementation chosen
for a s-task does not matter. But to ensure the correct read-write sequencing,
the internal communications have also to be abstracted as causality relations.
Then we obtain what we call a grey bozx abstraction, in the sense that we know
more than just its interface. For example, the grey box abstraction of the s-task
(), is depicted in figure 11.
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Fig. 11. s-task abstraction

4.6 Code generation for each s-task

Communications Inter s-task communication is communication between exe-
cution entities of an architecture. The communications are generated depending
on the OS primitives. This generation is done by making calls to the right OS
primitives given by the architecture description or by the user.

Communication features can be described as synchronous process abstrac-
tions (some grey bozx). We assume the mapping of links to these devices is given.
Due to the large variety of communication features, multiplexing possibilities,



synchronization relaxing policies, it is not possible to provide a general automatic
mapping implementation; a specific library should be provided by the user (cf.
figure 12).

To represent the new graph obtained by adding communications, we have to
add causality links with the communication nodes.

Fig. 12. s-task abstraction with communications

S-task scheduling A scheduling is computed for each s-task taking into account
the global dependence graph and any other assertion on the environment.

In particular cases, for example obviously when the initial program is fully
scheduled by construction, then we can build a static scheduling for its partition
into s-tasks. In other cases, or when we want it, we have to build a dynamic
scheduling, e.g. depending on the order of arrival of inputs of the different parts
of the s-tasks. The order of the execution of nodes is given by scheduling clocks
exchanged with the environment.

OS scheduling. For a task such as @} (cf. figure 12) it is possible to generate
parallel processes scheduled and synchronized (synchronization gates) by OS
primitives as shown for example in figure 13. In this case, nothing is known
about the interleaving of elementary actions in 77 and T5.

Parameterized scheduling. Conversely, one can make more explicit the interac-
tions between the s-task components and the OS; this is allowed by clocked
causality arrows in Dcy: considering two non ordered atomic actions A; and
A, on the same processor, each time A; and A, are both executed, either A is
executed before As or A, is executed before Aj; this variable scheduling can be
represented by arrows from A; to A, labeled by S or conversely from A, to Ay
labeled by not S, where S is a boolean clock whose clock is the set of instants at
which A; and A, are both executed. A single process is known by the OS. This
is illustrated in figure 14.

The scheduling can then be described as a Dc4 program depending on tim-
ing, values, etc., on which verification is possible; or also, S can be provided



Fig. 14. Parameterized s-task scheduling

by the OS, or it can be a constant allowing then static scheduling as shown in
figure 15.

Synchronization and communication The synchronization between tasks
has to be defined by the user. Different schemes can be implemented.

Strong synchrony. The first implementation that can be done is to set a global
gate to synchronize tasks. At each step, each activated task signals its completion
to its predecessors in the graph when it has been completed and has received
completion acknowledge from each of its successors. Thus at most one logical
step is computed during the same instant.

Weak synchrony. A second scheme is to set local gates to synchronize tasks. At
each step, each activated task signals to its predecessors in the graph that it is
ready to proceed a new step when its previous step has been completed and a



Fig. 15. Static s-task scheduling with S = true

“ready to proceed” has been received from each of its successors concerning this
previous step. This implementation allows pipeline.

Bounded asynchrony. The most permissive scheme for embedded systems is to
allow communication implementation as bounded FIFO; the window operator
of D¢y makes possible the semantic description of this partially asynchronous
scheme.

4.7 Code instrumentation

Finally, we briefly mention our approach to code instrumentation, to evaluate
e.g. performance [14].

Given an implementation @) of a program and a model of time consumption
for each of the atomic actions in ), we automatically generate a program T'(Q)
homomorphic to @; T(Q) is the parallel composition of the images T'(Q;) of the
components @; (including communications) of Q. T(Q;) are given by the user
as D¢y components whose interfaces are composed of integer flows T'(z) instead
of the original flows z. T'(z) represents the sequence of the availability dates for
the occurrences of the original flow z.

T(Q) is thus a model of real time consumption of the application (functional
specification and architectural support). Some real time properties to be satisfied
can be described as predicates in DC,.. Then these properties can be checked by
using the verification tools of SACRES for instance.

5 Conclusion

This paper presents a framework for distributed code generation of synchronous
programs that allows relaxing synchrony, thanks to the property of endochrony.
On the other hand, the definition of precise abstractions of the programs permits



reuse of separately compiled programs. So the method is also a method for
separate compilation.

It is implemented in the SACRES project, through a number of software
modules applicable to D¢y programs. These are for example:

— clock calculus, which is the core of the Dcy compiler and consists in
computing the clock hierarchy (it is used in particular to check endochrony);

— root adjunction, and event conversion, implemented as a transforma-
tion of a Dy program to a BDC, one, which consist in inserting a master
clock and converting clocks into boolean flows (this is used in particular to
move from exochronous to endochronous programs);

— building s-tasks, based on user directives of location mapping, which per-
forms the extraction of D¢, sub-programs;

— computing abstractions of DC, programs, which consists in computing
the transitive closure of dependences and projecting it onto the input/output
interface;

— building tasks, which performs the extraction of tasks according to an
input driven partitionning and calculates the scheduler of these tasks;

— sequentializing DcC, programs, which consists in preparing, for each ex-
ecutable program, the computing of a legal sequential scheduling;

— distributed code generation, performed on the result of the structuring
of the code into tasks and s-tasks, which uses the sequential code generation
for tasks and a specific code generation for the schedulers; the generated
code makes calls to communication functions from a library to which it is
linked.

The method can be applied to many possible targets, using different real-time
kernels for instance (let us mention Posix, VxWorks, OSEK for automotive,
ARINC for avionics...).

Also, thanks to the translation of STATEMATE to D¢, developed in the
SACRES project [4,5], it is applicable not only to dataflow programs such as
SIGNAL ones, but also to STATEMATE designs. Finally, it is partly available in
the industrial SILDEX tool commercialised by TNI'. Application of the method
has been carried out on case studies provided by industrial users [3].
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