
HAL Id: hal-00543824
https://hal.science/hal-00543824

Submitted on 6 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code generation in the SACRES project
Thierry Gautier, Paul Le Guernic

To cite this version:
Thierry Gautier, Paul Le Guernic. Code generation in the SACRES project. Seventh Safety-critical
Systems Symposium (SSS’99), Feb 1999, Huntingdon, United Kingdom. pp.127-149. �hal-00543824�

https://hal.science/hal-00543824
https://hal.archives-ouvertes.fr

Code generation in the SACRES project ?Thierry Gautier and Paul Le Guernic ??IRISA / INRIA, Campus de Beaulieu { 35042 Rennes Cedex { FRANCEe-mail: fThierry.GautierjPaul.LeGuernicg@irisa.frhttp://www.irisa.fr/EXTERNE/projet/ep-atrAbstract. The SACRES project is dealing with the development of newdesign methodologies and associated tools for safety critical embeddedsystems. Emphasis is put on formal techniques for modular veri�cationof the speci�cations, distributed code generation, and generated codevalidation against speci�cations. This is allowed by using a single formalmodel which is that of theDc+ format, which provides a common seman-tic framework for all tools as well as end user speci�cation formalisms.Modular and distributed code generation is the main subject of this pa-per. Distributed code generation aims at reducing the dependency of thedesign with respect to the target architecture. Modularity helps reuse ofexisting designs, and makes it possible to address much larger systems.1 IntroductionThe overall objective of the SACRES project is to provide designers of embeddedcontrol systems, in particular safety critical systems, with an enhanced designmethodology supported by a toolset signi�cantly reducing the risk for designerrors and shortening overall design times. This is achieved through the use ofthe maximum degree of automation, especially in respect of code generation andveri�cation [6]. SACRES architecture is depicted in �gure 1. The SACRES toolsetcombines the following main groups of tools:{ The command-level interface permits the tools to be invoked. Some of thetool launch facilities are also available through the menus from the speci�-cation tools.{ The speci�cation front-end tools are mostly self-contained graphical toolsfor building models. As software requirements for embedded systems typi-cally involve a mixture of state oriented and data
ow oriented descriptions,SACRES o�ers the possibility of mixed formalism design, by combining ex-pressive power of Statecharts [12] from the StateMate tool, and Signal? This work is supported by the Esprit project R&D SACRES (EP 20897).SACRES members are: Siemens (Lead partner), i-Logix, TNI (Techniques Nou-velles d'Informatique), OFFIS, INRIA, the Weizmann Institute of Science, BritishAerospace, SNECMA.?? The following people have also participated to this work: Albert Benveniste, Lo��cBesnard, Patricia Bournai, Sylvain Machard, �Eric Rutten. They are gratefully ac-knowledged.

SACRES extended DC+

Generation

Distributed
Code

Validation

Code Generation

Optimisation

Communication
Protocols

Sequential

Code
Distribution

C Ada

Code

Statemate Diagrams
Timing

SSLSildex

Status
Verification

Verification

Manager
Proof

Verification
Component

Verification

Generation

System

Data Base
VerificationCode

Specification front end

SACRES command level interface

Fig. 1. SACRES architecture[15] based data
ow diagrams from the Sildex tool. ssl is a textual lan-guage, used for assembling models with components from di�erent speci�ca-tion tools. It is mainly available from the graphical editors of the speci�cationtools.{ The Dc+ representation is a global model format [19]. These �les are notexpected to be read by the user, just to be passed between tools in thetoolset.{ Code generation tools include an interface for de�ning target architectureand code distribution as well as the code generation engine itself.{ Code validation provides a formal correctness check for the code generationtranslation.{ The veri�cation tools allow automatic checking of the models that are pro-duced from the speci�cation tools, and manage the results of the proof.This paper is dedicated to a presentation of the methodology adopted in SACRESfor modular and distributed code generation. The main add-on of the method-ology is to allow automatic generation of e�cient distributed code from thespeci�cation, entirely replacing the manual coding phase still employed in cur-rent industrial design
ows. A requirement for that is, at the front-end level,the use of speci�cation tools that are based on a formal semantical model. Thisis the case of both Statecharts and Signal formalisms. Further, since mixeddesigns are favoured in SACRES, using together both state-based and data
owspeci�cation styles, a common representation was in some way mandatory. In

SACRES, this common representation is the Dc+ format. This format imple-ments the paradigm of synchronous programming [8, 11] in its full generality.Although very close in its syntax of the synchronized data
ow model advocatedby the Signal language, it constitutes a model for the semantic integration ofSignal [10] and Statecharts speci�cations [13]. In particular, translations fromStatecharts to Dc+ have been de�ned in SACRES [4, 5].The semantical basis of the Dc+ format is that of Symbolic Transition Sys-tems presented in the next section. This model includes in particular schedulingspeci�cations, which are used to represent causality relations, schedulings, andcommunications. The compilation of programs expressed in Dc+ results in ahybrid structure which allows to represent both control and scheduling of theprograms, and to study important properties such as endochrony. Part of thisstructure is a directed graph with boolean conditions on nodes and dependences.From section 3, we will use a more macroscopic view of this directed graph, withthe help of diagrams, to present the methodology of code distribution. In sec-tion 3, we give an overview of the approach and in section 4, we present themain steps of the method.2 The DC+ modelSACRES relies on a strong formal modelling basis, which is that of SymbolicTransition Systems with Scheduling speci�cations [17, 18]. This abstract modelis used as the model of the Dc+ concrete format.2.1 Symbolic Transition Systems with Scheduling speci�cationsSymbolic Transition Systems We assume a vocabulary V which is a set oftyped variables. All types are implicitly extended with a special element ? tobe interpreted as \absent". Some of the types we consider are the type of pure
ows with domain ftg, and booleans with domain ft; fg (recall both types areextended with the distinguished element ?).We de�ne a state s to be a type-consistent interpretation of V , assigning tothe set of all variables, a value for it over its domain. For a subset of variablesV � V , we de�ne a V -state to be a type-consistent interpretation of V . Thus aV -state assigns to the set V a value s[V] for it over its domain; also, for v 2 Va variable, we denote by s[v] its interpretation by state s.We de�ne a Symbolic Transition System (sts) to be a system� = hV;�; �iconsisting of the following components:{ V is a �nite set of typed variables,{ �(V) is an assertion characterizing initial states.

{ � = �(V �; V) is the transition relation relating past and current states s�and s, by referring to both past and current versions of variables V � andV . For example the assertion x = x� + 1 states that the value of x in s isgreater by 1 than its value in s�. If �(s�[V]; s[V]) = t, we say that state s�is a �-predecessor of state s.A run � : s0; s1; s2; : : : is a sequence of states such thats0 j= � ^ 8i > 0 ; (si�1; si) j= �The composition of two sts � = �1 V �2 is de�ned as follows:V = V1 [V2 ; � = �1 ^�2 ; � = �1 ^ �2 ;the composition is thus the pairwise conjunction of initial and transition rela-tions. Note that, in sts composition, interaction occurs through common vari-ables only. Hence variables that are declared private to an sts will not directlycontribute to any external interaction.Notations for sts:{ c; v; w; : : : denote sts variables, these are the declared variables of the sts;useful additional variables are the following:{ for v a variable, hv 2 ft;?g denotes its clock:[hv 6= ?], [v 6= ?]{ for v a variable, �v denotes its associated state-variable, de�ned by:if hv then �v = v else �v = ��vValues can be given to s0[��v] as part of the initial condition. Then, �v isalways present after the 1st occurrence of v. By convention, �v is privateto the sts in which it is used. Thus state-variables play no role in sts-composition. Also, note that ��v = �v , thus \state-state-variables" need notto be considered.Transition relations for sts are naturally speci�ed using conjunction of pred-icates.Modularity. As modularity is wanted, it is desirable that the pace of an sts islocal to it rather than global. Since any sts is subject to further composition insome yet unknown environment, this makes the requirement of having a globalpace quite inconvenient. This is why we prohibit the use of clocks that are alwayspresent. This has several consequences. First, it is not possible to consider the\complement of a clock" or the \negation of a clock": this would require referringto the always present clock. Thus, clocks will always be variables, and we shallbe able to relate clocks only using ^ (intersection of instants of presence), _(union of instants of presence), and n (set di�erence of instants of presence).

Scheduling speci�cations Modular code distribution, and in the same way,separate compilation, clearly require to be able to reason about causality, schedul-ings, and communications. This is why we enrich the sts model as follows.Preorders to model causality relations, schedulings, and communications. Weconsider again a set V of variables. A preorder on the set V is a relation (gener-ically denoted by �) which is re
exive (x � x) and transitive (x � y and y � zimply x � z). Preorders are naturally speci�ed via (possibly cyclic) directedgraphs: x! y for x; y 2 V :The conjunction of two preorders is the minimal preorder which is an extensionof the two considered conjuncts.A labelled preorder on V is a preorder, together with a domain for each v 2 V .Call domV the domain of the set V of variables. Denote by �V the set of alllabelled preorders on V . A state s is now a type consistent interpretation of thelabelled preorder, i.e., a preorder on V together with a value s[V] for the set ofall variables belonging to V . Denote by dom�V the domain in which states taketheir value.sts with scheduling speci�cations. Now we consider an sts � = hV;�; �i as be-fore, but with the following modi�cation for the transition relation � = �(V �; V):� � domV � dom�V ; (1)i.e., transition relations relate the value for the t-uple of previous variables tothe current state. As before, runs are sequences s0; s1; s2; : : : that are consistentwith transition relation (1).sts involving such type of preorder relation will be called sts with schedulingspeci�cations. sts with scheduling speci�cations are just like any other sts, hencethey inherit their properties, in particular they can be composed.Notations for scheduling speci�cations: for b a variable of type bool[f?g, andu; v variables of any type, the following generic conjunct will be used:if b then u > v , resp. if b else u > valso written: u b > v resp. u b > vIn [9], it is shown that scheduling speci�cations have the following properties:x b > y ^ y c > z) x b ^ c > z (2)x b > y ^ x c > y) x b _ c > y (3)

Properties (2,3) can be used to compute input/output abstractions of schedulingspeci�cations. This is illustrated in �gure 2. In this �gure, the diagram on theleft depicts a scheduling speci�cation involving local variables. These are hiddenin the diagram on the right, using rules (2,3).
h l

kch

b l

(a (b c)) ka

b

h

c

l

k

Fig. 2. Input/output abstractions of scheduling speci�cationsSyntax The following restricted set of generic basic conjuncts is su�cient toencode all known synchronous languages:if b then w = u else w = vu b > ww = f(u1; : : : ; uk)hw � hu1 � : : : � huk � (4)In addition to the set (4) of primitives, state-variable �v associated with variablev can be used on the right hand side of each of the above primitive statements.The third primitive involves a conjunction of statements that are consideredjointly.Examples a selector : if b then z = u else z = va register : if hz then v = ��z else v = ?a synchronization constraint : (b = t) � (hu = t)For the selector, the \else" part corresponds to the property \ [b = f] _ [b = ?] ".The more intuitive interpretation of the second statement is \vn = zn�1", whereindex \n" denotes the instants at which both v and z are present (their clocksare equal). Clearly, this models a register. This statement implies the equalityof clocks: hz � hv. The synchronization constraint means that the clock of u isthe set of instants at which boolean variable b is true.

Inferring schedulings from causality analysis The schedulings that can beinferred from an sts speci�cation result from 1/ explicit scheduling speci�ca-tions, and 2/ data
ow dependences that result from causality analysis. The ideasupporting causality analysis of an sts speci�cation is quite simple. On the onehand, a transition relation involving only the types \pure" and \boolean" can besolved by uni�cation and thus made executable. On the other hand, a transitionrelation involving arbitrary types is abstracted as term rewriting, encoded viadirected graphs. For instance, relation y = 2uv2 (involving, say, real types) isabstracted as (u; v) > y, since y can be substituted by expression 2uv2.Scheduling speci�cations associated with the primitive statements 4 are givenin [9]. For example: w = f(u1; : : : ; uk)hw � hu1 � : : : � huk �) ui hw > w (5)Given an sts speci�ed as the conjunction of a set of basic statements, for eachconjunct we add the corresponding scheduling speci�cation to the consideredsts. This yields a new sts sched(P), for which it is possible to give su�cientconditions so that P is executable: roughly, sched(P) is provably circuitfree ateach instant, and sched(P) has provably no multiple de�nition of variables atany instant. Then sched(P) provides (dynamic) scheduling speci�cations for therun of P.2.2 EndochronyThe sts model is the semantical model of Dc+ programs. We need to give somesketch of the compilation of these programs in order to complete the internalrepresentation structure of programs: one face is a directed graph, the otherone is a clock hierarchy allowing to represent the control of the program. Thisstructure is the basis for studying endochrony.A Dc+ program describes a reactive system whose behavior along time isan in�nite sequence of instants which represent reactions, triggered by externalor internal events. The main objects manipulated by a Dc+ program are
ows,which are sequence of values synchronized with a clock. A
ow is a typed objectwhich holds a value at each instant of its clock. The fact that a
ow is currentlyabsent is represented by the bottom symbol ? (cf. section 2.1). Clocks are pureor boolean
ows. A clock has the value t if and only if the
ow associated withthe clock holds a value at the present instant of time. Actually, any expressionexp in the language has its corresponding clock hexp which indicates whetherthe value of the expression at the current instant is di�erent from ?.Clock hierarchy. Directed graphs obtained by causality analysis such as pre-sented above are one of the objects used to represent programs and to calculateon them. The other very important object that has to be obtained is a repre-sentation of the clock hierarchy.

A �rst step of the Dc+ compilation is the construction of a system of equa-tions on clocks. The system is solved, the result gives inclusion between clocks.The clocks are then organized in a hierarchy (i.e. a collection of trees) where if aclock h1 is under a clock h2 (called its father), then h1 cannot be present if h2 isnot. In the clock hierarchy represented on �gure 3, b; c denote boolean variables,

.
.
.

.
.
.

.
.
.

k0h0

.
.
.

.
.
.

.
.
.

[b1]

[b2]

[c1]

[c2]

Fig. 3. Clock hierarchy[b]; [c] denote corresponding clocks composed of the instants at which b; c = tholds, respectively. Finally, h; k are also clocks (i.e., variables of type pure). Thedown-arrows h0 ! [b1], [b1]! [b2], etc., indicate that boolean variable b1 has aclock equal to h0 and only needs variables with clock h0 for its evaluation, andso on. In doing so, a tree is built under each of the clocks h0; k0; : : :, this yieldsthe so-called clock hierarchy in the form of a \forest", i.e., a collection of trees.Roots of the trees are related by some clock equation, this is depicted as thebidirectional arrow relating h0; k0; : : : Then each
ow of the program (and itsde�nition) is attached to its clock in the hierarchy. This structure is detailed in[1] [2], where it is shown to be a canonical form for representing clock equations.The combination of clock equations and scheduling speci�cations of a program isrepresented by the combination of the clock hierarchy and of the directed graph.Endochrony. An important property that will be determined on the clock hierar-chy is endochrony. An sts is called endochronous if its control, i.e., the primarydecision in executing a reaction, depends only on 1/ the previous state, and 2/ thevalues possibly carried by environment
ows, but not on the presence/absencestatus of these
ows. If an sts is not endochronous (it is exochronous), then theprimary decision in executing a reaction consists in deciding upon relative pres-ence/absence of clocks which are source nodes of the associated directed graph.In contrast, for an endochronous sts, only one activation clock is a source nodeof the graph. Hence no test for relative presence/absence of environment
owsis needed.

It is shown in [9] that if a program P has a clock hierarchy consisting in asingle tree, then it is endochronous.Boolean Dc+. In practice, the calculation of the clock hierarchy of a programis a key tool of the Dc+ compiler; it is called the clock calculus. After the clockcalculus, clocks can be de�ned as boolean
ows in a sub-format of Dc+ calledbDc+: a boolean b represents the clock [b] composed of the instants at whichb; c = t holds, and is de�ned itself at the clock which is the father of [b] in theclock hierarchy.2.3 Issues for modular and distributed code generationTwo major issues need to be considered for modular and distributed code gen-eration:1. Relaxing synchrony is needed if distribution over possibly asynchronous me-dia is desired without paying the price for maintaining the strong synchronyhypothesis via costly protocols.2. Designing modules equipped with proper interfaces for subsequent reuse, andgenerating a correct scheduling and communication protocol for these mod-ules, is the key to modularity.It is shown in [9] that a solution to the �rst issue is to restrict ourselvesto endochronous programs. Another aspect that has to be considered is thatof maintaining synchronous semantics of composition while using asynchronouscommunication media. Requirement for such a medium is that: 1/ it shouldnot loose messages, and, 2/ it should not change the order of messages. Thecondition for this is the isochrony of the considered couple of programs. This isnot detailed here, see [9].The scheduling speci�cations we derive from causality analysis still exhibitmaximum concurrency. Actual implementations will have to conform to thesescheduling speci�cations. In general, they will exhibit less (and even sometimesno) concurrency, meaning that further sequentialization has been performed togenerate code. Of course, this additional sequentialization can be the source ofpotential, otherwise unjusti�ed, deadlock when the considered module is reusedin the form of object code in some environment. We shall see in 4 that a carefuluse of the scheduling speci�cations of an sts will allow us to decompose it intomodules that can be stored as object code for further reuse, whatever the actualenvironment and implementation architecture will be.Enforcing endochrony. Since endochrony is a key feature for programs we haveto implement, we must consider the question of moving from exochronous toendochronous programs. As shown above, an answer is to make the roots of theclock hierarchy belonging to some single clock tree. The idea for a simple exam-ple such as that of the �gure 4 is to add to the considered sts a monitor whichdelivers the information of presence/absence via the b; b0 boolean variables with

identical clock h, i.e., fk = tg � fb = tg, and similarly for k0; b0. The resultingsts is endochronous, since boolean variables b; b0 are scrutinized at the pace of ac-tivation clock h. Intuitively, moving from exochrony to endochrony corresponds
k k’k k’

h

b b’
(other)
(input data)
(input clock)

hh

Fig. 4. Enforcing endochronyto equipping the original P program with a suitable communication protocol Q insuch a way that the compound program P VQ becomes endochronous. However,in the general case, this transformation is not unique [9].3 Distributed code generation: overview of the SACRESapproach3.1 A �rst glance at the methodThe overall method [6, 7, 16] is illustrated in the �gures 5 and 6.Figure 5 shows what the designer has to do. The designer has on her/hisscreen (at least) three windows (those of the top part of the �gure). The �rstwindow|top left|is the (Signal, or Dc+, or Activity Charts in StateMate)program editor. In this window, a data
ow diagram is depicted. The arrowswould typically depict
ows of data, but also could correspond to schedulingrequests. In the bottom right window, icons are shown which allow the de-signer to specify her/his target architecture. This architecture has two typesof constitutive elements. The �rst one (on the left) is a processor, i.e. a ma-chine that complies with the synchronous model of execution, in which a runis a sequence of atomic reactions. Thus processors can be pieces of sequentialcode (C/C++-procedures, threads, etc.), or alternatively parallel machines run-ning according to the model of perfect synchrony (e.g., synchronous hardware).Other icons refer to (generally asynchronous) communication media. Using thesetwo windows, the designer builds, in the third window (top right), her/his exe-cution architecture: the source data
ow diagram is partitioned as shown in the�gure, and corresponding subdiagrams are mapped onto \processors" by click-and-point. Also, models of communication links are speci�ed by the designer,by clicking-and-pointing to the appropriate icon. The result of this mapping isbuilt automatically as illustrated in the bottom part of the �gure.Figure 6 shows what the tool generates for each processor. From the speci�ca-

Fig. 5. Code generation: what the designer doestions provided by the designer as in �gure 5, the tool will generate, for embeddinginto each processor, the following: 1/ a suitable communication protocol whichguarantees that the semantics of synchronous communication will be preservedeven though an asynchronous communication medium is used; 2/ a structuringof the code into pieces of sequential code and a scheduler, aiming at guaranteingseparate compilation and reuse.Finally, the whole model (processors and channel models) can be used forarchitecture simulation and pro�ling.3.2 Summary of the data needed to model the architectureIn the SACRES method, the path from the speci�cation to the implementationgoes through the Dc+ format. In this context, distributing an application con-sists in distributing a Dc+ program representing a functional graph of
ows,

task (reusable, separate compil.)

communication_protocol

for embedded code generation

scheduler

comm_channel
processor_1 processor_2

Fig. 6. Code generation: what the tool generatesoperators and dependences. The target architecture is composed of a set of pos-sibly heterogeneous set of execution components (processors, micro-controllers,ASIC. . .). At the level considered here, processor will be used as a generic namein the following.We do not address the partitioning/scheduling problem against quantitativeoptimizations (as for traditional understanding in hardware/software partition-ing). Conversely, we assume that an allocation function is given for nodes and
ows to processors and links. Moreover, the user interface provided to describethis allocation function di�ers for speci�c environments (Sildex, StateMate)|in the �gure 5, the Inria environment for Signal is used. These functions areultimately given in pragma features of a Dc+ description.We summarize here which data have to be provided by the users ofarchitecture-dependent implementation of applications in the SACRES environ-ment. A general comment is that the level of detail at which the architectureneeds to be known depends quite a lot on the re�nement of the mapping to thearchitecture chosen. This means that in the simplest cases, the amount of datarequired is fairly small, and simple to assess:{ the set of processors or tasks, and the mapping from operations or sub-processes in the application speci�cation to those processors or tasks. This in-formation enables the partitioning of theDc+ graph into sub-graphs groupedaccording to the mapping.{ the topology of the network of processors, the set of connections betweenprocessors, and a mapping from inter-process communications to these com-munication links. This is useful in the case of
ows exchanged between pro-cesses located on di�erent processors or tasks, if several of them have to berouted through the same communication medium.{ a de�nition of the set of system-level primitives used e.g. for communications(readings and writings to the media). Roughly, this amounts to the pro�lesof the library of functions to which the code will have to be linked.

The concrete form to be given to this information is a question at two levels:the level of Dc+ (which is where we actually perform the compilation work) andthe user-level:{ the description of the location mapping can be made by having pragmasassociated with nodes, de�ning their assigned location.{ the description of the architecture can be made using Dc+, describing thegraph of the network as a Dc+ graph, with nodes for processors, nodesfor communication links, edges for connections, and pragmas for attachinginformation to the nodes.{ at the user-level, tools and interfaces for entering this information are pro-vided within the existing interfaces to Sildex and StateMate.The kind of information mentioned above supports the logical distributionof an application. In the perspective of having a more re�ned code generation,with further degrees of re�nement of architecture-adaptation, more informationhas to be gathered on the architecture:{ concerning processors, taking into account the types of the di�erent proces-sors can lead to a code generation taking advantage of speci�c characteristics.{ concerning communications, the type and nature of the links (that couldbe implemented using shared variables, synchronous|blocking|or asyn-chronous communications. . .).If the architecture targeted to features an OS, then in order to be able togenerate code using its functionalities, the model needed consists basically in thepro�le of the corresponding functions, e.g., according to the degree of use of theOS, synchronization gates, communications (possibly including routing betweenprocessors) or tasking functions (in the case of un-interruptible tasks: startingand stopping; in the case of interruptible tasks: suspension and resuming, as-signment and management of priority levels), etc.4 Modular approach to the distributed code generation:main stepsWhen an application is executed on more than one processor, or in more thanone task on a single processor, it is necessary to insure that the generated codeis a correct implementation of the source speci�cation. This correction has to beproved as far as possible. As long as the implementation process is some re�ne-ment in a single formally de�ned formalism, this proof results from theorems inthis theory. Such an approach is adopted in the SACRES method.We focus this presentation on synchronization and causality in the context ofa structural decomposition of a synchronous program targeted on an optimizeddistributed code.The code distribution is seen as a user activity allowed by providing a set offormally de�ned transformations using properties of the semantic model: com-mutativity, associativity, idempotence of the composition operator. The concept

of static abstraction of a behavior (types of the
ows plus their clocks and de-pendences) and parameterisation techniques make possible a modular approachto the distributed code generation.Assumptions{ As mentioned above, we assume that a locate function gives the mappingfrom functional to physical architectures.{ We suppose the bDc+ code of the program provided with a well formed treeof clocks: every
ow x, including all the clocks but a single one (named tick)is associated with a boolean clock bx. Each clock c is a boolean input or hasan explicit circuitfree de�nition.{ Every
ow which is not an input is functionally de�ned (no circular de�ni-tion, the program is deterministic).4.1 Virtual mapping
0�� 0��

0��

0��

0��

0��

0��

0��

0� 0�0

Fig. 7. P = (P1VP2)Given:{ a source program P = (P1VP2V : : :VPn), in which each of the Pi mayrecursively be composed of sub processes (Pi1VPi2V : : :VPin), (in the ex-ample of �gure 7, solid lines represent data-
ow){ a set of processors q = fq1; q2; :::; qmg, and{ a function locate: fPig ! P(q) associating with each atomic process Pj anon empty subset of processors,a process Q = (Q1V : : :VQm) is built (cf. �gure 8); each process Qi (sourcecode to be implemented on the processor qi) is the parallel composition of theset of atomic processes Pk such that qi belongs to locate(Pk). It is easy to provethat Q is equivalent to P . As shown by the pro�le of the locate function, Q mayinclude redundant processes (this is allowed by idempotence). We call s-task sucha Qi process.

0�� 0��

0��

0��

0��

0��

0��

0��

1�

1�

Fig. 8. Virtual task allocation: P = (Q1VPQ2),s-task Q1 = (P11VP12VP21VP22), s-task Q2 = (P13VP14VP23VP24)4.2 Traceable compilationIn the process of distributed code generation, we have to care about the structureof the graph after restructuring. This graph is built in such a way that each sub-graph will be executed on a location. The compilation process must preservethis structure. As usual (cf. section 2.2) the �rst step of the compilation is theconstruction of a system of clock equations. Clocks are from the overall program.We next solve this system and build a clock hierarchy. The compilation of thevirtual mapping is done without splitting the Qi s-tasks; this compilation buildsa global clock system and a global multi-graph.Instead of splitting the graph across this hierarchy, we will project the hi-erarchy of clocks onto each sub-graph. Boolean clock de�nitions generated bythe compiler are composed with the Qi (located on processor qi) with respect tosome heuristic such that each one of the resulting Q0i has a local tree of booleanclocks (bDc+ endochronous code); the root of this tree is the upperbound ofthe clocks in Q0i. We prune the clock hierarchy on each sub-graph to obtain aminimal one, but preserving a bDc+ structure.We �nally prune the clock hierarchy of the graph of sub-graphs conservingonly the fastest clock of each sub-graph.4.3 Local interface abstractionEach Qi is associated with an interface containing:{ as inputs, the input
ows of P (thick solid arrows in �gure 8) and the
owcomputed in another Qj , used in Qi, (thick dashed arrows in �gure 8)

{ as outputs, the output
ows of P and the
ows computed in Qi, and usedin another Qj ,{ the clock tree of the input/output
ows,{ the clocked dependences between external
ows (inputs and outputs of Qi).For that purpose, a transitive closure has to be calculated.Transitive closure. Inside a sub-graph, a transitive closure allows to know prece-dence relations between input
ows and output
ows (we know if an output
owis preceded by an input
ow); however we do not have any information on theother way around (i.e. between an output and an input, through the environ-ment). The transitive closure on the whole graph is the only way to take a globalview of the program.In the case of a data
ow graph, the transitive closure is a well known algo-rithm. In the case of the Dc+ graph it is a little more complex one. We know thata dependence between
ows is valid only at certain instants. All dependences ofthe transitive closure are also valid at certain instants and then associated witha clock. To obtain this clock, we have to apply rules (2,3) given in 2.1.To avoid deadlocks at execution time, we have to add, in each sub-graph,precedence information resulting from the projection of the transitive closureon input and output
ows. The code generation of a sub-graph must take intoaccount these dependence relations to avoid making a dependence cycle whensub-graphs are executed together.4.4 Local black box abstraction, sensitivity analysisAt the level of a s-task, we have to build a scheduling of the nodes of this s-task.The cost of dynamic execution leads us to reduce as much as possible dynamism.To do that, we will gather nodes is such a way that they can be considered in anatomic way. In this case, the scheduler only has to manage sets of nodes insteadof nodes themselves.Sensitivity equivalenceDe�nition We say that two nodes N1 and N2 are sensitively equivalent if andonly if for each input i:there is a causality path from i to N1 , there is a causality path from i to N2.Note that in this de�nition, we do not take clocks of dependences into ac-count.Two equivalent nodes wait for the same set of inputs: they can be executedin an atomic action depending upon this set of inputs. In this way, we build theclasses of nodes transitively depending on subsets of input
ows. For instance,the s-task Q1 built above has two classes C1 and C2 as shown in �gure 9.Up to now, the applied transformations keep the program semantics un-changed.

Note that in the worst case, n input
ows lead to 2n sensitivity equivalenceclasses. In this case, the management of classes is almost as hard as the man-agement of nodes themselves. Another way to do the partitioning into classesis to consider two or more input
ows as atomic (considering two
ows atomicis considering that they will be read or written at the same physical moment).Then the partitioning is done on subsets of atomic sets of input
ows.
0��

0��

0�� 0��

1�

#�

#�

Fig. 9. Sensitivity classes in Q1Local code generation All the nodes of a sensitivity class can be executed assoon as the subset of its input
ows is available. We can generate any schedulinginside a class without modifying the observable behavior of the overall initialprogram. Thus, we will generate a sequential code, assuming that input valuesare available each time a new step starts for the class.All the local
ows, but state variables, can freely be implemented in registersor variables. State variables have to be implemented in remanent memory.Black box abstraction We have said that inside a sensitivity class, we cangenerate any scheduling which respects dependences. This means that for anysuch class, the only dependences that we have to consider are that any inputprecedes any output at any time. For the sake of scheduling, a class is seen as aprocedure call. The scheduling of classes in then done without taking into accountwhat is inside, just the above property. For each class Ci, we just consider aninterface in which all inputs precede all outputs. The abstraction of a class isa black box abstraction. For example, in the Q1 sub-graph we obtain the resultrepresented on �gure 10, in which causality arcs have been substituted to theoriginal data
ow sub-graphs C1 and C2.4.5 Grey box abstraction for a s-taskIf s-tasks are implemented as a single task on an execution entity, communicationof internal data is done in the form of variable reads and writes in the same

1��

#��

#��

Fig. 10. Sub-graph abstractionsmemory space. If s-tasks are implemented as a set of tasks, communicationcorresponds to inter-tasks communications as supported by the tasking system.From the point of view of the environment, the kind of implementation chosenfor a s-task does not matter. But to ensure the correct read-write sequencing,the internal communications have also to be abstracted as causality relations.Then we obtain what we call a grey box abstraction, in the sense that we knowmore than just its interface. For example, the grey box abstraction of the s-taskQ1 is depicted in �gure 11.
1��

#��

#��Fig. 11. s-task abstraction4.6 Code generation for each s-taskCommunications Inter s-task communication is communication between exe-cution entities of an architecture. The communications are generated dependingon the OS primitives. This generation is done by making calls to the right OSprimitives given by the architecture description or by the user.Communication features can be described as synchronous process abstrac-tions (some grey box). We assume the mapping of links to these devices is given.Due to the large variety of communication features, multiplexing possibilities,

synchronization relaxing policies, it is not possible to provide a general automaticmapping implementation; a speci�c library should be provided by the user (cf.�gure 12).To represent the new graph obtained by adding communications, we have toadd causality links with the communication nodes.
1��

#��

#��

SENDA

SENDBC

INPUT

REC
U Fig. 12. s-task abstraction with communicationsS-task scheduling A scheduling is computed for each s-task taking into accountthe global dependence graph and any other assertion on the environment.In particular cases, for example obviously when the initial program is fullyscheduled by construction, then we can build a static scheduling for its partitioninto s-tasks. In other cases, or when we want it, we have to build a dynamicscheduling, e.g. depending on the order of arrival of inputs of the di�erent partsof the s-tasks. The order of the execution of nodes is given by scheduling clocksexchanged with the environment.OS scheduling. For a task such as Q001 (cf. �gure 12) it is possible to generateparallel processes scheduled and synchronized (synchronization gates) by OSprimitives as shown for example in �gure 13. In this case, nothing is knownabout the interleaving of elementary actions in T1 and T2.Parameterized scheduling. Conversely, one can make more explicit the interac-tions between the s-task components and the OS; this is allowed by clockedcausality arrows in Dc+: considering two non ordered atomic actions A1 andA2 on the same processor, each time A1 and A2 are both executed, either A1 isexecuted before A2 or A2 is executed before A1; this variable scheduling can berepresented by arrows from A1 to A2 labeled by S or conversely from A2 to A1labeled by not S, where S is a boolean clock whose clock is the set of instants atwhich A1 and A2 are both executed. A single process is known by the OS. Thisis illustrated in �gure 14.The scheduling can then be described as a Dc+ program depending on tim-ing, values, etc., on which veri�cation is possible; or also, S can be provided

4�

#��

#��

SENDA

SENDBC

INPUT

REC
U

4�

Fig. 13. OS s-task scheduling
#��

#��

SENDA

SENDBC

INPUT

REC
U
3

NOT�3

3 3

Fig. 14. Parameterized s-task schedulingby the OS, or it can be a constant allowing then static scheduling as shown in�gure 15.Synchronization and communication The synchronization between taskshas to be de�ned by the user. Di�erent schemes can be implemented.Strong synchrony. The �rst implementation that can be done is to set a globalgate to synchronize tasks. At each step, each activated task signals its completionto its predecessors in the graph when it has been completed and has receivedcompletion acknowledge from each of its successors. Thus at most one logicalstep is computed during the same instant.Weak synchrony. A second scheme is to set local gates to synchronize tasks. Ateach step, each activated task signals to its predecessors in the graph that it isready to proceed a new step when its previous step has been completed and a

#��

#��

SENDA

SENDBC

INPUT

REC
UFig. 15. Static s-task scheduling with S = true\ready to proceed" has been received from each of its successors concerning thisprevious step. This implementation allows pipeline.Bounded asynchrony. The most permissive scheme for embedded systems is toallow communication implementation as bounded FIFO; the window operatorof Dc+ makes possible the semantic description of this partially asynchronousscheme.4.7 Code instrumentationFinally, we brie
y mention our approach to code instrumentation, to evaluatee.g. performance [14].Given an implementation Q of a program and a model of time consumptionfor each of the atomic actions in Q, we automatically generate a program T (Q)homomorphic to Q; T (Q) is the parallel composition of the images T (Qi) of thecomponents Qi (including communications) of Q. T (Qi) are given by the useras Dc+ components whose interfaces are composed of integer
ows T (x) insteadof the original
ows x. T (x) represents the sequence of the availability dates forthe occurrences of the original
ow x.T (Q) is thus a model of real time consumption of the application (functionalspeci�cation and architectural support). Some real time properties to be satis�edcan be described as predicates in Dc+. Then these properties can be checked byusing the veri�cation tools of SACRES for instance.5 ConclusionThis paper presents a framework for distributed code generation of synchronousprograms that allows relaxing synchrony, thanks to the property of endochrony.On the other hand, the de�nition of precise abstractions of the programs permits

reuse of separately compiled programs. So the method is also a method forseparate compilation.It is implemented in the SACRES project, through a number of softwaremodules applicable to Dc+ programs. These are for example:{ clock calculus, which is the core of the Dc+ compiler and consists incomputing the clock hierarchy (it is used in particular to check endochrony);{ root adjunction, and event conversion, implemented as a transforma-tion of a Dc+ program to a bDc+ one, which consist in inserting a masterclock and converting clocks into boolean
ows (this is used in particular tomove from exochronous to endochronous programs);{ building s-tasks, based on user directives of location mapping, which per-forms the extraction of Dc+ sub-programs;{ computing abstractions of Dc+ programs, which consists in computingthe transitive closure of dependences and projecting it onto the input/outputinterface;{ building tasks, which performs the extraction of tasks according to aninput driven partitionning and calculates the scheduler of these tasks;{ sequentializing Dc+ programs, which consists in preparing, for each ex-ecutable program, the computing of a legal sequential scheduling;{ distributed code generation, performed on the result of the structuringof the code into tasks and s-tasks, which uses the sequential code generationfor tasks and a speci�c code generation for the schedulers; the generatedcode makes calls to communication functions from a library to which it islinked.The method can be applied to many possible targets, using di�erent real-timekernels for instance (let us mention Posix, VxWorks, OSEK for automotive,ARINC for avionics. . .).Also, thanks to the translation of StateMate to Dc+ developed in theSACRES project [4, 5], it is applicable not only to data
ow programs such asSignal ones, but also to StateMate designs. Finally, it is partly available inthe industrial Sildex tool commercialised by TNI1. Application of the methodhas been carried out on case studies provided by industrial users [3].References1. T.P. Amagbegnon, L. Besnard, P. Le Guernic, Arborescent canonicalform of boolean expressions, Inria Research Report RR-2290, June 1994,http://www.inria.fr/RRRT/RR-2290.html.2. T.P. Amagbegnon, L. Besnard, P. Le Guernic, \Implementation of the data
owlanguage Signal", in Programming Languages Design and Implementation, ACM,163{173, 1995.3. P. Baufreton, X. M�ehaut, E. Rutten, \Embedded Systems in Avionics and theSACRES Approach", in Proceedings of The 16th International Conference on Com-puter Safety, Reliability and Security, SAFECOMP'97, York, United Kingdom,Springer, September 1997.1 http://www.tni.fr

4. J.-R. Beauvais, T. Gautier, P. Le Guernic, R. Houdebine, E. Rutten, \A translationof StateCharts into Signal", in Proceedings of the International Conferenceon Application of Concurrency to System Design (CSD'98), IEEE Publ., Aizu-Wakamatsu, Japan, March 23{26, 1998, 52{62.5. J.-R. Beauvais, R. Houdebine, P. Le Guernic, E. Rutten, T. Gautier, A Translationof Statecharts and Activitycharts into Signal Equations, Inria Research Report RR-3397, April 1998, http://www.inria.fr/RRRT/RR-3397.html.6. A. Benveniste (& contributors), \Safety Critical Embedded Systems Design: theSACRES approach", in Proceedings of Formal Techniques in Real-Time and FaultTolerant systems, FTRTFT'98, Lecture Notes in Computer Science, Springer Ver-lag, September 1998.7. A. Benveniste, T. Gautier, P. Le Guernic, E. Rutten, \Distributed code generationof data
ow synchronous programs: the SACRES approach", in Proceedings of TheEleventh International Symposium on Languages for Intensional Programming, IS-LIP'98, Sun Microsystems, Menlo Park, California (USA), May 1998.8. A. Benveniste, G. Berry, \Real-Time systems design and programming", Anotherlook at real-time programming, special section of Proc. of the IEEE, vol. 9 no 9,September 1991, 1270{1282.9. A. Benveniste, P. Le Guernic, P. Aubry. Compositionality in Data
ow SynchronousLanguages: Speci�cation & Code Generation, Inria Research Report RR-3310, Nov.1997, http://www.inria.fr/RRRT/RR-3310.html, see also a revised version co-authored with B. Caillaud, Mar. 1998.10. A. Benveniste, P. Le Guernic, Y. Sorel, M. Sorine, \A denotational theory ofreactive synchronous systems", Information and Computation, 99 no2:192{230,1992.11. N. Halbwachs, Synchronous programming of reactive systems, Kluwer AcademicPub., 1993.12. D. Harel, \Statecharts: A visual formalism for complex systems", Science ofComputer Programming, 8:231{274, 1987.13. D. Harel, A. Naamad, \The STATEMATE Semantics of Statecharts", ACM Trans-actions on software engineering and methodology, vol. 5, no 4, 1996.14. A.A. Kountouris, P. Le Guernic, \Pro�ling of SIGNAL Programs and its appli-cation in the timing evaluation of design implementations", in Proceedings of theIEE Colloq. on HW-SW Cosynthesis for Recon�gurable Systems, HP Labs, Bristol,UK, IEE, February 1996.15. P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire, \Programming real-timeapplications with Signal", Another look at real-time programming, special sectionof Proc. of the IEEE, vol. 9, no 9, September 1991, 1321{1336.16. P. Le Guernic, S. Machard, E. Rutten, \R�epartition de programmes Signal",in Actes des Rencontres Francophones du Parall�elisme des Architectures et desSyst�emes, RenPar'10, Strasbourg, 9{12 juin 1998 (in French).17. A. Pnueli, N. Shankar, E. Singerman, \Fair Synchronous Transition Systems andtheir Liveness Proofs", in Proceedings of Formal Techniques in Real-Time andFault Tolerant systems, FTRTFT'98, Lecture Notes in Computer Science, SpringerVerlag, September 1998.18. SACRES consortium, EP 20897 Deliverable report: The semantic foundations ofSACRES, March 1997.19. SACRES consortium, The Declarative Code DC+, Version 1.4, Esprit project EP20897: Sacres, Nov. 1997.

