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A GEOMETRIC STUDY OF WASSERSTEIN

SPACES: EMBEDDING POWERS

by

Benôıt Kloeckner

Abstract. — The Wasserstein spaces Wp(X) of a metric space X are
sets of sufficiently concentrated measures, endowed with a metric de-
fined using optimal transportation. When X is compact, Wp(X) is a
metrization of the set of probability measures on X endowed with the
weak topology.

In this article we prove that Xk always admits a bi-Lipschitz embed-
ding into Wp(X), with explicit and nearly optimal constants depending
on k and p only. This result has an application in dynamics: we show
that if X is compact and ϕ is a self-map of positive entropy, then its
action ϕ# on the probability measures of X has positive metric mean
dimension (with respect to the Wasserstein metrics). This refines the
easy result that ϕ# has infinite entropy.

1. Introduction

This article inscribes itself in a series, partly joint with Jérôme Bertrand,
where given a metric space (X, d) we study some geometric properties
of its Wasserstein spaces Wp(X). These spaces of measures are in some
sense geometric measure theory versions of Lp spaces (see Section 2 for
precise definitions). Here we investigate an embedding question without
any further assumption on X .

Several embedding and non-embedding results are proved in previous
articles in the series for special classes of spaces X , in the most impor-
tant case p = 2. On the first hand, it is easy to see that if X contains
a complete geodesic (that is, an isometric embedding of R), then W2(X)
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contains isometric embeddings of open Euclidean cone of arbitrary di-
mension [Klo10a]. In particular it contains isometric embeddings of
Euclidean balls of arbitrary dimension and radius, and bi-Lipschitz em-
beddings of Rk for all k. On the other hand, if X is negatively curved
and simply connected, W2(X) does not contain any isometric embedding
of R2 [BK10].

Here we prove that the powers of X always embed in a bi-Lipschitz
way into Wp(X).

1.1. The embedding result. — The space Xk can be endowed with
several equivalent metrics, for example

dp
(

x̄ = (x1, . . . , xk) , ȳ = (y1, . . . , yk)
)

=

(

k
∑

i=1

d(xi, yi)
p

)1/p

and
d∞
(

x̄, ȳ
)

= max
16i6k

d(xi, yi)

which come out naturally in the proof; moreover d∞ is well-suited to the
dynamical application below.

Theorem 1.1 (embedding theorem). — Let X be any metric space,

p ∈ [1,∞) and k be any positive integer. There exists a map f : Xk →
Wp(X) such that for all x̄, ȳ ∈ Xk:

1

k(2k − 1)
1

p

dp(x̄, ȳ) 6 Wp(f(x̄), f(ȳ)) 6

(

2k−1

2k − 1

)

1

p

dp(x̄, ȳ)

and that intertwins dynamical systems in the following sense: given any

measurable self-map ϕ of X, denoting by ϕk the induced map on Xk and

by ϕ# the induced map on measures, it holds

f ◦ ϕk = ϕ# ◦ f.

Note that since d∞ 6 dp 6 k
1

pd∞ similar bounds hold with d∞; in
fact the lower bound that comes from the proof is in term of d∞ and is
slightly better:

1

k1− 1

p (2k − 1)
1

p

d∞(x̄, ȳ) 6 Wp(f(x̄), f(ȳ)).

This result is proved in Section 3. Let us recall that the push-forward of
a measure is defined by ϕ#µ(A) = µ(ϕ−1A) for all Borelian set A.
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We shall see in Section 4 that the constants cannot be improved much
for general spaces, but that for some specific spaces, a bi-Lipschitz map
with a lower bound polynomial in k can be constructed. This map how-
ever does not enjoy the intertwining property.

1.2. A dynamical consequence. — The intertwining property is de-
sirable, since it makes it possible to deduce the following corollary from
the embedding theorem.

Corollary 1.2. — If X is compact and ϕ : X → X is a continuous

map with positive topological entropy, then ϕ# has positive metric mean

dimension. More precisely

mdimM(ϕ#,Wp) > p
htop(ϕ)

log 2
.

Metric mean dimension is a metric invariant of dynamical systems that
refines entropy for infinite-entropy ones, introduced by Lindenstrauss and
Weiss [LW00] in link with mean dimension, a topological invariant.

Note that the constant in Proposition 1.2 is not optimal in the case of
multiplicative maps ×d acting on the circle: in [Klo10b] we prove the
lower bound p(d− 1) (instead of p log2 d here).

The following question is natural: is the (topological) mean dimension
of ϕ# positive as soon as ϕ has positive entropy? Can this be determined
at least for some map ϕ?

Acknowledgements. — I warmly thank Antoine Gournay for a very
interesting discussion, and in particular for introducing me to metric
mean dimension.

2. Wasserstein spaces

For a detailled introduction on optimal transport, the interested reader
can for example consult [Vil03]. Let us give an overview of the properties
we shall need. Given an exponent p ∈ [1,∞), if (X, d) is a general
metric space, usually assumed to be polish (complete separable) to avoid
mesurability issues although this plays no role here, and endowed with its
Borel σ-algebra, its Lp Wasserstein space is the set Wp(X) of probability
measures µ on X whose p-th moment is finite:

∫

dp(x0, x)µ(dx) < ∞ for some, hence all x0 ∈ X
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endowed with the following metric: given µ, ν ∈ Wp(X) one sets

Wp(µ, ν) =

(

inf
Π

∫

X×X

dp(x, y) Π(dxdy)

)1/p

where the infimum is over all probability measures Π on X × X that
projects to µ on the first factor and to ν on the second one. Such a
measure is called a transport plan between µ and ν, and is said to be
optimal when it achieves the infimum. The function dp is called the cost
function, and the value of

∫

X×X
dp(x, y) Π(dxdy) is the total cost of Π.

In this setting, an optimal transport plan always exist. Note that when
X is compact, the set Wp(X) is equal to the set P(X) of all probability
measures on X and Wp metrizes the weak topology.

The name “transport plan” is suggestive: it is a way to describe what
amount of mass is transported from one region to another.

3. Proof of the embedding theorem

The first power of X embeds isometrically by x → δx where δx is the
Dirac mass at a point. The idea behind the choice of f is to encode a
tuple by a measure supported on its elements, without adding any extra
symmetry: one should be able to distinct f(a, b, . . .) from f(b, a, . . .).
Define the map

f : Xk → Wp(X)

x̄ = (x1, . . . , xk) 7→ α
k
∑

i=1

1

2i
δxi

where α = 1/(1− 2−k) is a normalizing constant. This choice of masses
moreover ensures that different subsets of the tuple have different masses.
Moreover, the intertwining property is obvious since ϕ#(δx) = δϕ(x).

Lemma 3.1. — The map f is (α/2)
1

p -Lipschitz when Xk is endowed

with the metric dp.

Proof. — There is an obvious transport plan from an image f(x̄) to
another f(ȳ), given by α

∑

i 2
−iδxi

⊗ δyi . Its L
p cost is

α
∑

i

2−id(xi, yi)
p
6 α/2

∑

i

d(xi, yi)
p

so that Wp(f(x̄), f(ȳ)) 6 (α/2)
1

pdp(x̄, ȳ).
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Our goal is now to bound Wp(f(x̄), f(ȳ)) from below. This bound is
not surprising, and the proof is not really hard. But the point is that
since the support of f(x̄) and f(ȳ) can meet, it is not obvious that an
optimal transport plan must move a given amount of mass by a given
distance. We shall use a combinatorial description of transport plans for
this purpose. The cost of all transport plans below are computed with
respect to the cost dp, where p is fixed.

3.1. Labelled graphs. — To describe transport plans, we shall use
labelled graphs, defined as tuples G = (V,E,m,m0, m1) where V is a
finite subset of X , E is a set of couples (x, y) ∈ V 2 where x 6= y (so
that G is an oriented graph without loops), m is a function E → [0, 1]
and m0, m1 are functions V → [0, 1]. An element of V will usually be
denoted by x if its thought of as a starting point, y if its thought of as a
final point, and v if no such assumption is made.

To any transport plan between finitely supported measures, one can
associate a labelled graph as follows.

Definition 3.2. — Let µ, ν be probability measures supported on finite
sets A,B ⊂ X and let Π be any transport plan from µ to ν. We define
a labelled graph GΠ by: V Π = A ∪B,

EΠ = suppΠ \∆ =
{

(x, y) ∈ X2
∣

∣x 6= y and Π({x, y}) > 0
}

,

mΠ(x, y) = Π({x, y}), mΠ
0 (x) = µ({x}) and mΠ

1 (y) = ν({y}).

In other words, the graph encodes the initial and final measures and
the amount of mass moved from any given point in supp µ to any given
point in supp ν. The transport plan itself can be retrieved from its graph;
for example its cost is

cp(Π) =
∑

e∈E

(

mΠ(e)
)p

.

Not every labelled graph encodes a transport plan between two mea-
sures. We say that G is admissible if:

–
∑

V m0(v) =
∑

V m1(v) = 1,
– for all e ∈ E, m(e) > 0,
– for all v ∈ V , m0(v) +

∑

e=(x,v)∈E m(e)−
∑

e=(v,y)∈E m(e) = m1(v),
∑

e=(x,v)∈E m(e) 6 m1(v) and
∑

e=(v,y)∈E m(e) 6 m0(v).
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A labelled graph is admissible if and only if it is the graph of some
transport plan. The next steps of the proof shall give some information
on the graphs of optimal plans.

3.2. The graph of some optimal plan is a forest. — Let us intro-
duce some notation related to a given labelled graph G. Given an edge
e ∈ E, one denotes its starting point by e+ and its ending point by e−.
A path is a tuple of edges P = (e1, . . . , el) such that ei has an endpoint
in common with ei+1 for all i. If moreover e+i = e−i+1 holds for all i, we
say that P is an oriented path. We define the unitary cost of P as the
cost of a unit mass travelling along P , that is c(P ) =

∑l
i=1 d(e

−

i , e
+
i )

p,
and the flow of P as the amount of mass travelling along P , that is
φ(P ) = minim(ei). Cycles and oriented cycles are defined in an obvious,
similar way; a graph is a forest if it contains no cycle.

Lemma 3.3. — If Π is an optimal plan between any two finitely sup-

ported measures µ, ν, then GΠ contains no oriented cycle.

Proof. — This is a direct consequence of the so-called cyclic monotony
of optimal plans: if there where points v1, v2, . . . , vn in V Π such that
vn = v1 and m(i) := mΠ(vi, vi+1) > 0 for all i < n, then by soustracting
the minimal value of mi to each of them one would get an new admissible
labelled graph with m0 = mΠ

0 and m1 = mΠ
1 and cost less than the cost

of GΠ. This new graph would give a new transport plan from µ to ν,
cheaper than Π.

An optimal plan can a priori have non-oriented cycles, but up to chang-
ing the plan (without changing its cost), we can assume it does not.

Lemma 3.4. — Between any two finitely supported measures µ, ν, there
is an optimal plan Π such that GΠ is a forest.

Proof. — Let Π be any optimal plan from µ to ν, and let G0 = GΠ be
its graph.

A non-oriented cycle is determined by two sets of vertices x1, . . . , xn

and y1, . . . , yn and two sets of oriented paths Pi : xi → yi, Qi : xi → yi+1

where yn+1 := y1, see Figure 1.
Consider a minimal non-oriented cycle of G0, so that no two paths

among all Pi’s and Qi’s share an edge.
One can construct a new admissible labelled graph G1, with the same

vertex labels m0 and m1 than G, by adding a small ε to all m(e) where
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P1

Q1

P2
Q2

P3

Q3

v1

v3

v2

w2

w1

w3

Figure 1. A non-oriented cycle: xi’s and yi’s are the vertices
where the edges change orientation.

e appears in some Pi, and soustracting the same ε to all m(e) where e
appears in some Qi. This operation adds ε to φ(Pi) and −ε to φ(Qi),
thus it adds ε

∑

i c(Pi)− c(Qi) to the cost of Π.
Since Π is optimal, one cannot reduce its cost by this operation. This

implies that
∑

i c(Pi) − c(Qi) = 0. By operating as above with ε equal
to plus or minus the minimal value of all m(e) where e appears in a Pi

or in a Qi, one designs the wanted new admissible graph G1.
Now, G1 has its edge set included in the edge set of G, with at least

one less oriented cycle. By repeating this operation, one constructs an
admissible labelled graph G without cycle, that has the same total cost
and the same vertex labels than G0. The transport plan defined by G is
therefore optimal, from µ to ν.

The non-existence of cycle has an important consequence.

Lemma 3.5. — Let Π be a transport plan between two finitely supported

measures µ and ν, whose graph is a forest. If there is some real number

r such that all mΠ
0 (v) and all mΠ

1 (v) are integer multiples of r, then all

mΠ(e) are integer multiples of r.
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Proof. — Let G0 = GΠ = (V,E,m,m0, m1). If G0 has no edge, then
we are done. Otherwise, G0 has a leaf, that is a vertex x0 connected
to exactly one vertex y0, by an edge e0. Assume for example that e0 =
(x0, y0) (the other case is treated similarly). Then m(e0) = m0(x0) −
m1(x0) is an integer multiple of r.

Define G1 = (V,E \ {e0}, m
′, m′

0, m
′

1) where:

– m′(e) = m(e) for all e ∈ E \ {e0},
– m′

0(x0) = m0(x0) +m(e0),
– m′

0(x) = m0(x) for all x ∈ V \ {x0},
– m′

1(y0) = m1(y0)−m(e0),
– m′

1(y) = m1(y) for all y ∈ V \ {y0}.

Then G1 is still admissible (with different starting and ending measures
µ′ and ν ′, though), and all m′

0(v), m
′

1(v) are integer multiples of r. By
induction, we are reduced to the case of an edgeless graph.

3.3. End of the proof. — Now we are ready to bound Wp(f(x̄), f(ȳ))
from below in terms of d∞(x̄, ȳ). Let i0 be an index that maximizes
d(xi, yi) and let Π be an optimal transport plan from f(x̄) to f(ȳ) whose
graph G = (V,E,m,m0, m1) is a forest.

Lemma 3.6. — With the notation above, there is a path in G connect-

ing xi0 to yi0

Proof. — The choice of f shows that all m0(v), m1(v) are integer mul-
tiples of α2−k, so that all m(e) are integer multiples of α2−k. Let
n(e), n0(v), n1(v) ∈ N be such thatm(e) = n(e)α2−k, m0(v) = n0(v)α2

−k

and m1(v) = n1(v). Then the only v ∈ V = supp f(x̄) ∪ supp f(ȳ) such
that n0(v) contains 2k−i0 in its base-2 expansion is xi0 . Similarly, the
only w ∈ V such that n1(w) contains 2

k−i0 in its base-2 expansion is yi0 .
Let E ′ ⊂ E be the set of edges e such that n(e) contains 2k−i0 in its
base-2 expansion.

Any vertex v such that n0(v)−n1(v) does not contain 2k−i0 in its base-2
expansion must be adjacent to an even number of edges of E ′. Therefore
the non-oriented graph induced by E ′ is Eulerian, with exactly two points
of odd degree: xi0 and yi0 . In particular, xi0 and yi0 are connected by a
path in E ′.

Let P0 be a minimal path between xi0 and yi0. Each endpoint of each
edge in this path has to be some yi, all distinct by minimality, so that
P0 has length at most k. It follows by a convexity argument that c(P0)
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is at least k(d(xi0, yi0)/k)
p. Moreover φ(P ) > α2−k so that the cost of Π

is at least α2−kd(xi0 , yi0)
p/kp−1. We get

Wp(f(x̄), f(ȳ)) >
α

1

p2−
k
p

k1− 1

p

d∞(x̄, ȳ) >
1

k(2k − 1)
1

p

dp(x̄, ȳ)

which ends the proof of Theorem 1.1.

4. Discussion of the embedding constants

One can wonder if the constants in Theorem 1.1 are optimal. We
shall see in the simplest possible example that they are off by at most a
polynomial factor, then see how they can be improved in a specific case.

Proposition 4.1. — Let X = {0, 1} where the two elements are at dis-

tance 1 and consider a map g : Xk → Wp(X) such that

mdp(x̄, ȳ) 6 Wp(g(x̄), g(ȳ)) 6 M dp(x̄, ȳ)

for all x̄, ȳ ∈ Xk and some positive constants m,M . Then

m 6
1

(2k − 1)
1

p

and
M

m
>

(

2k − 1

k

)

1

p

.

Moreover there is a map whose constants satisfy m = (2k − 1)−
1

p and

M/m 6 (2k − 1)
1

p .

Proof. — By homogeneity, it is sufficient to consider p = 1, in which case
Xk is the k-dimensional discrete hypercube endowed with the Hamming
metric: two elements are at a distance equal to the number of bits by
which they differ. Moreover W1(X) identifies with the segment [0, 1]
endowed with the usual metric |·|: a number t corresponds to the measure
tδ0 + (1− t)δ1.

The diameter of Xk is k, so that the diameter of g(Xk) is at most Mk.
Since g(Xk) has 2k elements, by the pigeon-hole principle at least two of
them are at distance at most (2k − 1)−1Mk. Since the distance between
their inverse images is at least 1, we get m 6 (2k − 1)−1Mk so that
M/m > (2k − 1)/k. The pigeon-hole principle also gives m 6 (2k − 1)−1

simply by using that W1(X) has diameter 1.
To get a map g with M/m = (2k − 1), it suffices to use a Gray code:

it is an enumeration x1, x2, . . . , x2k of the elements of Xk, such that to
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consequent elements are adjacent (see for example [Ham80]). Letting
f(xi) := (i−1)/(2k−1) we get a map withM 6 1 andm = (2k−1)−1.

Note that in Proposition 4.1, one could improve the lower bound on

M/m by a factor asymptotically of the order of 2
1

p by using the fact that
every element in Xn has an opposite, that is an element at distance n
from it.

Let us give an example where the constants are much better.

Example 4.2. — Let X = {0, 1}N with the following metric: given
x = (x1, x2, . . .) 6= y = (y1, y2, . . .) in X , d(x, y) = 2−i where i is the least
index such that xi 6= yi. Then given k, let ℓ be the least integer such
that 2ℓ > k and let w1, . . . , wk ∈ {0, 1}ℓ be distinct words on ℓ letters.
For x = (x1, x2, . . .) ∈ X and w = (w1, . . . , wℓ) ∈ {0, 1}ℓ, define wx as
the element (w1, w2, . . . , wℓ, x1, x2, . . .) of X .

Now let g : Xk → Wp(X) be defined by

g
(

x = (x1, . . . , xk)
)

=
k
∑

i=1

1

k
δwixi

.

For all x, y ∈ X and all i 6= j, we have d(wix, wjy) > 2−ℓ > d(wix, wiy).
It follows that

Wp(g(x̄), g(ȳ)) =

(

1

k

∑

i

2−pℓdp(xi, yi)

)
1

p

=
1

k
1

p2ℓ
dp(x̄, ȳ).

For this example, we have M = m and moreover m has only the order

of k−1− 1

p instead of being exponentially small.

This example could be generalised to more general spaces, for example
the middle-third Cantor set. What is important is: that the various
components of a given depth are separated by a distance at least the
diameter of the components; that the metric does not decrease too much
between d(x, y) and d(wx,wy) (any bound that is exponential in the
length of w would do).
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5. Dynamical consequences

In this section, X is asumed to be compact. Given a continuous map
ϕ : X → X , for any n ∈ N one defines a new metric on X by

d[n](x, y) := max{d(ϕi(x), ϕi(y)); 0 6 i 6 n}.

Given ε > 0, one says that a subset S ofX is (n, ε)-separated if d[n](x, y) >
ε whenever x 6= y ∈ S. Denoting by N(ϕ, ε, n) the maximal size of a
(n, ε)-separated set, the topological entropy of ϕ is defined as

htop(ϕ) := lim
ε→0

lim sup
n→+∞

logN(ϕ, ε, n)

n
.

Note that this limit exists since lim supn→+∞

1
n
logN(ϕ, ε, n) is nonin-

creasing in ε. The adjective “topological” is relevant since htop(ϕ) does
not depend upon the distance on X , but only on the topology it defines.
The topological entropy is in some sense a global measure of the depen-
dance on initial condition of the considered dynamical system. The map
×d : x 7→ dx mod 1 acting on the circle is a classical example, whose
topological entropy is log d.

Now, the metric mean dimension is

mdimM(ϕ, d) := lim inf
ε→0

lim sup
n→+∞

logN(ϕ, ε, n)

n| log ε|
.

It is zero as soon as topological entropy is finite. Note that Linden-
strauss and Weiss define the metric mean dimension using covering sets
rather than separated sets; but this does not matter since their sizes are
comparable.

Let us now prove that when htop(ϕ) > 0, then ϕ# : Wp(X) → Wp(X)
has positive metric mean dimension.

Proof of Corollary 1.2. — Let ε, η > 0 and k be such that η > k(2k −

1)
1

p ε. If A is a (n, η)-separated set for (X,ϕ, d) then Ak ⊂ Xk is a (n, η)
separated set for (Xk, ϕk, d∞). Then Theorem 1.1 shows that f(Ak) is a
(n, ε)-separated set for (Wp(X), ϕ#,Wp), so that

N(ϕ#, ε, n) >
(

N(ϕ, k(2k − 1)1/pε, n)
)k

.

Let H < htop(ϕ) and β < 1. For all ε > 0 small enough, and for
arbitrarily large integer n we have N(ϕ, ε, n) > exp(nH). Define

k =

⌊

βp(− log ε)

log 2

⌋

;
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then k(2k − 1)1/pε = O
(

(− log ε)ε1−β
)

→ 0 when ε → 0. Therefore, for
all small enough ε, there are arbitrarily large n such that

N(ϕ#, ε, n) > exp(nHk)

> exp

(

nH

(

βp

log 2
(− log ε)− 1

))

logN(ϕ#, ε, n)

n(− log ε)
>

Hβp

log 2
−

H

− log ε

mdimM(ϕ#,Wp) >
Hβp

log 2

Letting H → htop(ϕ) and β → 1 gives

mdimM(ϕ#,Wp) > p
htop(ϕ)

log 2

as claimed.

In the case of the shift on {0, 1}N, one could want to use the better
bound obtained in Example 4.2. But the map g defined there does not
intertwin ϕk and ϕ#, and the method above does not apply.
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