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ABSTRACT

Trabecular bone is made of a complex network of plate

and rod structures, the proportion of which evolves with age

or disease. Thus the identification of trabecular plates and

rods is important in understanding bone fragility. We propose

a novel approach based on 3D multi-scale adjacency graph

analysis of high resolution 3D tomographic images of bone

structures. The purpose of this new method is to classify each

voxel of the 3D images in two classes : plate and rod vox-

els. We show that the use of a multi-scale framework is very

efficient at detecting rods with different sizes. We present

applications of our method to both synthetic images and ex-

perimental bone synchrotron radiation micro-CT images.

Index Terms— trabecular bone, multi-scale, clustering

1. INTRODUCTION

Research in the field of bone disease makes extensive use of micro-

CT to explore bone micro-architecture since micro-CT is a non-

destructive means to obtain very accurate 3D images of bone sam-

ples. A number of quantitative three-dimensional morphometric pa-

rameters [1, 2] can be extracted from such images. However bone

micro-architecture is made of a complex network of trabeculae and

its topological organization is also of interest. It is typically orga-

nized as a mixture of plate and rod structures, the relative proportion

of which evolves with age or disease. For instance, osteoporosis

yields to a more rod-like structure. The SMI (Structure Model In-

dex) which is supposed to vary between 0 (for plates) and 3 (for

rods) has been introduced to quantify this organization. However, it

is a global index, based on an ideal model of the structure involving

the computation of the surface and its derivative [3].

To get more detailed information, local topological analysis

methods have later been proposed, either based on skeleton [4, 5]

or on medial axis transform [6]. These methods were exploited

to obtain a decomposition of the structure in individual plates and

rods which was correlated to biomechanical parameters [7, 8, 9].

These methods are based on skeletonization, which is a convenient

tool to get simplified representations of 3D images preserving most

topological information. In general 3D skeletons are not only union

of curves, but are composed both of curves and medial surfaces.

Intuitively, curves correspond to cylindrical parts within the object

and medial surfaces to planar parts.
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In sharp contrast with previous approaches, we propose a new

method, to locally identify plates and rods, based on multiscale Ad-

jacency Graph (AG). The first step is the segmentation of the bone

regions (black in figure 1a) from the soft tissues background. The

second step of the proposed algorithm is a clustering of the bone vox-

els. We randomly distribute clusters inside the bone region and then

optimize the clustering using a Centroidal Voronoi Diagram (CVD)

approach [10]. The barycenter of each cell is used as a node, and

an AG is constructed based on the adjacency between the clusters.

Afterwards, we analyze the cycles in the AG to classify each edge as

members of a rod or plate region. This approach is embedded into

a multi-scale framework so as to reduce the algorithm sensitivity to

different rods sizes. The efficiency of our approach is shown on ex-

perimental bone trabecular structures acquired in synchrotron radia-

tion micro-CT and compared to medial axis based method [6, 11].

2. DEFINITIONS

Here we give some definitions used in this paper. Let the entire

domain made with voxels be Ω. We assume that Ω is the union

of studying object domain ΩO (In black figure 1a) and the external

domain ΩE (In white figure 1a):

Ω = ΩO ∪ ΩE (1)

For clarity purposes, we will explain our approach in two di-

mensions. For a given image (resp. volume) Ω, we associate an AG

obtained with a clustering of ΩO [10].

3. OUR APPROACH

Our novel approach is based on a clustering method and processes

directly the bone voxels ΩO .

The first step consists in creating a clustering of the bone vox-

els, by constructing an Approximated Centroidal Voronoi Diagram

(ACVD method) in ΩO . The second step consists in building the

corresponding AG of the generated clustering. The third step is an

identification of edges on which no cycle of length 3 (a triangular

loop) can be found. This step allows us to determine the rod-like

edges on the AG. Finally, we compute an edge clustering which maps

each voxel of ΩO to the nearest edge of the corresponding AG. This

step is used to create the final map describing rod-like and plate-like

regions.
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Fig. 1: Our approach on 2D example : Input image (1a). We construct an ACVD of the input object ΩO (1b). The clustering is

used to generate the AG and then detect edges rod-like (colored in red in 1c). Using the AG, we construct the edge clustering

(1d) which is finally used to identify voxels associated to rod-like edges (1e).

Figure 1 shows the main steps in our algorithm on a 2D example:

the input image is shown in figure 1a. We construct an ACVD of the

input object ΩO figure 1b. With this clustering, the adjacency sites

of the ACVD are connected by edges to form the AG, figure 1c. Then

we determine rod-like edges on the AG. Finally we identify voxels

on rods figure 1e, by using the associated edge clustering figure 1d

and rod-like edges (red colored in figure 1c).

3.1. Trabecular Bone Clustering

The first step of our approach, represented figure 1b, is the splitting

of the input object ΩO into different regions Ci by means of cluster-

ing, in spirit with CVD approaches, where each region is defined by

a site zi which is also the barycenter of his associated cell Ci :

zi =

∫

Ci
x.ρ(x)dx

∫

Ci
ρ(x)dx

(2)

Where x is a point inside ΩO and ρ(x) a given density function.
In this paper, we choose ρ(x) = 1 everywhere, for a uniform clus-

tering. It is known that CVDs minimize the following energy term

[10] :

EV =

n
∑

i=1





∑

pjǫCi

∫

pj

ρ(x)‖x− zi‖
2
dx



 (3)

We minimize EV , i.e. we aim at maximizing the cells com-

pactness, in spirit with [10, 12]. Intuitively, this approach leads to

the creation of compact clusters with similar size, hence providing a

solution to the sphere packing problem.

3.2. Adjacency Graph Construction

The AG Construction consists in connecting neighbor cluster sites

by an edge. In figure 1c, we show the AG associated to its clustering

in figure 1b. The voxels outside the object to be analyzed do not

contribute to the AG. The resulting graph is then a simplified repre-

sentation of the object, suitable for a fast and efficient topological

analysis.

Fig. 2: Our approach on 2D graph : each edge e is given a

score Se equal to the length of the shortest cycle containing e.

Rod-like edges (for which Se > 3) are colored in red.

3.3. Rod-like edges identification

The detection of rod-like regions depends on a rod-like edge identi-

fication step performed on the corresponding AG. We consider that

non-rod edges will be plate-like edges. We use an algorithm to find

edges with high likelihood of being in a rod of the bone structure.

Each edge e is given a score Se equal to the length of the shortest

cycle containing e. Note that for consistency reasons, when an edge

e is not inside any cycle, we set Se = ∞. Afterwards, a given edge

e is classified as rod-like if Se > 3, otherwise it is classified as plate-
like (fig 2). Finally, instead of computing all the cycles present in the

AG which could be time consuming, we classify an edge as rod-like

edge if its vertices endpoints v1 and v2 have no common neighbor

vertex. This test is strictly equivalent to verifying that Se > 3.

4. MULTI-SCALE ANALYSIS

To perform our detection algorithm, one has to choose the number of

regions created during the clustering. This number is very critical, as

choosing a high number of clusters (little clusters size) will result in

few detected rods, and a low number of clusters (large clusters size)

will likely result in a lot of rods. To illustrate this problem, figure

3 shows the result of our approach on the same object, for different

number of clusters. The chosen number of clusters are 33, 27 and

24: the resulting number of detected rod-like edges is respectively

0, 1 and 4. Then, instead of trying to determine the optimal num-
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Fig. 3: MultiScale clustering on 2D example

ber of clusters, we choose to perform our algorithm in a multi-scale

fashion. We first start with an arbitrary high number of clusters (typ-

ically the number of voxels in ΩE divided by 50) and incrementally

decrease this number until the clusters size are larger than the maxi-

mum rod size in bone structures, which is well documented (100 to

200 µm). The decrease is made by applying a fixed growing factor

to the clusters size for each incremental step. This modification has

two main advantages: we do not longer need to choose the number

of clusters and we can detect small rod-like regions as well as large

ones. The third row of figure 3 represent voxels associated to each

rod-like edges, by using an edge clustering.

5. GEOMETRIC FILTER

Multi-scale analysis is a good means of avoiding to fix the number of

clusters in our approach, but it brings an other problem: the chances

of wrongly classifying a region as rod-like gradually increase with

the clusters sizes. To overcome this difficulty, when an edge e is

labeled as rod-like by the AG analysis algorithm, the related voxels

should verify a geometrical criterion to be effectively classified as

rod-like. For a given edge, we define the sphericity criterion Γe as:

Γe = 36 · π ·
Ve

2

Ae
3

(4)

Where Ve and Ae are respectively the estimated volume and area of

the region belonging to e [13]. Ve and Ae are estimated by com-

puting the inertia tensor of the set of voxels which closest edge is e.

For a perfectly spherical region, Γe = 1. In all our experiments, we

discarded any edge for which Γe < 0.9.

6. RESULTS

We have tested our algorithm and the medial axis approach [6] with

a synthetic volume composed of several plates and cylinders, and

both algorithms gave similar good results.

Figure 4 compares results obtained with our approach and with

the medial axis approach [6, 11] on two 3D trabecular bone struc-

tures (A and B) imaged by synchrotron radiation micro-CT with a

voxel size equal to 10µm. Due the high contrast and signal to noise

ratio, bone was easily segmented from background by simple thresh-

olding.

For each 2003 voxels volume, the computation time for our al-

gorithm is in order of several minutes, the vast majority being spent

on computing clusterings. Detected rod-like regions are shown in

black, while the remaining plate-like regions are transparent. For

each volume, we have computed the rod/plate ratio τ =
V r

V p
, where

V r and V p are respectively the plate-like and rod-like volumes. This

criterion provides an efficient way of characterizing osteoporosis.

Note that the computed ratio τ are consistent with respect to visual

analysis. Effectively, the volume B contain more plates than rods

elements, compare to the volume A, what explain its lower τ value.

With our approach and the medial axis approach [6], we retrieve ef-

ficiently the real τ value of different phantom composed of several

plates and cylinders. But we can remark that the new classification

obtained on figure 4b, which is based on regions is more regular than

that obtained on figure 4c based on voxels [6].

7. CONCLUSION

We have proposed a novel approach to identify rods and plates in 3D

micro-CT images of trabecular bone which alleviates conventional

noise problems encountered with skeletonization. The multi-scale

scheme introduced provides robustness to the method. Our algo-

rithm is driven by only one parameter. Application to experimental

bone micro-CT images shows that the method performs well. In fu-

ture works, the method will be applied to a large data set of osteopor-

toc and osteoarthrosic samples. The availability of this new method

will open many further applications in the field of bone research for

the understanding of bone fragility diseases.

Acknowledgements

This work was supported in part by the Région Rhône Alpes via both
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(a) Volume A with our algorithm, τ = 0.20

(b) Volume B with our algorithm, τ = 0.08

(c) Volume B with [6], τ = 0.36

Fig. 4: Results on 2003 voxels 3D trabecular bone structures,

with the associated computed rod/plate ratio τ . (a) and (b) are

computed with our approach and (c) with [6].


