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Abstract

The problem described in this paper consists in re-identifying moving people in
different sites which are completely covered with non-overlapping cameras. Our
proposed framework relies on the spectral classification of the appearance-based
signatures extracted from the detected person in each sequence. We first propose
a new feature called “color-position” histogram combined with several illumination
invariant methods in order to characterize the silhouettes in static images. Then,
we develop an algorithm based on spectral analysis and Support Vector Machines
(SVM) for the re-identification of people. The performance of our system is evaluated
on real data sets collected on INRETS premises. The experimental results show that
our approach provides promising results for security applications.

Key words: Surveillance systems; Person re-identification; People tracking;
Spectral analysis; Support Vector Machines; Color invariant.

1 Introduction

Nowadays, there is no doubt that security should be a major worry for the
actors of public transport (travelers, staff, operating companies, governments).
Each network or country has established measures according to their knowl-
edge of these problems, to local conditions, and cultural traditions (for exam-
ple: attitudes and legal limits relative to private life). Timely detection and
intervention are needed in the case of threats for security, such as aggressions
against people, vandalism against property, acts of terrorism, accidents and
major catastrophes such as fires. The Closed-Circuit TeleVision (CCTV) cov-
erage, which is considered as an essential element by several networks of large
and middle-size cities, local authorities and police forces, has improved un-
ceasingly. For instance, it was estimated that more than a million cameras are
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in public places in the United Kingdom and that on average, an individual is
“seen” by 300 cameras in only one day in London.

However, the lack of staff limits drastically the general use of CCTV, espe-
cially if these systems must be used for prevention, rather than to react after
the detection of accidents. It is usual that a human operator, responsible for
a video surveillance system, should have to manage simultaneously 20 to 40
video sources. It brings new difficulties in defining the suitable procedures ca-
pable of managing the large volumes of information produced by such systems.
When raw video data is available, one must automatically identify incidents, as
well as dangerous and potentially dangerous situations. Indeed, it is essential
to avoid the visual excess to which human operators are currently exposed.

The research presented in this paper is within the framework of BOSS Euro-
pean project [1] (on BOard wireless Secured video Surveillance) which aims
at developing a multi-camera vision system specified to monitor, detect and
recognize abnormal events occurring on-board trains. One of the important
tasks of such a system is to establish correspondence between observations of
people over different camera views located at different physical sites. In most
cases, such a task relies on the appearance-based models of moving people
that may vary depending on several factors, such as illumination conditions,
camera angles and pose changes.

In this paper, we propose a particular function between two cameras in or-
der to re-identify a person who has appeared in the field of one camera and
then reappears in front of another camera. Our proposed approach consists
of several steps. First, we compute invariant features (also called signatures)
in order to characterize the silhouettes in static images. Then, a graph-based
approach is introduced to reduce the effective working space and realize the
comparison of two video sequences (two passages). The performance of our
system is evaluated on a real dataset containing 40 people filmed in 2 different
environments (one indoors and one outdoors).

One of the originalities of our research is the tracking of people that represent
in the image processing field, what are called deformable shapes. The second
originality is the developed algorithms based on spectral analysis and Support
Vector Machines (SVM) for the re-identification of people as they move from
one location to another. Lastly, the third strong point is that the algorithm is
fully illuminant invariant.

The organization of the article is as follows: after this introduction, we will
find in Section 2 a short state of the art on video sequence comparison. Section
3 describes how the invariant signature of a detected person is generated. In
Section 4, after a few theoretical reminders on spectral analysis, we explain how
we adapt the latter to our problematic. The first illustrated results allow us to
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establish a good discrimination between individuals. In Section 5, we briefly
describe the main concepts of SVM and their application to our problem. In
fact, the use of SVM is an interested step that complements spectral analysis to
perform re-identification. Section 6 presents global results on the performance
of our system on a real dataset. Finally, in Section 7, conclusions and important
short-term perspectives are given.

2 State of the art on video sequence comparison

Over the past several years, a significant amount of research has been carried
out in the field of object recognition by comparing video sequences. It is usual
to describe the color-based features of video sequences using a set of key frames
that describes well an entire video sequence. Several techniques of key frame
selection from video sequences have been proposed so far. Ueda & al. [2] used
the first and last frame of each sequence as two key frames. Ferman & al. [3]
clustered the frames in each sequence. The closest frame to the center of the
largest cluster is selected as the key frame for that shot. Sun & al. [4] divided
a video sequence into intervals which are determined by computing the largest
dissimilarity between the first and last frame. Girgensohn & al. [5] determined
the key frames by clustering the frames in a video shot and by selecting the
most representative frame for each cluster. Yang & al. [6] proposed a key frame
selection process based on a comparison of the distances of the current key
frame to the following frames with a given threshold. Although the latter key
frame selection techniques are computationally inexpensive, the video sequence
description they provide varies significantly with the selection criterion.

Given the drawback of key frame extraction methods, a preferable approach is
to consider the characteristics of all the frames within a sequence and to com-
pute a single compound signature of the sequence. Ferman & al. [7,8] proposed
various histogram-based color descriptors to represent the color properties of
a sequence. Leclercq & al. [9] proposed to use co-occurrence matrices to have
a spatial distribution of the pixels in a shape. They then used principal com-
ponent analysis (PCA) for dimensionality reduction and final classification.
Gheissari & al. [10] proposed a temporal signature which is invariant to the
position of the body and the dynamic appearance of clothing within a video
shot.

3 Signature generation

The first step in our system consists in extracting from each frame a robust
signature characterizing the passage of a person. To do this, a detection of
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moving areas, by background subtraction, combined with a shadow elimination
algorithm is first carried out [11,12]. Let us assume now that each person’s
silhouette is located in all the frames of a video sequence. Since the appearance
of people is dominated by their clothes, color features are suitable for their
description. Several tools can then be used, such as the color histogram [13]
that is the most commonly used structure to represent global image features.
It is invariant to translation, rotation and can become invariant to scale by
normalization. The undeniable advantage of the color path length feature [14] is
its ability to include some spatial information: each pixel inside the silhouette
is represented by a feature vector (x,l), where x is the color value and l is
the length between an anchor point (the top of the head) and the pixel. The
distribution of p(x,l) is then estimated with a 2D histogram. We can lastly
cite spatiograms [15], which are a generalization of histograms including higher
order spatial moments. For example, the second-order spatiogram contains, for
each histogram bin, the spatial mean and covariance.

In our research, we propose a new descriptor for static images called the“color-
position” histogram (Figure 1). This is really easy to estimate because the
silhouette is first vertically divided in n equal parts. Then, the mean color
is computed to characterize each part. The “color-position” histogram is then
composed of n × 3 values (while working with three color channels). Com-
pared to the classical color histogram, it leads to better results (thanks to the
spatial information) and uses less memory. Its advantages regarding the color
path length feature are a faster estimation and lower memory consumption.
Furthermore, this new feature is more homogeneous than the spatiogram; this
leads to simple and more reliable measures to compare two silhouettes.

Fig. 1. Color-position histogram: original image (left), localization of the silhouette
(middle), color distribution in the silhouette (right).

Unfortunately, the color acquired by cameras is heavily dependent on several
factors, such as the surface reflectance, illuminant color, lighting geometry,
response of the sensor,. . . and preliminary processings have to be introduced
to obtain invariant signatures.

Several normalizations have been proposed in literature and we tested most
of them. We only cite the most interesting as the chromaticity space derived
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from the RGB space from:

r =
R

R + G + B
, g =

G

R + G + B
, b =

B

R + G + B
(1)

It is very simple and is independent of illuminant intensity (but not illuminant
color).

Greyworld normalization [16] consists in dividing for each channel, the pixel
value by the average of the image (or in a given area):

R′ =
R

mean (R)
, G′ =

G

mean (G)
, B′ =

B

mean (B)
(2)

This normalization is derived from the diagonal model of color change pro-
posed by Finlayson & al. [17]. Invariance is obtained according to illuminant
color (but not to illuminant intensity).

To be invariant to both intensity and color changes, Finlayson & al. have intro-
duced the comprehensive normalization procedure [17], which is an iterative
algorithm with two steps in the principal loop, one for each invariance.

A new feature based on the assumption that the rank ordering of sensor re-
sponses is preserved across a change in imaging illuminations has also been
introduced [18]. The rank measure for the level i and the channel k is obtained
with:

Mk(i) =
i
∑

u=0

Hk(u)

/

Nb
∑

u=0

Hk(u) (3)

where Nb is the number of quantization steps and Hk(·) is the histogram for
the channel k.

Lastly, we have tested the affine normalization defined by:

R′ =
R − mean(R)

std (R)
, G′ =

G − mean(G)

std (G)
, B′ =

R − mean(B)

std (B)
(4)

For all these methods, the color normalization is applied inside the silhouette
of each person before computing its color-position histogram. A comparative
study of the different normalization procedures will be presented in Section 6.

The output of this first step is a color-position histogram, invariant to light-
ing conditions and estimated on each frame. However, the signature extracted
from just one frame is not robust enough for comparing two image sequences.
A stronger solution is needed to characterize the whole sequence. In the fol-
lowing section, we will introduce a graph-based approach that can reduce the
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dimensionality of our dataset (set of signatures of a sequence) without losing
useful information and obtain a single representation of a whole sequence.

4 Dimensionality reduction

4.1 Overview

High-dimensional data, meaning data that requires several dimensions to rep-
resent, can be difficult to interpret and process. One approach to tackle this
problem is to assume that the data of interest lies on an embedded non-linear
manifold within the higher dimensional space. If the manifold is of low enough
dimension then the data can be visualized in the low dimensional space. Spec-
tral methods have recently emerged as a powerful tool for nonlinear dimen-
sionality reduction and manifold learning [19,20]. Each input example is then
associated with a low-dimensional representation that corresponds to its es-
timated coordinates on the manifold. Dimensionality reduction can yield to
a new representation that preserves almost all the original information while
this new representation can also ease learning and improve generalization in
a supervised learning process. In addition to being useful as a preprocess-
ing step for supervised learning, nonlinear dimensionality reduction is often
used for data analysis and visualization, since visualizing the projections of
the data can help to better understand it. In the last few years, many unsu-
pervised learning algorithms have been proposed which share the use of an
eigen-decomposition for obtaining a lower-dimensional embedding of the data
that characterizes a non-linear manifold near which the data would lie: Lo-
cally Linear Embedding (LLE) [21], Isomap [22], Laplacian Eigenmaps [23],
Diffusion Maps [24] and many variants of Spectral Analysis [25,26].

In this paper, we only focus on Graph-based methods for nonlinear dimen-
sionality reduction. Sometimes called Diffusion Maps, Laplacian Eigenmaps
or Spectral Analysis, these manifold-learning techniques preserve the local
proximity between data points by first constructing a graph representation for
the underlying manifold with vertices and edges. The vertices represent the
data points, and the edges connecting the vertices, represent the similarities
between adjacent nodes. If properly normalized, these edge weights can be
interpreted as transition probabilities for a random walk on the graph. After
representing the graph with a matrix, the spectral properties of this matrix
are used to embed the data points into a lower dimensional space, and gain
insight into the geometry of the dataset.

Let {x1,x2, . . . ,xm} ∈ R
n be m sample vectors. Given a neighborhood graph

G associated to these vectors, one considers its adjacency matrix W where
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weights Wij are given by a Gaussian kernel Wij = K(xi,xj) = exp
(

− ||xi−xj ||
2

σ2

)

.
Let D denote the diagonal matrix with elements Dii =

∑

j Wij and ∆ denote
the un-normalized Laplacian defined by ∆ = D − W . The dimensionality re-
duction consists in searching for a new representation {ϕ1, ϕ2, . . . , ϕm} with
ϕi ∈ R

m, obtained by minimizing:

1
2

∑

ij
‖ϕi − ϕj‖2 Wij = Tr(YT ∆Y)

with Y = [ϕ1, ϕ2, . . . , ϕm].
(5)

This cost function encourages nearby sample vectors to be mapped to nearby
outputs. This is achieved by finding the eigenvectors ϕ1, ϕ2, . . . , ϕm of matrix
∆. Dimensionality reduction is obtained by considering the q lowest eigenvec-
tors (the first eigenvector being discarded) with q ≪ n. Therefore, we can
define a dimensionality reduction operator h : xi → (ϕ2(i), . . . , ϕq(i)) where
ϕk(i) is the ith coordinate of eigenvector ϕk. When the graph G is a neighbor-
hood graph (e.g. a k nearest neighbor graph), this dimensionality reduction
is called Laplacian Eigenmaps [23]. When the graph G is a complete graph,
this dimensionality reduction is called Diffusion Maps [24]. Both methods are
equivalent (up to some normalization) and very close to Spectral Analysis [20].
In the rest of the paper, we will use the term Spectral Analysis to denote a
dimensionality reduction performed by the above-mentioned graph-based ap-
proach.

4.2 Silhouette categorization

In this Section, we present our framework based on Spectral Analysis that
is able to reduce the dimensionality of an image set and provides a new 2D
visualization. This approach enables us to visualize the images of two sequences
in a 2D space and thus helps us to interpret them more easily.

Given an image set S consisting of m images belonging to two sequences
S = {I1, I2, . . . , Im}, the first step of our framework is to extract the invari-
ant signature“color-position”described in Section 3. This leads to a new set of
vectors X = {x1,x2, . . . ,xm} ∈ Rk, where each vector xi corresponds to the
image Ii. We now associate to the set of vectors X a complete neighborhood
graph G = (V,E) where each vector xi (as well as each image Ii) corresponds
to a vertex vi in this graph. Two vertices corresponding to two vectors xi and

xj are connected by an edge that is weighted by Wij = exp
(

−d(xi,xj)
2

σ2

)

.

Here, we use the L1 norm for computing the distance between two char-

acteristic vectors d (xi,xj) =
n
∑

k=1
|xik − xjk|. The parameter σ is chosen as
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σ = mean [d (xi,xj)] , ∀i, j = 1, . . . ,m (i 6= j). Ideally, Wij is large when im-
ages indexed by i and j are preferably in the same sequence, and is small
otherwise. Now, we can compute the un-normalized Laplacian ∆ and produce
the eigenstructure of ∆. The eigenvectors (ϕ1, ϕ2, . . . , ϕm) provide a new co-
ordinate for the image set.

Dimensionality reduction is obtained by considering the q lowest eigenvectors
with q ≪ n. Choosing number q could be a problem. A solution proved by von
Luxburg & al. [27] is that the eigenvalues corresponding to the eigenvectors
used for dimensionality reduction and then for spectral clustering must be sig-
nificantly below the minimal degree in the graph (i.e. λi ≪ minj=1,...,n Djj , ∀i =
1, . . . , q). The other eigenvectors which correspond to eigenvalues with λ ≥
min Djj are almost Dirac functions. Within the framework of our approach,
two eigenvectors (ϕ2, ϕ3) whose eigenvalues are significantly below minDjj are
used for creating a 2D projection suitable for the visualization of the whole
image set. Each image Ii is now represented by point ui = (ϕ2 (i) , ϕ3 (i)) in
the 2D Euclidean space.

In order to illustrate the output of the spectral analysis and demonstrate
that it is a good representation for visualizing and comparing two sequences,
we carried out several tests. The first is achieved by applying the spectral
analysis to an image set composed of two sequences (10 frames per sequence)
representing two people differently dressed.

Fig. 2. Visualization of two sequences containing two people differently dressed in
the 2D space represented by (ϕ2, ϕ3) (one wears a white T-shirt and blue jeans, the
other wears a black dress).

Figure 2 presents the 2D space (ϕ2, ϕ3) in which the set of frames of two se-
quences is plotted. On the left-hand diagram, the frames of the two sequences
are illustrated by star points (blue for one person and red for the other) while
on the right-hand diagram the points are directly illustrated by the corre-
sponding silhouettes. According to the results shown in Figure 2, we notice
that the image set of this experiment contains two well-separated clusters with
a large gap between both (i.e. the space between the two clusters is large). In
other words, as the image set is naturally partitioned into two disjoint classes
in the (ϕ2, ϕ3) space, we can assert that the two tested sequences represent
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two different people. In this case, only ϕ2 eigenvector is sufficient to perform
the clustering. This corresponds to use the sign of ϕ2 and is equivalent to use
the normalized cut algorithm [26].

The second trial is carried out with sequences of two different people very
similarly dressed (they both wear a white T-shirt and blue jeans). Note that
these two sequences are captured by two cameras located at two different sites
(indoors in a hall near windows and outdoors with natural light). The result
is shown in Figure 3. For this image set, we can see that the two clusters are
now less easily identifiable because, even if the two sequences represent two
different individuals, their colorimetric appearances are very similar. There is
still a gap between the two clusters, but it is not so easy to split the 20 frames
into two groups without any prior knowledge. It is worth to note that here the
normalized cut criterion is not accurate enough to perform the clustering.

Fig. 3. Visualization of two sequences belonging to two different people similarly
dressed in the 2D space represented by (ϕ2, ϕ3) (both wear a white T-shirt and
blue jeans).

The last trial image set consists of two sequences of the same person captured
in different locations: indoors, in a hall near windows and, outdoors, in a
garden. Shooting environments are completely different in terms of lighting,
background, and so on. The mapping in Figure 4 shows that the clusters of the
two image sequences strongly overlap. There are no longer clear clusters and
well-defined gap in this image set. This means that, in spite of the different
environments, the two groups of frames are recognized as similar and, in other
words, correspond to the same person.

Thus, these first experimental results illustrate that, by using the invariant
signature “color-position” histogram to create the set of characteristic vectors
of two test sequences and by applying spectral analysis, we can obtain a new
visualization of an image set that helps us to determine the gap (the distance)
between two image sequences. The more dissimilar the two sequences, the
larger the gap. Because our objective is to re-identify people (recognize them
from one camera to another) based on their color appearance, these results
are very satisfactory and encourage us to continue in this way.
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Fig. 4. Visualization of two sequences describing the same person in a different
location in the 2D space represented by (ϕ2, ϕ3).

Spectral analysis is a very important step allowing a dimensional reduction
without losing too much information included in the data. At this step, a higher
level module has to be introduced to take a final decision of re-identification
when comparing two sequences. Different parametric, non-parametric, and dis-
criminating methods have been considered and the SVM seems to be appro-
priate for our problem. In the following section, we will briefly describe the
main concepts of SVM and their specific application to our problem.

5 Application of SVM in measuring the similarity of two sequences

In Section 4, we described how an image set can be mapped into a 2D plane by
using spectral dimensionality reduction. Several experimental results showed
that the new coordinate system is a good representation for visualizing the
image set. Moreover, it introduces a gap between two clusters that can be
used to solve our objective of re-identification. We present in this section the
application of SVM [28] (see Appendix for more details) to define the gap
between two clusters (two groups of frames, for instance), and to compute the
distance between the two sequences.

Let ui ∈ R2 be the vector obtained by spectral analysis corresponding to
the i-th image of the tested image set. Each vector is labeled by a class
vi ∈ {−1 , +1} according to the sequences it belongs to. The linear SVM
whose kernel function K (·, ·) is defined as K (ui,uj) = uT

i uj is now applied
directly to the input-output set (ui, vi) in order to determine the optimal hy-
perplane w · φ(w) + b = 0 which separates the two classes with the widest
margin. Computing this hyperplane is equivalent to minimize the following
optimization problem [29]:

V (w, b, ξ) =
1

2
‖w‖2 + C

(

m
∑

i=1

ξi

)

(6)

where the constraint ∀m
i=1 : vi [w · φ (ui) + b] ≥ 1 − ξi , ξi ≥ 0 requires that
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all training examples are correctly classified up to some slack ξ and C is a
parameter allowing trading-off between training errors and model complexity.

We first discuss the case where the training data set is linearly separable (Fig-
ures 2 and 3). This means that it is possible to find an optimal hyperplane
which separates two classes without error (i.e. there is no slack ξ in classifica-
tion). The distance between two image sequences in this case is defined as the
optimal margin 2/ ‖w‖ obtained by the SVM. Figure 5 shows the results ob-
tained by applying SVM to the image sets shown in Figures 2 and 3. We notice
that the distance between the two image sequences in the first test (Figure 5a)
is larger than in the second (Figure 5b). This means that the more different
the appearances of two individuals are, the larger the distance between two
image sequences.

(a) (b)
Fig. 5. Linear separating hyperplanes for the image set of Figures 2 and 3.

The above discussion has been restricted to the case where the image set is
linearly separable. For the non-separable image set, there are always several
misclassification errors which are measured by the slack ξi. The result of the
classification in this case depends on parameter C (see Equation 6) which
corresponds to the degree of penalty assigned to an error. In our algorithm,
we choose C equal to infinity. For such a value of C, the solution of SVM
converges towards the solution obtained by the optimal separating hyperplane
for the non-separable dataset.

Figure 6 shows the result obtained by applying SVM to the image set shown
in Figure 4. The errors of classification are represented by a surrounding circle
in the diagram. We notice that, for such a dataset, we cannot find two hyper-
planes H1 and H2 which separate the two sequences according to the linear
model. The distance between two image sequences in this case can be consid-
ered equal to 0, or, in other words, these two sequences represent the same
person in our case. However, such an assessment can result in two possible
cases: a true re-identification (true positive) if two image sequences are from
the same person and a false re-identification (false positive or type 1 error) if
two image sequences are from two different people.

In order to further describe the characteristic of two image sequences in the
non-separable case, we introduce a notion of “mixture score” which is defined
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as s = −
k
∑

i=1

ξi

‖w‖
. The more misclassification errors there are, the smaller the

mixture score. This notion can be used as a complementary condition for
comparing two sequences in case there are many pairs of sequences which
cannot be separated by a linear model.

Fig. 6. Application of SVM for the image set of Figure 4.

6 Experimental results

As mentioned above, our research aims to set up an onboard surveillance sys-
tem that is able to re-identify a person through multiple cameras with differ-
ent fields of vision. Before collecting a real on-board dataset, a large database
containing video sequences of 40 people acquired in INRETS premises was
collected for the evaluation of our algorithms. We have chosen two different
locations (indoors in a hall near windows and outdoors with natural light) to
set up these two cameras. Figure 7 illustrates one of the forty people in these
two locations. We notice that the color appearance is very different according
to the real scene illumination conditions.

Fig. 7. Illustrations of the large real database representing the same person in two
different environments: indoors in a hall (left) and outdoors (right).

For each video sequence, the silhouette of the moving person is extracted by
using the background subtraction technique, combined with a shadow elimi-
nation algorithm [11,12] and morphological operators (erosion and dilation).
A set of key frames in which people are entirely viewed is then extracted in
order to characterize the passage of an individual. For this database, we have
chosen to extract ten key frames per passage and per location. Such a number
of frames is sufficient for describing the characteristics of a passage in front of
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camera and for ensuring an adequate time processing. Figure 8 illustrates the
key frames extracted from two sequences of the same person.

Fig. 8. Example of frame extractions for two sequences of the same person in two
different locations (outdoors in a garden (first row); indoors in a hall (second row)).

For each query passage in front of one camera, the distances between the
query passage and each of the candidate passages of the other camera are
calculated by applying the spectral analysis for dimensional reduction and the
SVM for similarity measure. A decision threshold is chosen; distances below
the threshold indicate a re-identification (score = 1). This means that two
passages belong to the same person. If the distance is above the threshold, this
means it is a distinction and these two test passages belong to two different
individuals (score = 0).

Since there are 40 video sequences for each location, 40 × 40 distances (i.e
dissimilarities between two video sequences) are calculated and then compared
with the threshold. The resulting scores can be arranged in a 40 × 40 score
matrix. An ideal score matrix is one whose diagonal elements are 1 (true re-
identification) and whose off-diagonal elements are 0 (true distinction). In fact,
a real re-identification system can give one of four possible results:

- True re-identification (also known as true match, true positive): the system
declares a re-identification (score = 1) when the two passages belong to the
same person (the diagonal).

- True distinction (also known as true non-match, true negative): the system
declares a distinction (score = 0) when the two passages represent two different
people (the off-diagonal).

- False re-identification (also known as false positive, false match or type II er-
ror): the system declares a re-identification (score = 1) when the two passages
represent two different people (the off-diagonal).

- False distinction (also known as false negative, false non-match or type I
error): the system declares a distinction (score = 0) when the two passages
represent the same person (the diagonal).

Hence, these four possible rates (true re-identification rate (TRR), true dis-
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tinction rate (TDR), false re-identification rate (FRR) and false distinction
rate (FDR)) can be calculated from the score matrix and are functions of the
threshold which can be changed according to the context of utilization of the
system. In our system, we choose the optimal threshold by referring to the
Equal True Rate (ETR) point which assumes the equality of TRR and TDR.
Two such rates can be calculated from the score matrix by using the following
definitions:

TRR =

N
∑

k=1
(scorekk = 1)

N
(7)

TDR =

N
∑

k=1

N
∑

l=1
(scorekl = 0, k 6= l)

N (N − 1)
(8)

where N is the number of people in the database (N = 40 in our case).

In Figure 9, we find the TRR (in red) and TDR (in blue) according to given
thresholds. For instance, in the first part which corresponds to RGB space,
i.e. without invariant, the ideal setting of the thresholds leads to an 86% rate
either for distinction or re-identification. This result represents the crossing of
the two curves. This means that re-identification and distinction are of equal
importance from the user’s point of view.

Fig. 9. Variation of TRR and TDR according to the settings of threshold. Two ETR
points (A, B) corresponding to two color spaces (RGB and Greyworld respectively)
are presented.

Table 1 summarises the comparative results obtained at the optimal points
corresponding to RGB space and five illuminant normalizations. We can no-
tice that, except for two invariants which are chromaticity space and com-
prehensive normalization, the others have actually improved the results in
comparison to the RGB space. In particular, Greyworld illuminant invariant
is the one which leads to the best performance (TRR increases from 86% to
95%).

Another way of showing more clearly the performances of the system combined
with the invariants is to use a ROC (Receiver Operating Characteristic) curve
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TRRs at the optimal points

RGB 86%

Chromaticity space 65%

Greyworld normalization 95%

Comprehensive normalization 80%

RGB-rank 88%

Affine normalization 91%

Table 1
TRRs at the optimal points corresponding to RGB space and five color normaliza-
tion procedures obtained by the proposed approach.

as illustrated in Figure 10. In this figure, we can find a plot of TRR versus
FRR as the value of threshold varies for the RGB space and the five invariants
used. The closer the curve approaches the top left-hand corner of the plot, the
better the method is. The ETR line is also represented in this figure in order
to determine the six optimal points (the crossing between each curve and the
ETR line). Based on the results presented in Figure 10, we can confirm that
the Greyworld normalization is the best method compared to the others. Its
ROC curve is the closest curve to the top left-hand corner of the plot and its
ETR point gives us a very satisfying rate of re-identification.

Fig. 10. ROC curves for comparing five invariant methods.

Here, we note that the TRRs of our system can be regulated by the deci-
sion threshold according to the context of utilization of the system. Another
approach for solving our problem of re-identification without using the de-
cision threshold is based on the nearest-neighbor algorithm. The distances
between the sequence of an individual who needs to be re-identified and all
the sequences captured in another location are classified in increasing order.
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The closest sequence is chosen as the result of re-identification. If this se-
quence corresponds to the same person in the comparison, we obtain a true
re-identification. By using this method of evaluation, we obtain similar results
to those previously obtained.

Figure 11 shows an example of the top five matching sequences for several
query passages. The query passages are shown in the left column, while the
remaining columns present the closest sequences ordered from left to right. The
red box highlights the candidate sequence corresponding to the same person of
the query. In this figure, the two cases of the first and second rows correspond
to a true re-identification, while the third row falls in a false re-identification
(the correct match is not the nearest sequence).

Fig. 11. Example of the top five matching sequences for several query passages.

7 Conclusion and perspectives

In this paper, we have presented a system that is able to track moving people
in different sites while observing them through multiple cameras. Our pro-
posed approach is based on the spectral classification of the color-based signa-
tures extracted from the detected person in each sequence. A new descriptor
called “color-position” histogram combined with several invariant methods is
proposed to characterize the silhouettes in static images and obtain robust
signatures which are invariant to lighting conditions. In order to further im-
prove the appearance-based model of an individual, many images of a video
sequence should be exploited. Hence, an algorithm which is based on spectral
analysis coupled with a specific SVM-based classification is applied to compare
two sequences and make the final decision of re-identification.
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The global system was tested on a real and difficult data set composed of
40 individuals filmed at two different locations: indoors near windows and
outdoors with very different lighting conditions. The experimental results have
shown that our proposed approach provides reliable results: 95% for the true
re-identification rate and the distinction rate as well. These results are the
fruit of the clever combination of the spectral analysis, the SVM method and
the illuminant invariance of the color position silhouettes.

In order to further improve the performance of our system, the appearance-
based signatures need to add more temporal and spatial information in order
to be further discriminating among different people and to be unifying in order
to make coherent classes with all the features belonging to the same person. An
additional classification should be carried out in the case where the appearance
of a moving person changes significantly due to occlusion, partial detection,
etc. The other features, such as camera transition time, moving direction of
the individual, biometrics features (face, gait). . . should also be considered in
order to improve the performance of the re-identification system, especially in
the more challenging scenarios (multiple passages in front of cameras, many
people wearing same color clothes, etc).

More extensive evaluation also needs to be carried out. A good occasion will be
to test it on people tracking in transport environment in the framework of the
European BOSS project. On-board automatic video surveillance is a challenge
due to the difficulties in dealing with fast illumination variations, reflections,
vibrations, high people density and static/dynamic occlusions that perturb
actual video interpretation tools.

Appendix: Support Vector Machines

The SVMs were developed by Vapnik & al. [28]. They are based on the struc-
tural risk minimization principle from statistical learning theory. SVMs express
predictions in terms of a linear combination of kernel functions centered on a
subset of the training data, known as support vectors.

Given the training data (xi, yi) , i = {1, . . . ,m}, xi ∈ R
n , yi ∈ {−1, +1}, a

SVM maps the input vector x into a high-dimensional feature space H through
some mapping functions φ : R

n → H, and builds an optimal separating hyper-
plane in this space. The mapping φ(·) is performed by a kernel function K(·, ·)
that defines an inner product in H. The kernel function maps the input space
into a high dimensional Euclidean space and this kernel trick enables nonlinear

classification. A typical kernel is Gaussian kernel K(xi,xj) = exp
(

−‖xi−xj‖
2

2σ2

)

.

The separating hyperplane given by a SVM is w·φ(w)+b = 0. The optimal hy-
perplane is characterized by the maximal distance to the closest training data.
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The margin is inversely proportional to the norm of w. Thus, computing this
hyperplane is equivalent to minimize the following optimization problem [29]:

V (w, b, ξ) =
1

2
‖w‖2 + C

(

m
∑

i=1

ξi

)

(.1)

where the constraint ∀m
i=1 : yi [w · φ (xi) + b] ≥ 1 − ξi , ξi ≥ 0 requires that all

training examples are correctly classified up to some slack ξ and C is a param-
eter allowing trading-off between training errors and model complexity. This
optimization is a convex quadratic programming problem. Its whole dual [28]
is to maximize the following optimization problem:

W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyjK (wi,wj) (.2)

subject to ∀m
i=1 : 0 ≤ αi ≤ C ,

∑m
i=1 yiαi = 0.

The optimal solution α∗ specifies the coefficients for the optimal hyperplane
w∗ =

∑m
i=1 α∗

i yiφ (xi) and defines the subset SV of all Support Vectors. An
example xi of the training set is a SV if α∗

i ≥ 0 in the optimal solution. The
Support Vectors subset gives the binary decision function h:

h(x) = sign(f(x)) , f (x) =
∑

i∈SV

α∗
i yiK (xi,x) + b∗ (.3)

where the threshold b∗ is computed via the unbounded Support Vectors [28]
(i.e. 0 < α∗

i < C).

An efficient algorithm SMO [30] and many refinements [31] were proposed to
solve dual problem. SVM are powerful classifiers having high generalization
abilities, but the decision function build by SVM has a complexity that in-
creases with training set size. Moreover, high dimensional spaces are sensitive
to the curse of dimensionality and scalar products quickly become hard to
compute. One way to cope with these problems is to reduce the size of the
input space by dimensionality reduction. Moreover, dimensionality reduction
can ease the learning process and improve generalization abilities.
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