Thierry Gautier

Paul Le Guernic

Code generation in the SACRES project ?

The SACRES project is dealing with the development of new design methodologies and associated tools for safety critical embedded systems. Emphasis is put on formal techniques for modular veri cation of the speci cations, distributed code generation, and generated code validation against speci cations. This is allowed by using a single formal model which is that of the Dc+ format, which provides a common semantic framework for all tools as well as end user speci cation formalisms. Modular and distributed code generation is the main subject of this paper. Distributed code generation aims at reducing the dependency of the design with respect to the target architecture. Modularity helps reuse of existing designs, and makes it possible to address much larger systems.

Introduction

The overall objective of the SACRES project is to provide designers of embedded control systems, in particular safety critical systems, with an enhanced design methodology supported by a toolset signi cantly reducing the risk for design errors and shortening overall design times. This is achieved through the use of the maximum degree of automation, especially in respect of code generation and veri cation 6]. SACRES architecture is depicted in gure 1. The SACRES toolset combines the following main groups of tools:

{ The command-level interface permits the tools to be invoked. Some of the tool launch facilities are also available through the menus from the specication tools.

{ The speci cation front-end tools are mostly self-contained graphical tools for building models. As software requirements for embedded systems typically involve a mixture of state oriented and data ow oriented descriptions, SACRES o ers the possibility of mixed formalism design, by combining expressive power of Statecharts 12] from the StateMate tool, and Signal ? This work is supported by the Esprit project R&D SACRES (EP 20897).

SACRES members are: Siemens (Lead partner), i-Logix, TNI (Techniques Nouvelles d'Informatique), OFFIS, INRIA, the Weizmann Institute of Science, British Aerospace, SNECMA. ?? The following people have also participated to this work: Albert Benveniste, Lo c Besnard, Patricia Bournai, Sylvain Machard, Eric Rutten. They are gratefully acknowledged.

SACRES command level interface

Fig. 1. SACRES architecture 15] based data ow diagrams from the Sildex tool. ssl is a textual language, used for assembling models with components from di erent speci cation tools. It is mainly available from the graphical editors of the speci cation tools.

{ The Dc + representation is a global model format 19]. These les are not expected to be read by the user, just to be passed between tools in the toolset.

{ Code generation tools include an interface for de ning target architecture and code distribution as well as the code generation engine itself.

{ Code validation provides a formal correctness check for the code generation translation.

{ The veri cation tools allow automatic checking of the models that are produced from the speci cation tools, and manage the results of the proof.

This paper is dedicated to a presentation of the methodology adopted in SACRES for modular and distributed code generation. The main add-on of the methodology is to allow automatic generation of e cient distributed code from the speci cation, entirely replacing the manual coding phase still employed in current industrial design ows. A requirement for that is, at the front-end level, the use of speci cation tools that are based on a formal semantical model. This is the case of both Statecharts and Signal formalisms. Further, since mixed designs are favoured in SACRES, using together both state-based and data ow speci cation styles, a common representation was in some way mandatory. In SACRES, this common representation is the Dc + format. This format implements the paradigm of synchronous programming [START_REF] Benveniste | \Real-Time systems design and programming[END_REF][START_REF] Halbwachs | Synchronous programming of reactive systems[END_REF] in its full generality. Although very close in its syntax of the synchronized data ow model advocated by the Signal language, it constitutes a model for the semantic integration of Signal 10] and Statecharts speci cations 13]. In particular, translations from Statecharts to Dc + have been de ned in SACRES 4,[START_REF] Beauvais | A Translation of Statecharts and Activitycharts into Signal Equations[END_REF].

The semantical basis of the Dc + format is that of Symbolic Transition Systems presented in the next section. This model includes in particular scheduling speci cations, which are used to represent causality relations, schedulings, and communications. The compilation of programs expressed in Dc + results in a hybrid structure which allows to represent both control and scheduling of the programs, and to study important properties such as endochrony. Part of this structure is a directed graph with boolean conditions on nodes and dependences.

From section 3, we will use a more macroscopic view of this directed graph, with the help of diagrams, to present the methodology of code distribution. In section 3, we give an overview of the approach and in section 4, we present the main steps of the method.

2

The DC+ model SACRES relies on a strong formal modelling basis, which is that of Symbolic Transition Systems with Scheduling speci cations [START_REF] Pnueli | \Fair Synchronous Transition Systems and their Liveness Proofs[END_REF][START_REF]EP 20897 Deliverable report: The semantic foundations of SACRES[END_REF]. This abstract model is used as the model of the Dc + concrete format.

Symbolic Transition Systems with Scheduling speci cations Symbolic Transition Systems

We assume a vocabulary V which is a set of typed variables. All types are implicitly extended with a special element ? to be interpreted as \absent". Some of the types we consider are the type of pure ows with domain ftg, and booleans with domain ft; fg (recall both types are extended with the distinguished element ?). We de ne a state s to be a type-consistent interpretation of V, assigning to the set of all variables, a value for it over its domain. For a subset of variables V V, we de ne a V -state to be a type-consistent interpretation of V . Thus a V -state assigns to the set V a value s V] for it over its domain; also, for v 2 V a variable, we denote by s v] its interpretation by state s.

We de ne a Symbolic Transition System (sts) to be a system = hV; ; i consisting of the following components:

{ V is a nite set of typed variables, { (V) is an assertion characterizing initial states.

{ = (V ? ; V) is the transition relation relating past and current states s ?

and s, by referring to both past and current versions of variables V ? and V . For example the assertion x = x ? + 1 states that the value of x in s is greater by 1 than its value in s ? . If (s ? V]; s V]) = t, we say that state s ? is a -predecessor of state s. A run : s 0 ; s 1 ; s 2 ; : : : is a sequence of states such that s 0 j = ^8i > 0 ; (s i?1 ; s i) j =

The composition of two sts = 1

V 2 is de ned as follows:

V = V 1 V 2 ; = 1 ^ 2 ; = 1 ^ 2 ;
the composition is thus the pairwise conjunction of initial and transition relations. Note that, in sts composition, interaction occurs through common variables only. Hence variables that are declared private to an sts will not directly contribute to any external interaction.

Notations for sts: { c; v; w; : : : denote sts variables, these are the declared variables of the sts; useful additional variables are the following:

{ for v a variable, h v 2 ft; ?g denotes its clock: h v 6 = ?] , v 6 = ?] { for v a variable, v denotes its associated state-variable, de ned by: if

h v then v = v else v = ? v
Values can be given to s 0 ? v] as part of the initial condition. Then, v is always present after the 1st occurrence of v. By convention, v is private to the sts in which it is used. Thus state-variables play no role in stscomposition. Also, note that v = v , thus \state-state-variables" need not to be considered.

Transition relations for sts are naturally speci ed using conjunction of predicates.

Modularity. As modularity is wanted, it is desirable that the pace of an sts is local to it rather than global. Since any sts is subject to further composition in some yet unknown environment, this makes the requirement of having a global pace quite inconvenient. This is why we prohibit the use of clocks that are always present. This has several consequences. First, it is not possible to consider the \complement of a clock" or the \negation of a clock": this would require referring to the always present clock. Thus, clocks will always be variables, and we shall be able to relate clocks only using ^(intersection of instants of presence), _ (union of instants of presence), and n (set di erence of instants of presence).

Scheduling speci cations Modular code distribution, and in the same way, separate compilation, clearly require to be able to reason about causality, schedulings, and communications. This is why we enrich the sts model as follows.

Preorders to model causality relations, schedulings, and communications. We consider again a set V of variables. A preorder on the set V is a relation (generically denoted by) which is re exive (x x) and transitive (x y and y z imply x z). Preorders are naturally speci ed via (possibly cyclic) directed graphs:

x ! y for x; y 2 V :

The conjunction of two preorders is the minimal preorder which is an extension of the two considered conjuncts.

A labelled preorder on V is a preorder, together with a domain for each v 2 V . Call dom V the domain of the set V of variables. Denote by V the set of all labelled preorders on V . A state s is now a type consistent interpretation of the labelled preorder, i.e., a preorder on V together with a value s V] for the set of all variables belonging to V . Denote by dom V the domain in which states take their value. sts with scheduling speci cations. Now we consider an sts = hV; ; i as before, but with the following modi cation for the transition relation = (V ? ; V): dom V dom V ;

(1) i.e., transition relations relate the value for the t-uple of previous variables to the current state. As before, runs are sequences s 0 ; s 1 ; s 2 ; : : : that are consistent with transition relation [START_REF] Amagbegnon | Arborescent canonical form of boolean expressions[END_REF]. sts involving such type of preorder relation will be called sts with scheduling speci cations. sts with scheduling speci cations are just like any other sts, hence they inherit their properties, in particular they can be composed.

Notations for scheduling speci cations: for b a variable of type bool f?g, and u; v variables of any type, the following generic conjunct will be used:

if b then u > v , resp. if b else u > v also written: u b > v resp. u b > v
In 9], it is shown that scheduling speci cations have the following properties:

x b > y ^y c > z) x b ^c > z

(2)

x b > y ^x c > y) x b _ c > y

Properties (2,3) can be used to compute input/output abstractions of scheduling speci cations. This is illustrated in gure 2. In this gure, the diagram on the left depicts a scheduling speci cation involving local variables. These are hidden in the diagram on the right, using rules [START_REF] Amagbegnon | \Implementation of the data ow language Signal[END_REF][START_REF] Baufreton | Systems in Avionics and the SACRES Approach[END_REF]. In addition to the set (4) of primitives, state-variable v associated with variable v can be used on the right hand side of each of the above primitive statements.

The third primitive involves a conjunction of statements that are considered jointly.

Examples

a selector : if b then z = u else z = v a register : if h z then v = ? z else v = ? a synchronization constraint : (b = t) (h u = t) For the selector, the \else" part corresponds to the property \ b = f] _ b = ?]".
The more intuitive interpretation of the second statement is \v n = z n?1 ", where index \n" denotes the instants at which both v and z are present (their clocks are equal). Clearly, this models a register. This statement implies the equality of clocks: h z h v . The synchronization constraint means that the clock of u is the set of instants at which boolean variable b is true.

Inferring schedulings from causality analysis The schedulings that can be inferred from an sts speci cation result from 1/ explicit scheduling speci cations, and 2/ data ow dependences that result from causality analysis. The idea supporting causality analysis of an sts speci cation is quite simple. On the one hand, a transition relation involving only the types \pure" and \boolean" can be solved by uni cation and thus made executable. On the other hand, a transition relation involving arbitrary types is abstracted as term rewriting, encoded via directed graphs. For instance, relation y = 2uv 2 (involving, say, real types) is abstracted as (u; v) > y, since y can be substituted by expression 2uv 2 .

Scheduling speci cations associated with the primitive statements 4 are given in 9]. For example:

w = f(u 1 ; : : : ; u k) h w h u1 : : : h u k) u i hw > w (5)
Given an sts speci ed as the conjunction of a set of basic statements, for each conjunct we add the corresponding scheduling speci cation to the considered sts. This yields a new sts sched(P), for which it is possible to give su cient conditions so that P is executable: roughly, sched(P) is provably circuitfree at each instant, and sched(P) has provably no multiple de nition of variables at any instant. Then sched(P) provides (dynamic) scheduling speci cations for the run of P.

Endochrony

The sts model is the semantical model of Dc + programs. We need to give some sketch of the compilation of these programs in order to complete the internal representation structure of programs: one face is a directed graph, the other one is a clock hierarchy allowing to represent the control of the program. This structure is the basis for studying endochrony.

A Dc + program describes a reactive system whose behavior along time is an in nite sequence of instants which represent reactions, triggered by external or internal events. The main objects manipulated by a Dc + program are ows, which are sequence of values synchronized with a clock. A ow is a typed object which holds a value at each instant of its clock. The fact that a ow is currently absent is represented by the bottom symbol ? (cf. section 2.1). Clocks are pure or boolean ows. A clock has the value t if and only if the ow associated with the clock holds a value at the present instant of time. Actually, any expression exp in the language has its corresponding clock h exp which indicates whether the value of the expression at the current instant is di erent from ?.

Clock hierarchy. Directed graphs obtained by causality analysis such as presented above are one of the objects used to represent programs and to calculate on them. The other very important object that has to be obtained is a representation of the clock hierarchy.

A rst step of the Dc + compilation is the construction of a system of equations on clocks. The system is solved, the result gives inclusion between clocks. , indicate that boolean variable b 1 has a clock equal to h 0 and only needs variables with clock h 0 for its evaluation, and so on. In doing so, a tree is built under each of the clocks h 0 ; k 0 ; : : :, this yields the so-called clock hierarchy in the form of a \forest", i.e., a collection of trees. Roots of the trees are related by some clock equation, this is depicted as the bidirectional arrow relating h 0 ; k 0 ; : : : Then each ow of the program (and its de nition) is attached to its clock in the hierarchy. This structure is detailed in 1] 2], where it is shown to be a canonical form for representing clock equations. The combination of clock equations and scheduling speci cations of a program is represented by the combination of the clock hierarchy and of the directed graph.

Endochrony. An important property that will be determined on the clock hierarchy is endochrony. An sts is called endochronous if its control, i.e., the primary decision in executing a reaction, depends only on 1/ the previous state, and 2/ the values possibly carried by environment ows, but not on the presence/absence status of these ows. If an sts is not endochronous (it is exochronous), then the primary decision in executing a reaction consists in deciding upon relative presence/absence of clocks which are source nodes of the associated directed graph.

In

Issues for modular and distributed code generation

Two major issues need to be considered for modular and distributed code generation:

1. Relaxing synchrony is needed if distribution over possibly asynchronous media is desired without paying the price for maintaining the strong synchrony hypothesis via costly protocols. 2. Designing modules equipped with proper interfaces for subsequent reuse, and generating a correct scheduling and communication protocol for these modules, is the key to modularity. It is shown in 9] that a solution to the rst issue is to restrict ourselves to endochronous programs. Another aspect that has to be considered is that of maintaining synchronous semantics of composition while using asynchronous communication media. Requirement for such a medium is that: 1/ it should not loose messages, and, 2/ it should not change the order of messages. The condition for this is the isochrony of the considered couple of programs. This is not detailed here, see 9].

The scheduling speci cations we derive from causality analysis still exhibit maximum concurrency. Actual implementations will have to conform to these scheduling speci cations. In general, they will exhibit less (and even sometimes no) concurrency, meaning that further sequentialization has been performed to generate code. Of course, this additional sequentialization can be the source of potential, otherwise unjusti ed, deadlock when the considered module is reused in the form of object code in some environment. We shall see in 4 that a careful use of the scheduling speci cations of an sts will allow us to decompose it into modules that can be stored as object code for further reuse, whatever the actual environment and implementation architecture will be.

Enforcing endochrony. Since endochrony is a key feature for programs we have to implement, we must consider the question of moving from exochronous to endochronous programs. As shown above, an answer is to make the roots of the clock hierarchy belonging to some single clock tree. The idea for a simple example such as that of the gure 4 is to add to the considered sts a monitor which delivers the information of presence/absence via the b; b 0 boolean variables with identical clock h, i.e., fk = tg fb = tg, and similarly for k 0 ; b 0 . The resulting sts is endochronous, since boolean variables b; b 0 are scrutinized at the pace of activation clock h. Intuitively, moving from exochrony to endochrony corresponds

k k' k k' h b b' (other) (input data) (input clock) h h
Fig. 4. Enforcing endochrony to equipping the original P program with a suitable communication protocol Q in such a way that the compound program P V Q becomes endochronous. However, in the general case, this transformation is not unique 9].

3 Distributed code generation: overview of the SACRES approach 3.1 A rst glance at the method The overall method 6, 7, 16] is illustrated in the gures 5 and 6.

Figure 5 shows what the designer has to do. The designer has on her/his screen (at least) three windows (those of the top part of the gure). The rst window|top left|is the (Signal, or Dc + , or Activity Charts in StateMate) program editor. In this window, a data ow diagram is depicted. The arrows would typically depict ows of data, but also could correspond to scheduling requests. In the bottom right window, icons are shown which allow the designer to specify her/his target architecture. This architecture has two types of constitutive elements. The rst one (on the left) is a processor, i.e. a machine that complies with the synchronous model of execution, in which a run is a sequence of atomic reactions. Thus processors can be pieces of sequential code (C/C ++ -procedures, threads, etc.), or alternatively parallel machines running according to the model of perfect synchrony (e.g., synchronous hardware). Other icons refer to (generally asynchronous) communication media. Using these two windows, the designer builds, in the third window (top right), her/his execution architecture: the source data ow diagram is partitioned as shown in the gure, and corresponding subdiagrams are mapped onto \processors" by clickand-point. Also, models of communication links are speci ed by the designer, by clicking-and-pointing to the appropriate icon. The result of this mapping is built automatically as illustrated in the bottom part of the gure.

Figure 6 shows what the tool generates for each processor. From the speci ca- tions provided by the designer as in gure 5, the tool will generate, for embedding into each processor, the following: 1/ a suitable communication protocol which guarantees that the semantics of synchronous communication will be preserved even though an asynchronous communication medium is used; 2/ a structuring of the code into pieces of sequential code and a scheduler, aiming at guaranteing separate compilation and reuse.

Finally, the whole model (processors and channel models) can be used for architecture simulation and pro ling.

Summary of the data needed to model the architecture

In the SACRES method, the path from the speci cation to the implementation goes through the Dc + format. In this context, distributing an application consists in distributing a Dc + program representing a functional graph of ows, operators and dependences. The target architecture is composed of a set of possibly heterogeneous set of execution components (processors, micro-controllers, ASIC. . .). At the level considered here, processor will be used as a generic name in the following. We do not address the partitioning/scheduling problem against quantitative optimizations (as for traditional understanding in hardware/software partitioning). Conversely, we assume that an allocation function is given for nodes and ows to processors and links. Moreover, the user interface provided to describe this allocation function di ers for speci c environments (Sildex, StateMate)| in the gure 5, the Inria environment for Signal is used. These functions are ultimately given in pragma features of a Dc + description.

We summarize here which data have to be provided by the users of architecture-dependent implementation of applications in the SACRES environment. A general comment is that the level of detail at which the architecture needs to be known depends quite a lot on the re nement of the mapping to the architecture chosen. This means that in the simplest cases, the amount of data required is fairly small, and simple to assess: { the set of processors or tasks, and the mapping from operations or subprocesses in the application speci cation to those processors or tasks. This information enables the partitioning of the Dc + graph into sub-graphs grouped according to the mapping.

{ the topology of the network of processors, the set of connections between processors, and a mapping from inter-process communications to these communication links. This is useful in the case of ows exchanged between processes located on di erent processors or tasks, if several of them have to be routed through the same communication medium.

{ a de nition of the set of system-level primitives used e.g. for communications (readings and writings to the media). Roughly, this amounts to the pro les of the library of functions to which the code will have to be linked.

The concrete form to be given to this information is a question at two levels: the level of Dc + (which is where we actually perform the compilation work) and the user-level: { the description of the location mapping can be made by having pragmas associated with nodes, de ning their assigned location.

{ the description of the architecture can be made using Dc + , describing the graph of the network as a Dc + graph, with nodes for processors, nodes for communication links, edges for connections, and pragmas for attaching information to the nodes.

{ at the user-level, tools and interfaces for entering this information are provided within the existing interfaces to Sildex and StateMate.

The kind of information mentioned above supports the logical distribution of an application. In the perspective of having a more re ned code generation, with further degrees of re nement of architecture-adaptation, more information has to be gathered on the architecture: { concerning processors, taking into account the types of the di erent processors can lead to a code generation taking advantage of speci c characteristics.

{ concerning communications, the type and nature of the links (that could be implemented using shared variables, synchronous|blocking|or asynchronous communications. . .). If the architecture targeted to features an OS, then in order to be able to generate code using its functionalities, the model needed consists basically in the pro le of the corresponding functions, e.g., according to the degree of use of the OS, synchronization gates, communications (possibly including routing between processors) or tasking functions (in the case of un-interruptible tasks: starting and stopping; in the case of interruptible tasks: suspension and resuming, assignment and management of priority levels), etc.

4 Modular approach to the distributed code generation: main steps

When an application is executed on more than one processor, or in more than one task on a single processor, it is necessary to insure that the generated code is a correct implementation of the source speci cation. This correction has to be proved as far as possible. As long as the implementation process is some re nement in a single formally de ned formalism, this proof results from theorems in this theory. Such an approach is adopted in the SACRES method. We focus this presentation on synchronization and causality in the context of a structural decomposition of a synchronous program targeted on an optimized distributed code.

The code distribution is seen as a user activity allowed by providing a set of formally de ned transformations using properties of the semantic model: commutativity, associativity, idempotence of the composition operator. The concept of static abstraction of a behavior (types of the ows plus their clocks and dependences) and parameterisation techniques make possible a modular approach to the distributed code generation. Assumptions { As mentioned above, we assume that a locate function gives the mapping from functional to physical architectures.

{ We suppose the bDc + code of the program provided with a well formed tree of clocks: every ow x, including all the clocks but a single one (named tick) is associated with a boolean clock b x . Each clock c is a boolean input or has an explicit circuitfree de nition.

{ Every ow which is not an input is functionally de ned (no circular de nition, the program is deterministic). { a source program P = (P 1 V P 2 V : : : V P n), in which each of the P i may recursively be composed of sub processes (P i1

V P i2 V : : : V P in), (in the example of gure 7, solid lines represent data-ow) { a set of processors q = fq 1 ; q 2 ; :::; q m g, and { a function locate: fP i g ! P(q) associating with each atomic process P j a non empty subset of processors,

a process Q = (Q 1 V : : : V Q m) is built (cf. gure 8)
; each process Q i (source code to be implemented on the processor q i) is the parallel composition of the set of atomic processes P k such that q i belongs to locate(P k). It is easy to prove that Q is equivalent to P. As shown by the pro le of the locate function, Q may include redundant processes (this is allowed by idempotence). We call s-task such a Q i process. 8. Virtual task allocation: P = (Q1 V P Q2), s-task Q1 = (P 11 V P 12 V P 21 V P 22), s-task Q2 = (P 13 V P 14 V P 23 V P 24)

Traceable compilation

In the process of distributed code generation, we have to care about the structure of the graph after restructuring. This graph is built in such a way that each subgraph will be executed on a location. The compilation process must preserve this structure. As usual (cf. section 2.2) the rst step of the compilation is the construction of a system of clock equations. Clocks are from the overall program. We next solve this system and build a clock hierarchy. The compilation of the virtual mapping is done without splitting the Q i s-tasks; this compilation builds a global clock system and a global multi-graph.

Instead of splitting the graph across this hierarchy, we will project the hierarchy of clocks onto each sub-graph. Boolean clock de nitions generated by the compiler are composed with the Q i (located on processor q i) with respect to some heuristic such that each one of the resulting Q 0 i has a local tree of boolean clocks (bDc + endochronous code); the root of this tree is the upperbound of the clocks in Q 0 i . We prune the clock hierarchy on each sub-graph to obtain a minimal one, but preserving a bDc + structure.

We nally prune the clock hierarchy of the graph of sub-graphs conserving only the fastest clock of each sub-graph.

Local interface abstraction

Each Q i is associated with an interface containing: { as inputs, the input ows of P (thick solid arrows in gure 8) and the ow computed in another Q j , used in Q i , (thick dashed arrows in gure 8) { as outputs, the output ows of P and the ows computed in Q i , and used in another Q j , { the clock tree of the input/output ows, { the clocked dependences between external ows (inputs and outputs of Q i).

For that purpose, a transitive closure has to be calculated.

Transitive closure. Inside a sub-graph, a transitive closure allows to know precedence relations between input ows and output ows (we know if an output ow is preceded by an input ow); however we do not have any information on the other way around (i.e. between an output and an input, through the environment). The transitive closure on the whole graph is the only way to take a global view of the program.

In the case of a data ow graph, the transitive closure is a well known algorithm. In the case of the Dc + graph it is a little more complex one. We know that a dependence between ows is valid only at certain instants. All dependences of the transitive closure are also valid at certain instants and then associated with a clock. To obtain this clock, we have to apply rules (2,3) given in 2.1.

To avoid deadlocks at execution time, we have to add, in each sub-graph, precedence information resulting from the projection of the transitive closure on input and output ows. The code generation of a sub-graph must take into account these dependence relations to avoid making a dependence cycle when sub-graphs are executed together.

Local black box abstraction, sensitivity analysis

At the level of a s-task, we have to build a scheduling of the nodes of this s-task. The cost of dynamic execution leads us to reduce as much as possible dynamism.

To do that, we will gather nodes is such a way that they can be considered in an atomic way. In this case, the scheduler only has to manage sets of nodes instead of nodes themselves.

Sensitivity equivalence

De nition We say that two nodes N 1 and N 2 are sensitively equivalent if and only if for each input i: there is a causality path from i to N 1 , there is a causality path from i to N 2 .

Note that in this de nition, we do not take clocks of dependences into account.

Two equivalent nodes wait for the same set of inputs: they can be executed in an atomic action depending upon this set of inputs. In this way, we build the classes of nodes transitively depending on subsets of input ows. For instance, the s-task Q 1 built above has two classes C 1 and C 2 as shown in gure 9.

Up to now, the applied transformations keep the program semantics unchanged.

Note that in the worst case, n input ows lead to 2 n sensitivity equivalence classes. In this case, the management of classes is almost as hard as the management of nodes themselves. Another way to do the partitioning into classes is to consider two or more input ows as atomic (considering two ows atomic is considering that they will be read or written at the same physical moment). Then the partitioning is done on subsets of atomic sets of input ows. Local code generation All the nodes of a sensitivity class can be executed as soon as the subset of its input ows is available. We can generate any scheduling inside a class without modifying the observable behavior of the overall initial program. Thus, we will generate a sequential code, assuming that input values are available each time a new step starts for the class. All the local ows, but state variables, can freely be implemented in registers or variables. State variables have to be implemented in remanent memory.

Black box abstraction

We have said that inside a sensitivity class, we can generate any scheduling which respects dependences. This means that for any such class, the only dependences that we have to consider are that any input precedes any output at any time. For the sake of scheduling, a class is seen as a procedure call. The scheduling of classes in then done without taking into account what is inside, just the above property. For each class C i , we just consider an interface in which all inputs precede all outputs. The abstraction of a class is a black box abstraction. For example, in the Q 1 sub-graph we obtain the result represented on gure 10, in which causality arcs have been substituted to the original data ow sub-graphs C 1 and C 2 .

Grey box abstraction for a s-task

If s-tasks are implemented as a single task on an execution entity, communication of internal data is done in the form of variable reads and writes in the same IÇ 5Ç 5Ç Fig. 10. Sub-graph abstractions memory space. If s-tasks are implemented as a set of tasks, communication corresponds to inter-tasks communications as supported by the tasking system.

From the point of view of the environment, the kind of implementation chosen for a s-task does not matter. But to ensure the correct read-write sequencing, the internal communications have also to be abstracted as causality relations.

Then we obtain what we call a grey box abstraction, in the sense that we know more than just its interface. For example, the grey box abstraction of the s-task Q 1 is depicted in gure 11. Communication features can be described as synchronous process abstractions (some grey box). We assume the mapping of links to these devices is given. Due to the large variety of communication features, multiplexing possibilities, synchronization relaxing policies, it is not possible to provide a general automatic mapping implementation; a speci c library should be provided by the user (cf. gure 12).

To represent the new graph obtained by adding communications, we have to add causality links with the communication nodes. In particular cases, for example obviously when the initial program is fully scheduled by construction, then we can build a static scheduling for its partition into s-tasks. In other cases, or when we want it, we have to build a dynamic scheduling, e.g. depending on the order of arrival of inputs of the di erent parts of the s-tasks. The order of the execution of nodes is given by scheduling clocks exchanged with the environment. OS scheduling. For a task such as Q 00 1 (cf. gure 12) it is possible to generate parallel processes scheduled and synchronized (synchronization gates) by OS primitives as shown for example in gure 13. In this case, nothing is known about the interleaving of elementary actions in T 1 and T 2 . Parameterized scheduling. Conversely, one can make more explicit the interactions between the s-task components and the OS; this is allowed by clocked causality arrows in Dc + : considering two non ordered atomic actions A 1 and A 2 on the same processor, each time A 1 and A 2 are both executed, either A 1 is executed before A 2 or A 2 is executed before A 1 ; this variable scheduling can be represented by arrows from A 1 to A 2 labeled by S or conversely from A 2 to A 1 labeled by not S, where S is a boolean clock whose clock is the set of instants at which A 1 and A 2 are both executed. A single process is known by the OS. This is illustrated in gure 14.

The scheduling can then be described as a Dc + program depending on timing, values, etc., on which veri cation is possible; or also, S can be provided Synchronization and communication The synchronization between tasks has to be de ned by the user. Di erent schemes can be implemented.

Strong synchrony. The rst implementation that can be done is to set a global gate to synchronize tasks. At each step, each activated task signals its completion to its predecessors in the graph when it has been completed and has received completion acknowledge from each of its successors. Thus at most one logical step is computed during the same instant.

Weak synchrony. A second scheme is to set local gates to synchronize tasks. At each step, each activated task signals to its predecessors in the graph that it is ready to proceed a new step when its previous step has been completed and a Bounded asynchrony. The most permissive scheme for embedded systems is to allow communication implementation as bounded FIFO; the window operator of Dc + makes possible the semantic description of this partially asynchronous scheme.

Code instrumentation

Finally, we brie y mention our approach to code instrumentation, to evaluate e.g. performance 14].

Given an implementation Q of a program and a model of time consumption for each of the atomic actions in Q, we automatically generate a program T(Q) homomorphic to Q; T(Q) is the parallel composition of the images T(Q i) of the components Q i (including communications) of Q. T(Q i) are given by the user as Dc + components whose interfaces are composed of integer ows T(x) instead of the original ows x. T(x) represents the sequence of the availability dates for the occurrences of the original ow x.

T(Q) is thus a model of real time consumption of the application (functional speci cation and architectural support). Some real time properties to be satis ed can be described as predicates in Dc + . Then these properties can be checked by using the veri cation tools of SACRES for instance.

Conclusion

This paper presents a framework for distributed code generation of synchronous programs that allows relaxing synchrony, thanks to the property of endochrony.

On the other hand, the de nition of precise abstractions of the programs permits reuse of separately compiled programs. So the method is also a method for separate compilation. It is implemented in the SACRES project, through a number of software modules applicable to Dc + programs. These are for example: { clock calculus, which is the core of the Dc + compiler and consists in computing the clock hierarchy (it is used in particular to check endochrony);

{ root adjunction, and event conversion, implemented as a transformation of a Dc + program to a bDc + one, which consist in inserting a master clock and converting clocks into boolean ows (this is used in particular to move from exochronous to endochronous programs);

{ building s-tasks, based on user directives of location mapping, which performs the extraction of Dc + sub-programs; { computing abstractions of Dc + programs, which consists in computing the transitive closure of dependences and projecting it onto the input/output interface; { building tasks, which performs the extraction of tasks according to an input driven partitionning and calculates the scheduler of these tasks; { sequentializing Dc + programs, which consists in preparing, for each executable program, the computing of a legal sequential scheduling; { distributed code generation, performed on the result of the structuring of the code into tasks and s-tasks, which uses the sequential code generation for tasks and a speci c code generation for the schedulers; the generated code makes calls to communication functions from a library to which it is linked. The method can be applied to many possible targets, using di erent real-time kernels for instance (let us mention Posix, VxWorks, OSEK for automotive, ARINC for avionics. . .). Also, thanks to the translation of StateMate to Dc + developed in the SACRES project 4, 5], it is applicable not only to data ow programs such as Signal ones, but also to StateMate designs. Finally, it is partly available in the industrial Sildex tool commercialised by TNI 1 . Application of the method has been carried out on case studies provided by industrial users 3].

Fig. 2 .

 2 Fig. 2. Input/output abstractions of scheduling speci cations

Fig. 3 .

 3 Fig. 3. Clock hierarchy

Fig. 5 .

 5 Fig. 5. Code generation: what the designer does

Fig. 6 .

 6 Fig. 6. Code generation: what the tool generates

 Fig. 7. P = (P 1 V P 2)

 Fig.8. Virtual task allocation: P = (Q1 V P Q2), s-task Q1 = (P 11 V P 12 V P 21 V P 22), s-task Q2 = (P 13 V P 14 V P 23 V P 24)

Fig. 9 .

 9 Fig. 9. Sensitivity classes in Q1

Fig. 11

 11 Fig. 11. s-task abstraction

Fig. 12

 12 Fig. 12. s-task abstraction with communications

Fig. 14 .

 14 Fig. 13. OS s-task scheduling

Fig. 15 .

 15 Fig. 15. Static s-task scheduling with S = true

 The clocks are then organized in a hierarchy (i.e. a collection of trees) where if a clock h 1 is under a clock h 2 (called its father), then h 1 cannot be present if h 2 is not. In the clock hierarchy represented on gure 3, b; c denote boolean variables,

		h0			k0	
		[b1]			[c1]	
	...	[b2]	[c2]	...
		

 contrast, for an endochronous sts, only one activation clock is a source node of the graph. Hence no test for relative presence/absence of environment ows is needed.It is shown in 9] that if a program P has a clock hierarchy consisting in a single tree, then it is endochronous. Boolean Dc + . In practice, the calculation of the clock hierarchy of a program is a key tool of the Dc + compiler; it is called the clock calculus. After the clock calculus, clocks can be de ned as boolean ows in a sub-format of Dc + called bDc + : a boolean b represents the clock b] composed of the instants at which b; c = t holds, and is de ned itself at the clock which is the father of b] in the clock hierarchy.

http://www.tni.fr