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Modularity is advocated as a solution for the design of large systems, the mathematical translation of this concept is often that of compositionality. This paper is devoted to the issues of compositionality for modular code generation, in data ow synchronous languages.

As careless reuse of object code in new or evolving system designs fails to work, we rst concentrate on what are the additional features needed to abstract programs for the purpose of code generation: we show that a central notion is that of scheduling speci cation as resulting from a causality analysis of the given program. Using this notion, we study separate compilation for synchronous programs. An entire section is devoted to the formal study of causality and scheduling speci cations.

Then we discuss the issue of distributed implementation using an asynchronous medium of communication. Our main results are that it is possible to characterize those synchronous programs which can be distributed on an asynchronous architecture without loosing semantic properties. Two new notions of endochrony and isochrony are introduced for this purpose. As a result, we derive a theory for synthesizing additional schedulers and protocols needed to guarantee the correctness of distributed code generation.

Corresponding algorithms are implemented in the framework of the DC+ common format for synchronous languages, and the V4-release of the Signal language.

Rationale

Modularity is advocated as the ultimate solution for the design of large systems, and this holds in particular for embedded systems, for both software and architecture. Modularity allows the designer to scale down design problems, and facilitates the reuse of pre-existing modules.

The mathematical translation of the concept of modularity is often that of compositionality. Paying attention to the composition of speci cations Manna and Pnueli 1992] is central to any system model involving concurrency or parallelism. More recently, signi cant e ort has been devoted toward the introduction of compositionality in veri cation, which aims at deriving proofs of large programs from partial proofs involving (abstractions of) components [START_REF] Manna | [END_REF]. See also the whole volume de Roever et al., Eds, 1998] where a number of papers are devoted to this topic.

Compilation and code generation has been given less attention from this very same point of view. This is unfortunate, as it is critical for the designer to scale down the design of large systems by 1/ storing modules like blackbox \procedures" or \processes" with minimal interface description, and 2/ generating code which uses these modules only on the basis of their interface description, while preserving in any case the correctness of the design. This paper is devoted to the issues of compositionality of data ow synchronous languages, aimed at modular code generation.

Data ow synchrony is rather a paradigm than a set of concrete languages or visual formalisms Benveniste and Berry, 1991], hence it is desirable to abstract from such and such particular language. Thus we have chosen to work with Synchronous Transition Systems (sts), a lightweight formalism proposed by Amir Pnueli, general enough to capture the essence of the synchronous paradigm. This is the topic of section 2. Using this formalism, we study in section 2 the composition of speci cations.

Most of our e ort is then devoted to issues of compositionality that are critical to code generation. Section 3 contains an informal discussion of this problem. It is known that careless storing of object code for further reuse in systems design fails to work. Hence we rst concentrate on the additional features that are required to abstract programs for the purpose of code generation and reuse : we show that a central notion is that of scheduling speci cation as resulting from a causality analysis of the given program. Related issues of compositionality are investigated. Then we show that there is some appropriate level of \intermediate code", which at the same time allows us to scale down code generation for large systems, and still maintains correctness at the system integration phase. Finally we discuss the side issue of distributed implementation using an asynchronous medium of communication.

In section 4 we formally study desynchronization. We rst formalize what we mean by desynchronization. Our theory requires that the communication medium or operating system : 1/ shall not loose messages, and 2/ shall preserve the total ordering of messages, for each ow individually (but, of course, not globally). These assumptions are typically satis ed by services o ered by reliable communication media or operating system. Our main result is that it is possible to check, directly on the original synchronous speci cation, whether semantic properties will or will not be preserved after desynchronization. The two fundamental notions are endochrony, which guarantees that, for a single sts, desynchronization is a \revertible" transformation, and isochrony, which guarantees that, for a pair of sts, desynchronizing communications is also a \revertible" transformation. In some sense formalized in section 4, semantics is preserved by desynchronization when these conditions are satis ed.

Then section 5 is devoted to a formal study of causality. In many respects, this formal study is important. First, it is instrumental in getting executable, deterministic code from a given sts speci cation. Then, it is a cornerstone of proper abstractions for separate compilation and reuse. We pay strong attention to this study, using a technique not unlike the one used for analyzing causality in Esterel Berry, 1995]. Our analysis encompasses the case of arbitrary data types, and suitable abstractions are used for this purpose.

In the conclusion we discuss how our views on compositionality are modi ed by this study. We sketch the resulting system design methodology, and we brie y mention the implementation resulting from this theory, mostly developed in the framework of the Esprit-SACRES project.

Speci cation

This section discusses compositionality aspects of speci cations, rst informally, and then formally.

The essentials of the synchronous paradigm

There have been several attempts to characterize the essentials of the synchronous paradigm Berry, 1989] Benveniste and Berry, 1991] Halbwachs, 1993]. With some experience, we feel that the following features are indeed essential and su cient for characterizing this paradigm :

1. Programs progress via an in nite sequence of reactions, informally written : P = R ! where R denotes the set of legal reactions1 . 2. Within a reaction, decisions can be taken on the basis of the absence of some events, as exempli ed by the following typical statements, taken from Esterel, Lustre, and Signal respectively :

present S else `stat' y = current x y := u default v

The rst statement is self-explanatory. The \current" operator delivers the most recent value of x at the clock of the considered node, it thus has to test for absence of x before producing y. The \default" operator delivers its rst argument when it is present, and otherwise its second argument. 3. Communication is performed via instantaneous broadcast. In other words, when it is de ned, parallel composition is always given by the conjunction of associated reactions :

P 1 kP 2 = (R 1 ^R2 ) !
The above formula is a perfect de nition of parallel composition when the intention is specifying. In contrast, if producing executable code was the intention, then this de nition has to be compatible with an operational semantics. This very much complicates the \when it is de ned" prerequisite2 .

Of course, such a characterization of the synchronous paradigm makes the class of \synchrony{compliant" formalisms much larger than usually considered. However it has been our experience that these were the key features of the techniques we have developed so far.

Clearly, this calls for the simplest possible formalism comprizing the above features, and on which fundamental questions should be investigated. This is one of the objectives of the sts formalism described next.

Synchronous Transition Systems (sts)

Synchronous Transition Systems (sts). We assume a vocabulary V which is a set of typed variables. All types are implicitly extended with a special element ? to be interpreted as \absent". Some of the types we consider are the type of pure signals with domain ftg, and booleans with domain ft; fg (recall both types are extended with the distinguished element ?).

We de ne a state s to be a type-consistent interpretation of V, assigning to each variable v a value s v] over its domain. We denote by S the set of all states. For a subset of variables V V, we de ne a V -state to be a type-consistent interpretation of V . We de ne a Synchronous Transition System (sts) to be a triple = hV; ; i consisting of the following components : V is a nite set of typed variables, is an assertion characterizing the set of initial states : fs j s j = g.

S S is the transition relation relating past and current states denoted by s and s respectively 3 . For example the assertion x = x +1 states that the value of x in s is greater by 1 than its value in s . If (s ; s) j = , we say that state s is a -predecessor of state s.

3 Usually, states and primed states are used to refer to current and next states. This is equivalent to our present notation. We have preferred to consider s and s, just because the formulas we shall write mostly involve current variables, rather than past ones. Using the standard notation would have resulted in a burden of primed variables in the formulas.

Runs.

A run : s 0 ; s 1 ; s 2 ; : : : is a sequence of states such that s 0 j = ^8i > 0 ; (s i 1 ; s i ) j =

(1)

Composition.

The composition of two sts = 1 k 2 is de ned as follows :

V = V 1 V 2 = 1 ^ 2 = 1 ^ 2 ;
the composition is thus the pairwise conjunction (denoted by ^) of initial and transition relations. Composition is thus commutative and associative. Note that, in sts composition, interaction occurs through common variables only.

Notations for sts.

For the convenience of speci cation, sts have a set of declared variables, written V d , implicitly augmented with associated auxiliary variables : the whole constitutes the set V of variables. We shall use the following generic notations in the sequel : b; c; v; w; : : : denote sts declared variables, and b; c are used to refer to variables of boolean type.

for v a declared variable, h v 2 ft; ?g denotes its clock : h v 6 = ?] , v 6 = ?] for v a declared variable, v denotes its associated state-variable, de ned by :

if h v then v = v else v = v (2)
Values can be given to s 0 v ] as part of the initial condition. Then, v is always present after the 1st occurrence of v. Note that v = v , thus only state variables of declared variables have to be considered.

Stuttering.

As modularity is desirable, an sts should be permitted to do nothing while its environment is possibly working. This feature has been yet identi ed in the litterature and is known as stuttering invariance or robustness Lamport, 1983a, Lamport, 1983b]. Stuttering invariance of an sts is de ned as follows : if : s 0 ; s 1 ; s 2 ; : : : is a run of , so is 0 : s 0 ; ? s 0 ; : : : ; ? s 0 | {z } 0 #f?s 0 g <1 ; s 1 ; ? s 1 ; : : : ; ? s 1 ; s 2 ; ? s 2 ; : : : ; ? s 2 ; : : : ;

(3)

where, for every state s, symbol ? s denotes the silent state associated with s, de ned by : 8v 2 V d :

( ? s v] = ? ? s v ] = s v ] :
This means that state variables are kept unchanged, whenever their associated declared variables are absent. Note that stuttering invariance allows for runs possessing only a nite number of present states. We require in the sequel that all sts we consider are stuttering invariant. They should indeed satisfy : h (s ; s) j = i ) h (s ; ? s ) j = i ^ (? s ; s) j = ]

(4)

By convention, we shall simply write ? when mentioning a particular state s is not required.

Examples of Transition Relations :

A selector :

if b then z = u else z = v :

(5)

Note that the \else" part corresponds to the property \ b = f] _ b = ?] ".

A register :

if h z then v = z else v = ? :

(6) where z is the state variable associated with z as in (2), and z denotes its past value. The more intuitive interpretation of this statement is : v n = z n 1 , where index \n" denotes the instants at which both v and z are present (their clocks are speci ed to be equal). Decrementing a register would simply be speci ed by : if h z then v = z 1 else v = ? ;

(7) where z is of integer type. Note that both statements (6,7) imply the equality of clocks : h z = h v :

Testing for a property :

if h v then b = (v 0) else b = ? :

(8) Note that a consequence of this de nition is, again, h v = h b :

A synchronization constraint : (b = t) = (h u = t) ;

(9) meaning that the clock of u is the set of instants where the boolean variable b is true. Putting (5,7,[START_REF] Besnard | team at IRISA are gratefully acknowledged for the development of this environment. 9 the Sildex tool is a commercial tool for reactive systems design based on the Signal language. It is marketed by TNI[END_REF]9) together yields the sts :

u u u -1 time z if b then z = u else z = v ^if h z then v = z 1 else v = ? ^if h v then b = (v 0) else b = ? ^hv = h z = h b ^(b = t) = (h u = t)
A run of this sts for the variable z is depicted on the gure above. Each time u is received, z is set to the value of u. Then z is decremented by one at each activation cycle of the sts, until it reaches the value 0. Immediately after this, a fresh u can be read, and so on. Note the schyzophrenic nature of the \inputs" of this sts. While the value carried by u is an input, the instant at which u is read is not : reading of the input is on demand-driven mode. This is re ected by the fact that inputs of this sts are the pair factivation clock h, value of u when it is presentg.

Using the primitives (5,6,[START_REF] Besnard | team at IRISA are gratefully acknowledged for the development of this environment. 9 the Sildex tool is a commercial tool for reactive systems design based on the Signal language. It is marketed by TNI[END_REF]9), data ow synchronous languages such as Lustre Halbwachs, 1993] and Signal [START_REF] Leguernic | [END_REF] are easily encoded. Note that primitives (5,6,[START_REF] Besnard | team at IRISA are gratefully acknowledged for the development of this environment. 9 the Sildex tool is a commercial tool for reactive systems design based on the Signal language. It is marketed by TNI[END_REF]9) and their composition are stuttering invariant sts, i.e., they satisfy condition (4).

3 Compositionality in code generation : informal analysis

In this section, we informally discuss issues of compositionality aiming at code generation. After a brief review of the problems, we acknowledge the importance of extending our basic sts model with preorders ; preorders are useful to capture causality, to specify schedulings, and to model communications in a distributed environment. Also, preorders are instrumental in handling abstractions. Then we discuss causality analysis and we analyse a few simple examples. Separate compilation is discussed, using preorders : we show that separate compilation requires a new level of intermediate code which allows us to store and reuse modules in a correct way. Finally we discuss the issue of distributed code generation on an asynchronous architecture.

What is the problem ?

Basically, the problem is twofold : 1/ bruteforce separate compilation can be the source of deadlock, and 2/ generating distributed code is generally not compatible with maintaining strict compliance with the synchronous model of computation. We illustrate brie y these two issues next.

Naive separate compilation may be dangereous. This is illustrated in the following picture :

The rst diagram depicts the \dependencies" associated with some sts speci cation : the 1st output needs the 1st input for its computation, and the 2nd output needs the 2nd input for its computation. The second diagram shows a possible scheduling, corresponding to the standard scheduling : 1/ read inputs, 2/ compute reaction, 3/ emit outputs. This gives a correct sequential execution of the sts. In the third diagram, an additional dependency is enforced by setting the considered sts in some environment which reacts with no delay to its inputs : a deadlock is created. In the last diagram, however, it is revealed that this additional dependency caused by the environment indeed was compatible with the original speci cation, and no deadlock resulted from applying it. Here, deadlock was caused by the actual implementation of the speci cation, not by the speci cation itself.

The traditional answer to this problem by the synchronous programming school has been to refuse considering separate compilation : modules for further reuse should be stored as source code, and combined as such before code generation. We shall later see that this does not need to be the case, however.

Desynchronization. This is illustrated in the following picture :

This gure depicts a communication scenario : two processors, modelled as sequential machines, exchange messages using an asynchronous medium for their communications. The natural structure of time is that of a partial order, as derived from the directed graph composed of 1/ linear time on each processor, and 2/ communications. This structure for time does not match the linear time corresponding to the in nite sequence of reactions which is the very basis of synchronous paradigm.

The need for reasoning about causality, schedulings, and communications. This need emerges from the above discussion. In the next subsection, we shall introduce a unique framework to handle these diverse aspects : the formalism of scheduling speci cations.

Scheduling speci cations

Causality relations have been investigated for several years in the past in the area of models of distributed systems and computations. The classical approach considers a classical automaton, in which concurrency is modelled via an \independence" equivalence relation among the labels of the transitions. Since independence is generally not a symmetric relation (actions of writing and reading are not symmetric), the theory of traces Aabelsberg and Rozenberg, 1988] has been extended to so-called \semi-commutations" Clerbout and Latteux, 1987], and this technique has been recently applied to the implementation of reactive automata on distributed architectures [START_REF] Caillaud | [END_REF]. Causality preorder relations have also been used in a di erent way in LeGuernic and Gautier, 1991], and also in Benveniste Caspi et al., 1994], from which we borrow the essentials of the present technique. In addition to modelling causality relations, preorders can be used to specify scheduling requirements, they can also be used to model send/receive type of communications.

sts with scheduling speci cations

We consider a set V of variables. A preorder on the set V is a relation (generically denoted by ) which is re exive (x x) and transitive (x y and y z imply x z). To we associate the equivalence relation , de ned by x y i x y and y x. If equivalence classes of are singletons, then is a partial order. Preorders are naturally speci ed via (possibly cyclic) directed graphs, denoted :

x ! y for x; y 2 V ;

(10) by de ning x z i there is a path originating from x and terminating in z. The supremum of two preorders, written 1 _ 2 ; (11) is the least preorder which is an extension of 1 and 2 . The set of all preorders on V is denoted V .

A labelled preorder on V is a preorder on V , together with a value s v]

for each v 2 V over its domain. A state s is a labelled preorder. The set of all states is denoted S. As before for sts, we denote by S the set of all type consistent intepretations of V . Thus S = S V , and a state s decomposes as s = (s; V ) :

An sts with scheduling speci cations is a triple ~ = h V; ; ~ i, where V; are as before, and ~ S S = S S V ;

i.e., ~ relates the value for the tuple of previous variables to the current state. By convention, transition relation ~ is trivially extended to a transition on S, i.e., a subset of S S, and runs are sequences s 0 ; s 1 ; s 2 ; : : : that are consistent with transition relation (13).

We shall denote by the transition relation on S obtained by projecting ~ on S S, i.e., by ignoring the preorder component. Note that = h V; ; i is an ordinary sts. The composition of two sts with scheduling speci cations ~ = ~ 1 k ~ 2 ;

(14) is de ned as follows :

1. Associated underlying sts (without scheduling speci cations) are simply composed :

= 1 k 2 :

(15)

Then we need to de ne how preorders are combined.

2. For s a state for , for i = 1; 2 let s i be the restriction of s to V i , we know that s i is a state for i . Let si = (s i ; V i ) be the corresponding state for ~ i , cf (12). De ne In this gure, the diagram on the left depicts a scheduling speci cation involving local variables. These are hidden in the diagram on the right, using rules (18,19).

V = def V 1 _ V 2 (cf

Inferring scheduling speci cations from causality analysis

We now provide a technique for inferring schedulings from causality analysis for sts speci ed as conjunctions of the particular set of generic conjuncts we have introduced so far. Considering this restricted set of generic conjuncts is justi ed by the fact that 1/ all known synchronous languages can be encoded using this set of basic conjuncts, and even more, 2/ these primitives allow to express the most general synchronization mechanisms that are compatible with the paradigm of perfect synchrony Benveniste et al., 1992]. We recall next this set of basic conjuncts for the sake of clarity :

if b then w = u else w = v u b > w w = f(u 1 ; : : : ; u k ) h w = h u 1 = : : : = h u k ) (20)
In addition to the set (20) of primitives, state-variable v associated to variable v can be used on the right hand side of each of the above primitive statements. The third primitive involves a conjunction of statements that are considered jointly. Later on, in the examples, we shall freely use nested expressions such as \if b then w = expr", where \expr" denotes an expression built on the same set of primitives. It is understood that such expressions need to be expanded prior to applying the rules of formulas (21) given next.

In formulas (21), each primitive statement has a scheduling speci cation associated with it, given on the corresponding right hand side of the table. Given an sts speci ed as the conjunction of a set of such statements, for each conjunct we add the corresponding scheduling speci cation to the considered sts. Since, in turn, scheduling speci cations themselves have scheduling speci cations associated with them, this mechanism of adding scheduling speci cations must be applied until xpoint is reached. Note that applying these rules until xpoint is reached takes at most two successive passes. In formulas (21), labels of schedulings are expressions involving variables in the domain f?; f; tg ordered by f? < f < tg ; with this in mind, expressions involving the symbols \^" (min) and \_" (max) have a clear meaning.

(R-1) 8u h u > u (R-2) if b then w = u else w = v ) 8 > > > > > > > > > > > > < > > > > > > > > > > > > : b h b ^(hu_hv) > h w h u b ^hu > h w h v b ^hv > h w u b ^hu > w v b ^hv > w (R-3) u b > w ) b > h w (R-4) w = f(u 1 ; : : : ; u k ) h w = h u 1 = : : : = h u k ) ) u i hw > w (21)
Note that there is no rule involving variables of the form z , as previous state variables are available prior to starting the current reaction and thus do not participate to the causality calculus. Rules (R-1,. . . ,R-4) are formally justi ed in section 5. We brie y report the corresponding results. For P an sts, rst apply Rules (R-1,. . . ,R-4) until xpoint is reached : this yields an sts we call sched(P). Then, a su cient condition for P to have a unique deterministic run is :

1. sched(P) is circuitfree at each instant, meaning that it is never true that x 1 b 1 > x 2 b 2 > x 1 and (b 1 ^b2 = t)
where x 1 and x 2 are distinct variables.

2. sched(P) has no multiple de nition of variables at any instant, meaning that, whenever if b 1 then x = exp 1 ^if b 2 then x = exp 2 holds in P and the exp 1 and exp 2 are di erent expressions, then b 1 ^b2 = t never holds in P.

Then P is said to be executable, and sched(P) provides (dynamic) scheduling speci cations for this run. Note that proof obligations resulting from the above two conditions are generally not automatically provable, therefore abstractions may have to be considered.

Summary. What do we have at this stage ?

1. sts composition is just the conjunction of constraints.

2. Scheduling speci cations do compose as well.

3. Since causality analysis is based on an abstraction, the rules (R-1,...,R-4) for inferring scheduling from causality are bound to the syntax of the sts conjuncts. Hence, in order to maximize the chance of e ectively recognizing that an sts P is executable, P is generally rewritten in a different but semantically equivalent syntax (runs remain the same) while causality analysis is performed4 . But this latter operation is global and not compositional : here we reach the limits of ideal compositionality.

Causality analysis : examples

We show here some sts statements and their associated scheduling as derived from causality analysis. In the following gures, vertices in boldface denote input clocks, vertices in bold-italic denote input data, and vertices in courier denote other variables. It is of interest to split between these two di erent types of inputs, as input reading for an sts can occur with any combination of data{ and demand{driven mode. Note that, for each vertex of the graph, the labels sitting on the incoming branches are evaluated prior to the considered vertex. Thus, when this vertex is to be evaluated, the other variables needed for its evaluation are already known. Resulting directed graphs (which are labelled with booleans) specify the set of all legal schedulings for the execution of the considered sts ; this is formalized in section 5.

A reactive sts :

if b then z = u else z = v (input clock) (input data) (other) u b h v h h u h v h b ( ) h u b h v h h u b h v b v u b z h b z
In the above example, input data are associated with their corresponding input clocks : this sts reads its inputs on a purely data-driven mode, input patterns (u; v; b) are free to be present or absent, and, when they are present, their value is free also. We call it a \reactive" sts.

The full example, a proactive sts :

u u u -1 time z if b then z = u else z = v ^if h z then v = z 1 else v = ? ^if h v then b = (v 0) else b = ? ^hv = h z = h b ^(b = t) = (h u = t)
Applying scheduling rules (R-1,. . . ,R-4) and then performing some straightforward simpli cations, we get the result shown in gure 1. Note the change in control : f input clock, input datag have been drastically modi ed from the \ if b then z = u else z = v" statement to the complete sts : inputs now consist of the pair fh; v u g, where v u refers to the value carried by u

u h b v b z b u h h h h h h if b then z = u else z = v ^if h z then v = z 1 else v = ? ^if h v then b = (v 0) else b = ? ^hv = h z = h b = def h ^(b = t) = (h u = t)
Figure 1: Scheduling from causality analysis for the example. when present. Reading of u occurs on demand, when condition b is true. We propose to call such an sts \proactive".

Generating scheduling for separate modules

Relevant target architectures for embedded applications are typically 1/ purely sequential code (such as C-code), 2/ code using a threading or tasking mechanism provided by some kind of a real-time OS (here the threading mechanism o ers some degree of concurrency), or 3/ DSP-type multiprocessor architectures with associated communication media.

On the other hand, the scheduling speci cations we derive from causality rules (R-1,...,R-4) still exhibit maximal concurrency. Actual implementations will have to conform to these scheduling speci cations. In general, they will exhibit less (and even sometimes no) concurrency, meaning that further sequentialization has been performed to generate code.

Of course, this additional sequentialization can be the source of potential, otherwise unjusti ed, deadlock when the considered module is reused in the form of object code in some environment, this was illustrated in subsection 3.1. The traditional answer to this problem by the synchronous programming school has been to refuse considering separate compilation : modules for further reuse should be stored as source code, and combined as such before code generation.

We shall however see that this does not need to be the case, however. Instead, a careful use of the scheduling speci cations of an sts will allow us to decompose it into modules that can be stored as object code for further reuse, whatever the actual environment and implementation architecture will be.

For the sake of clarity, we restrict our discussion to the case of singleclocked sts, i.e., an sts in which all declared variables have the same clock.

The issue is illustrated in the following picture, in which the directed graph de ning the circuitfree scheduling speci cation of some single-clocked sts is depicted :

input clock input data other they all depend on the same inputs

In the above picture, the gray zones group all variables which depend on the same subset of inputs, let us call them \tasks". Tasks are not subject to the risk of creating fake deadlocks from implementation, unlike the example from subsection 3.1. In fact, as all variables belonging to the same task depend on the same inputs, each task can be executed safely according to the following scheme : 1/ collect inputs, 2/ execute task.

In the next picture, we show how the actual implementation is prepared :

task for reuse abstract scheduler

The thick arrows inside the task depicted on the right show one possible fully sequential scheduling of this task. Then, what should be really stored as source code for further reuse is only the abstraction consisting of the tasks viewed as black-boxes, together with their associated interface scheduling speci cations. In particular, if the supporting execution architecture involves a real-time tasking system implementing some preemption mechanism in order to dynamically optimize scheduling for best response time, tasks can be freely suspended/resumed by the real-time kernel, without impairing conformity of the object code to its speci cation. Using our notion of scheduling specication, the above approach easily extends to general sts, in which several di erent clocks are involved.

Relaxing synchrony

Loosening synchrony. The major problem is that of testing for absence in an asynchronous environment. This is illustrated in the following picture in which the information about presence of variables in the considered instant is lost when passing from left{ to right{hand side, since explicit de nition of the \instant" is not available any more : The question mark indicates that it is generally not possible, in an asynchronous environment, to decide upon presence/absence of a signal relatively to another one. While testing for absence is perfectly sound in a synchronous paradigm, it is meaningless in an asynchronous one. The solution consists in restricting ourselves to so-called endochronous sts. Endochronous sts are those for which the control depends only on 1/ the past state, and 2/ the values possibly carried by environment signals, but not on the presence/absence status of these signals. For an endochronous sts, loosing the synchronization barriers that de ne the successive reactions will not result in changing its semantics ; this is formalized in subsection 4.2.

An example of an sts which is \exochronous" is the \reactive" sts given on the left{hand side of the following picture, whereas the \proactive" sts shown on the right{hand side is endochronous :

(input clock) (input data) (other) u b h v h h u h v h b ( ) h u b h v h h u b h v b v u b z h b z u h b v b z b u h h h h h h
In the diagram on the left{hand side, three di erent clocks are source nodes of the directed graph. This means that the rst decision in executing a reaction consists in deciding upon relative presence/absence of these clocks. In contrast, in the diagram on the right{hand side, only one clock, the activation clock h, is a source node of the graph. Hence no test for relative presence/absence is needed, and the control only depends on the value of the internally computed boolean variable b.

How endochrony allows us to desynchronize an sts is illustrated in an intuitive way on the following diagram, which depicts the scheduling speci cation associated with the (endochronous) pseudo-statement \ if b then get u" :

T T F F u b T T F F b u
In the diagram on the left, a history of this statement is depicted, showing the successive instants (or reactions) separated by thick dashed lines. In the right{hand side diagram, thick dashed lines have been removed. Clearly, no information has been lost : we know that u should happen exactly when b = t, and thus awaiting for the value of b is enough for deciding whether u is to be waited for. A formal study of desynchronization and endochrony is presented in section 4.

Moving from exochronous programs to endochronous programs can be performed, we only show one typical but simple example :

k k' k k' h b b' (other) (input data) (input clock) h h
The idea is to add to the considered sts a monitor which delivers the presence/absence information via two boolean variables b; b 0 with identical clocks h, and such that k = t] = b = t], and similarly for k 0 ; b 0 . The resulting sts is endochronous, since boolean variables b; b 0 are scrutinized at the pace of activation clock h. Other schemes are also possible, this is discussed in subsection 4.5.

Loosening synchronous composition. The second question is that of preserving the semantics of synchronous composition when an asynchronous communication medium is used. In the synchronous programming paradigm, communication occurs via instantaneous broadcast, meaning that all components must agree on 1/ which variable is present/absent in the considered reaction, and then 2/ what is the value carried by each present variable. Again this protocol is meaningless in an asynchronous communication medium. In subsection 4.3, it is shown that the condition for semantics preserving desynchronization of the communication is that the considered pair of sts should be isochronous.

Isochrony is a property of the synchronous composition P k Q of two sts.

Roughly speaking, a pair of sts is isochronous if every pair of reactions, of P and Q respectively, which agree on present common variables, also agree on all common variables. Thus, again, common agreement for composition of reactions can disregard absence.

Endochrony and isochrony are the basic concepts for our theory of desynchronization. For this theory to hold, requirements for the communication medium are : 1/ it should not lose messages, and, 2/ it should not change the order of messages associated with each given variable.

Modular design, gals architectures

From the theory informally presented in the previous subsections, the following approach results for modular design and distributed implementations of reactive systems. The target architecture is Globally Asynchronous, Locally Synchronous (gals) by nature. The whole approach is summarized in the diagram of gure 2, where the considered sts is assumed to possess a unique, deterministic execution, i.e., it satis es the correctness criteria stated in section 3.2. In this diagram, gray rectangles denote three modules P 1 ; P 2 ; P 3 of the source sts speci cation, hence given by P = P 1 k P 2 k P 3 . We assume here that this partitioning has been given by the designer, based on functional and architectural considerations.

White bubbles inside the gray rectangles depict the structuration into tasks as discussed in subsection 3.4. The black half-ellipses denote the monitors. Monitors are in charge of 1/ providing the additional protocols if asynchronous communication media are to be used, and 2/ specifying the scheduling of the abstract tasks. In principle, communication media and real-time kernels do not need to be speci ed here, as they can be used freely provided they respect the send-receive abstract communication model and conform to the scheduling constraints set by the monitors.

Formal study of desynchronization

How far/close is indeed synchrony from asynchrony has already been discussed in the litterature, thus questioning the oversimpli ed vision of \zero time" computation and instantaneous broadcast communication. Early paper Benveniste and Berry, 1991] informally discussed the link between perfect synchrony and token-based asynchronous data ow networks, see in particular section V therein. The rst formal and deep study is Caspi 1992] : a precise relation is established between so-called well-clocked synchronous functional programs and the subset of Kahn networks amenable to \bu erless" evaluation.

Distributed code generation from synchronous programs, requires to address the issue of the relationship between synchrony and asynchrony in some way or another. Mapping synchronous programs to a network of automata, communicating asynchronously via unbounded fos, has been proposed in [START_REF] Caillaud | [END_REF]. Mapping Signal programs to distributed architectures was proposed in Ma eis andLeGuernic, 1994, Aubry 1997], based on an early version of the theory we present in this paper. The SynDEx tool Sorel and Lavarenne, Sorel 1996] also implements a similar approach. Recent work [START_REF] Berry | [END_REF]] on the Polis system proposes to reuse the \constructive semantics" approach for the Esterel synchronous language, with CFSM (Codesign Finite State Machines) as a model of synchronous machines which can be desynchronized.

Independently, another route to relate synchrony and asynchrony has been followed. In Benveniste andLeGuernic 1990, LeGuernic et al., 1991] it was shown how nondeterministic Signal programs can be used to model asynchronous communication media such as queues, bu ers, etc. Reactive Modules were proposed [START_REF] Alur | [END_REF] as a synchronous language for hardware modelling, in which asynchrony is emulated by the way of nondeterminism. Although this is of interest, we believe this approach is not suited to analyze true asynchrony, in which no notion of a global state is available, unlike for synchrony.

We rst informally discuss the essentials of asynchrony. Synchronous Transition Systems were de ned in section 2.2, and their asynchronous counterpart is de ned in subsection 4.1, where desynchronization is also formally de ned. The rest of this section is devoted to the analysis of desynchronization and its inverse, namely resynchronization.

Desynchronizing sts, and two fundamental problems

We rst start with an informal discussion, following the discussion of subsection 2.1. Keeping in mind the essentials of the synchronous paradigm, we are now ready to discuss informally how asynchrony relates to synchrony. Referring to points 1, 2, and 3 of the discussion of subsection 2.1, the following can be stated about asynchrony :

1. Reactions cannot be observed any more : as no global clock exists, the global synchronization barriers which indicate the transition from one reaction to the next one are no more available. Instead, we only assume a reliable distributed communication medium, in which messages are not lost, and messages within each individual channel are sent and delivered in the same order. We call a ow such a totally ordered sequence of messages.

2. Absence cannot be sensed, and thus cannot be used to exercise control.

3. Composition occurs by means of separately unifying each common ow of the two components. This models in particular the communications via asynchronous unbounded fos, such as used, say, in Kahn networks.

Rendez-vous type of communication can also be abstracted in this way. From the de nition (1) of a run of an sts, we can say that a run is a sequence of tuples of values in domains extended with the extra symbol ?.

Desynchronizing a run amounts to discarding the synchronization barriers de ning the successive reactions. Hence, for each variable v 2 V , we only know the ordered sequence of present values. Thus desynchronizing a run amounts to mapping a sequence of tuples of values in domains extended with the extra symbol ?, into a tuple of sequences of present values, one sequence per each variable. This is formalized next.

For : s 0 ; s 1 ; s 2 ; : : : a run for , we decompose state s k as s k = (s k v]) v2V

Thus we can rewrite run as follows :

= ( v]) v2V ; where v] = s 0 v] ; s 1 v] ; : : : ; s k v] ; : : : : Now, compress each v] by deleting those s k v] that are equal to ?. Formally, we denote by k 0 ; k 1 ; k 2 ; : : : the subsequence of k = 0; 1; 2; : : : such that s k v] 6 = ?. Then we set a = ( a v]) v2V ; where a v] = s k 0 v] ; s k 1 v] ; s k 2 v] ; : : : : This de nes the desynchronization mapping 7 ! a ; (22) where each

a v] = s k 0 v] ; s k 1 v] ; s k 2 v] ; : : : is called a ow in the sequel. For = hV; ; i an sts, we de ne a = def hV; a i ;

(

) 23 
where a is the family of all a , for ranging over the set of runs of . For i = hV i ; i ; i i ; i = 1; 2, we de ne a 1 k a a 2 = def hV; a i ; where

( V = V 1 V 2 a = a 1 ^a a 2 (24)
and ^a denotes the conjunction of sets of asynchronous runs, which we de ne now. For a i 2 a i ; i = 1; 2, we say that a 1 and a 2 are uni able, written a 1 ./ a a 2 ;

(25)

if the following condition holds :

8v 2 V 1 \ V 2 : a 1 v] = a 2 v] holds. If condition (25) holds, then we de ne a = def a 1 ^a a 2 as 8v 2 V 1 \ V 2 : a v] = a 1 v] = a 2 v] 8v 2 V 1 n V 2 : a v] = a 1 v] 8v 2 V 2 n V 1 : a v] = a
2 v] Finally, a is the set of the so de ned a . Thus asynchronous composition proceeds via uni cation of shared ows. Synchrony vs. Asynchrony ? At this point two natural questions arise, namely :

Question 1 (desynchronizing a single sts) Is resynchronization feasible and uniquely de ned ? More precisely, is it possible to uniquely reconstruct the original run for our sts from its desychronised version a as de ned in (22) ?

Question 2 (desynchronizing a communication) Does communication behave equivalently for both the synchronous and asynchronous compositions ? More precisely, does the following property hold :

a 1 k a a 2 = ( 1 k 2 ) a ? (26)
If question 1 had a positive answer, then we could desynchronize a run of the considered sts, and then still recover the original synchronous run. Thus a positive answer to question 1 would guarantee the preserving of the synchronous semantics when performing desynchronization, for a single sts.

On the other hand, if question (26) had a positive answer, then we could interpret our sts composition equivalently as synchronous or asynchronous.

Unfortunately, neither 1 nor 2 have positive answers in general, due to the possibility to exercise control by the way of absence in synchronous composition k . In the following section, we show that questions 1 and 2 have positive answers under certain su cient conditions, in which the two notions of endochrony (for point 1) and isochrony (for point 2) play a central role5 .

Endochrony and re-synchronization 4.2.1 Formal results

In this section, we use notations from section 2.2. For = hV; ; i an sts, and s a reachable state of , we denote by s h the clock-abstraction of s, de ned by 8v 2 V : s h v] 2 f?; >g; and s h v] = ? , s v] = ? (27) For = hV; ; i an sts, s a reachable previous state for , and W 0 W V , we say that W 0 is a clock inference of W given s , written W 0 , ! s W ;

(28) if, for each state s reachable from s for , knowing the presence/absence and actual value carried by each variable belonging to W 0 , allows us to determine exactly the presence/absence for each variable belonging to W. In other words, s W 0 ] determines s h W] :

If W 0 , ! s W 1 and W 0 , ! s W 2 hold, then W 0 , ! s (W 1 W 2 ) follows, thus there exists a greatest W such that W 0 , ! s W holds. Hence we can consider the unique increasing chain, for s given, ; = V (0) , ! s V (1) , ! s V (2) , ! s : : :

(30) of subsets of V such that, for each k, V (k) is the greatest set of variables such that V (k 1) , ! s V (k) holds. As ; = V (0), V (1) consists of the subset of variables that are present as soon as the considered sts gets activated6 . Of course chain (30) must become stationary at some nite k max : V (k max +1) = V (k max ). In general, we only know that V (k max ) V . Chain ( 30) is called the synchronization chain of .

De nition 1 (endochrony) sts is said to be endochronous if, for each state s reachable for , V (k max ) = V , i.e., if the following condition is satis ed : the synchronization chain (E) ; = V (0) , ! s V (1) , ! s V (2) , ! s : : : converges to V . ( 31)

Condition ( 31) expresses that presence/absence of all variables can be inferred incrementally from already known values carried by present variables and state variables of the sts in consideration. Hence no test for presence/absence on the environment is needed. The following theorem justi es our approach :

Theorem 1 Consider an sts = hV; ; i. Proof : We prove successively points 1 and 2.

1. We x the previous state s and prove the result by induction. Pick a 2 a , and assume for the moment that we were able to decompose it as : s 1 ; s 2 ; : : :

; s n | {z } n initial segment of ; n (33) 
i.e., into a nite sequence of length n composed of non-silent states s i (the head of the synchronous run we wish to reconstruct), followed by the tail of the asynchronous run , which we denote by n , and we assume that such a decomposition is unique. Then we claim that (33) is also valid with n substituted by n + 1.

(34) To prove (34), we note that, when sts gets activated, then we know that variables belonging to V (1) will be present in the considered state. By assumption, the clock-abstracted state s h n+1 V (1)], having V (1) as variables, is uniquely determined. In the sequel we write s h n+1 (1) for short instead of s h n+1 V (1)]. Thus, presence/absence of variables for state s n+1 ( 1) is known, it remains to determine the values carried by present variables.

For v 2 V 1 , we simply pick the value carried by the minimal element of the sequence associated with variable v in n . Values carried by corresponding state variables are updated accordingly. Thus we know all of s n+1 (1). Next we move on constructing s n+1 (2). From s n+1 (1) we know s h n+1 (2). Thus we know how to split V 2 into present and absent variables for the considered state. Pick the present ones, and repeat the same argument as before to get s n+1 (2). Repeat this argument until V (k) = V for some nite k (by endochrony assumption). This proves claim (34). Given the initial condition for , we get from (34), by induction, the desired proof that (a) ) (b).

Next, we prove (b) ) (a). We assume that is not endochronous, and show that condition (b) cannot be satis ed. If is not endochronous, there must be some reachable state s for which chain (31) does not converge to V . Thus again we pick a 2 a , decomposed as for case 1, cf. formula (33) : s 1 ; s 2 ; : : : ; s n | {z } n initial segment of ; n and we assume in addition that s n = s , the given state for which endochrony is violated. We now show that (34) is disproved. Let k 0 be the smallest index such that V (k) = V (k + 1), we know V k 6 = V . Thus we can apply the algorithm of case 1 for reconstructing the reaction, until variables of V k . Then presence/absence for variables belonging to V n V k cannot be determined based on the knowledge of variables belonging to V k . Thus there are several possible extensions for s h n+1 (k + 1) and thus (n + 1)-st reaction is not determined in a unique way. Hence condition (b) is falsi ed. 2. Assume is endochronous, and consider 0 as in point 2 of the theorem. As both and 0 are stuttering invariant, point 2 is an immediate consequence of point 1.

Comments.

1. For an sts, endochrony is not decidable in general. It is decidable for sts involving, say, only nite domains for their variables, and model checking can be used for that. For general sts, model checking can be used, in combination with abstraction techniques. The case of interest is when the chain V (0); V (1); : : : does not depend upon the particular state s , and we write simply V (k) , ! V (k + 1) in this case.

2. The proof of this theorem in fact provides an e ective algorithm for the on-the-y reconstruction of the successive reactions, for a desynchronized run of an endochronous program. for this sts, and thus V (1) = fbg. Then, knowing the value for b indicates whether or not u is present, thus V (2) = fb; ug = V . counterexample : sts \ if ( present a ] k present b ] ) then::: " is not endochronous, as the environment is free to o er any combination of presence/absence for the two inputs a; b. Thus ; = V (0) = V (1) = V (2) = : : : 6 = V , and endochrony does not hold.

Practical consequences

A rst use of endochrony is shown in the following gure :

1 2 Φ Ψ 1,2 Φ
In this gure, a pair ( 1 ; 2 ) of sts is depicted, with W as set of shared variables. Rewrite their composition as follows :

1 k 2 = 1 k 1;2 k 2 where 1;2 is the restriction of 1 k 2 to W, hence 1;2 models the synchronous communication channel. Using the property k = for every sts , we get

1 k 2 = ( 1 k 1;2 ) | {z } e 1 k ( 1;2 k 2 ) | {z } e 2 = e 1 k e 2 (35)
Assume now that channel model 1;2 is endochronous, and composition 1 k 2 is implemented as the (equivalent) composition e 1 k e 2 . Then, as e 1 knows channel 1;2 and the latter is endochronous, then communication can be equivalently implemented according to perfect synchrony or full asynchrony. This is ne, but it does not extend to networks of sts involving more than two nodes. The following gure shows an example :

1 Φ 2 Φ Φ Ψ Ψ 1 2
Assume 1 ; 2 are both endochronous. Then communication between 1 and on the one hand, and and 2 on the other hand, can be desynchronized. Unfortunately, communication between 1 and 2 via can't, as it is not true in general that 1 k k 2 is endochronous. The problem is that endochrony is not compositional, hence even ensuring in addition that itself is endochronous would not do. Thus we would need to ensure that when networks are considered ! Thus we move on introducing the alternative notion of isochrony, which focusses on communication, and is compositional.

Isochrony, and synchronous and asynchronous compositions

The next result addresses the question of when property (26) holds true. We are given two sts i = hV i ; i ; i i ; i = 1; 2. Denote by W = V 1 \V 2 the set of their common variables, and by = 1 k 2 their synchronous composition.

For s a reachable state in , we denote by s 1 = def s V 1 ] and s 2 = def s V 2 ] the restrictions of state s to 1 and 2 , respectively. Note that, for i = 1; 2, s i is a reachable state for i . Corresponding notations s ; s 1 ; s 2 for past states will be used accordingly.

De nition 2 (isochrony) Consider a pair ( 1 ; 2 ) of sts. Transitions of i ; i = 1; 2, are written (s i ; s i ). Consider the following conditions on pairs ((s 1 ; s 1 ); (s 2 ; s 2 )) of transitions for ( 1 ; 2 ) :

(i) 1. s 1 = s V 1 ] and s 2 = s V 2 ] holds for some reachable state s for , in particular s 1 and s 2 are uni able ; 2. none of the states s i ; i = 1; 2 are silent on the common variables, i.e., it is not the case that, for some i = 1; 2 : s i v] = ? holds 8v 2 W ; 3. s 1 and s 2 coincide over the set of present common variables7 , i.e. : 8v 2 W : ( s 1 v] 6 = ? and s 2 v] 6 = ? ) ) s 1 v] = s 2 v] ;

(ii) States s 1 and s 2 coincide over the whole set of common variables, i.e., states s 1 and s 2 are uni able : s 1 = s V 1 ] and s 2 = s V 2 ] holds for some state s for :

The pair ( 1 ; 2 ) is called isochronous if condition (i) implies condition (ii), for each pair ((s 1 ; s 1 ); (s 2 ; s 2 )) of transitions for ( 1 ; 2 ).

Comment. Roughly speaking, condition of isochrony expresses that unifying over present common variables is enough to guarantee the uni cation of the two considered states s 1 and s 2 . Condition of isochrony is illustrated on the following gure : The gure depicts, for uni able previous states s 1 ; s 2 , corresponding states s 1 ; s 2 where (s i ; s i ) is a valid transition for i . It shows the interpretation of s 1 (circle on the left) and s 2 (circle on the right) over shared variables W. White and dashed areas represent absent and present values, respectively. The two left and right circles are superimposed in the mid circle. In general, vertically and horizontally dashed areas do not coincide, even if s 1 and s 2 unify over the subset of shared variables that are present for both transitions (double-dashed area). Pictorially, uni cation over double-dashed area does not imply in general that dashed areas coincide. Isochrony indeed requires that uni cation over double-dashed area does imply that dashed areas coincide, hence uni cation of s 1 and s 2 follows. It is interesting to reformulate isochrony in a di erent way.

De ne the desynchronized conjunction of two transition relations 1 ^a 2 as follows. For t 1 and t 2 two transitions, we de ne asynchronous uni ability t 1 ./ a t 2 by : t 1 ./ a t 2 i v 2 V 1 \ V 2 ; and t 1 v] 6 = ? and t 2 v] 6 = ? ! ) ( t 1 v] = t 2 v] ) (36) Note that t 1 ./ a t 2 means that transitions t 1 and t 2 are uni able on their common present ports, regardless of absence (this is just the restriction to transitions of the de nition of ./ a which was formulated for ows). De nition (36) is in contrast to synchronous uni ability, or uni ability for short, t 1 ./ t 2 de ned by : t

1 ./ t 2 i ( v 2 V 1 \ V 2 ) ) ( t 1 v] = t 2 v] ) (37)
which means that transitions t 1 and t 2 are uni able on their common ports, including presence/absence. Condition (37) corresponds to the conjunction of transition relations introduced in the de nition of sts composition. If t 1 ./ a t 2 , we can de ne t 1 t a t 2 by (t 1 t a t 2 ) v] = def if 9i = 1; 2 : ( v 2 V i and t i v] 6 = ? ) then t i v] else ? With this in mind, we de ne 1 ^a 2 as follows :

1 ^a 2 = ft 1 t a t 2 : t i j = i 8i = 1; 2 ^t1 ./ a t 2 g ; and isochrony is equivalently reformulated as follows :

De nition 3 (Isochrony, reformulation) Let ( 1 ; 2 ) be a pair of sts and = 1 k 2 be their parallel composition. The pair ( 1 ; 2 ) is called

isochronous if 1 ^ 2 = 1 ^a 2 (38)
holds, restricted to the set of reachable states for .

The following theorem justi es introducing this notion of isochrony.

Theorem 2 1. If the pair ( 1 ; 2 ) is isochronous, then it satis es property (26).

2. Conversely, assume in addition that 1 and 2 are both endochronous.

If the pair ( 1 ; 2 ) satis es property (26), then it is isochronous. Thus, isochrony is su cient for (26) to hold, and it is also in fact necessary when the components are endochronous.

Comments :

1. We already discussed the importance of guaranteing property (26). Now, why is this theorem interesting ? Mainly because it replaces condition ( 26), which involves in nite runs, by condition (I) of isochrony, which only involves a single reaction for the considered pair of sts. 2. Comment 1 for endochrony also applies here.

Proof : We successively prove points 1 and 2.

1. Isochrony implies property (26). We proceed into two steps.

1. The desynchronization of , de ned by ( 23), is denoted by a , and we denote by a run of a . For each 2 a , there is at least one corresponding synchronous run for such that = a . Any such is clearly the synchronous composition of two uni able runs 1 and 2 for 1 and 2 , respectively. Hence associated asynchronous runs a 1 and a 2 are also uni able, and their asynchronous composition a 1 ^a a 2 belongs to a 1 ^a a 2 . Thus we always have the inclusion a 1 k a a 2 ( 1 k 2 ) a ;

(39) which proves the rst part of ( 26). So far we have only used the definition of desynchronization and asynchronous composition, isochrony

has not yet been used.

2. To prove the opposite inclusion, we need to prove that, when moving from asynchronous composition to synchronous one, the additional need for a reaction-per-reaction matching of uni able runs will not result in rejecting pairs of runs that otherwise would be uni able in the asynchronous sense. This is where condition (I) of isochrony enters the game. Pick a pair ( 1 ; 2 ) such that 1 ./ a 2 (cf. ( 25)) : they can be combined while performing the asynchronous composition a 1 k a a 2 to form some (cf. ( 24)), this is denoted by 1 ^a 2 = . By de nition of desynchronization (cf. subsection 4.1), there exist a (synchronous) run 1 for 1 , and a (synchronous) run 2 for 2 , such that i is obtained by desynchronizing i , i = 1; 2 (as we do not assume endochrony at this point, run i is not uniquely determined). Thus each run i is a succession of states. Clearly, inserting nitely many silent states between successive states of i would also provide valid candidates for recovering i after desynchronization. We shall show, by induction over successive states, that : properly inserting such a silent state in the appropriate component will provide two runs which are uni able in the synchronous sense.

(40)

This will show that, from a pair ( 1 ; 2 ) such that 1 ./ a 2 , we can reconstruct (at least) one pair ( 1 ; 2 ) of runs for 1 and 2 that are uni able in the synchronous sense, and thus will prove the alternative inclusion a 1 k a a 2 ( 1 k 2 ) a :

(41) From ( 39) and ( 41) we then deduce property (26). We prove (40) now, by induction over successive states. We are given a pair ( 1 ; 2 ) such that 1 ./ a 2 . Pick a 1 such that a 1 = 1 , and similarly for 2 . For s 1 ; s 2 ; : : : ; s n a nite run, we say that another run s 0 1 ; s 0 2 ; : : : ; s 0 m is a stretching of s 1 ; s 2 ; : : : ; s n , written s 0 1 ; s 0 2 ; : : : ; s 0 m = (s 1 ; s 2 ; : : : ; s n ) " (42) if there is a strictly increasing subsequence k 1 ; : : : ; k n of 1; : : : ; m such that s 0 k j = s j ; j = 1; : : : ; n, and s 0 k = ? for k 6 = k 1 ; : : : ; k n . Note that (42) implies m n. Using notation (42) we introduce the following hypothesis, for use in our inductive reasoning : for i = 1; 2, run i decomposes as i = s i;1 ; s i;2 ; : : : ; s

i;n i | {z } initial segment of length n i ; i;n i (43) 
and there are stretchings such that s 0 i;1 ; s 0 i;2 ; : : : ; s 0 i;n = (s i;1 ; s i;2 ; : : : ; s i;n i ) " for i = 1; 2 s 0 1;m ./ s 0 2;m for m = 1; : : : ; n (44) Note that (44) implies a 1;n 1 ./ a a 2;n 2 . De ne index

(n) = minfn 1 ; n 2 g
where n i is de ned in (43). To perform the proof by induction, we need to extend (43,44) in such a way that index (n) grows to in nity.

To this end, decompose the tail i;n i into i;n i = s i;n i +1 ; i;n i +1 : The following cases can occur : case 1 : none of the two states s 1;n 1 +1 and s 2;n 2 +1 is silent over the common W variables. Concentrate on those v 2 W variables that are present in both states s 1;n 1 +1 and s 2;n 2 +1 . As 1 ./ a 2 holds, then we must have s 1;n 1 +1 v] = s 2;n 2 +1 v] for any such v. Thus points 1,2,3 of condition (I) of isochrony are satis ed. Hence s 1;n 1 +1 and s 2;n 2 +1 are indeed uni able in this case, by isochrony. Therefore, in this case, hypothesis (43,44) extends in such a way that (n + 1) = minfn 1 + 1; n 2 + 1g = (n) + 1 holds. case 2 : both states s 1;n 1 +1 and s 2;n 2 +1 are silent over the common W variables. They are uni able. Again, hypothesis (43,44) extends in such a way that (n + 1) = (n) + 1 holds. case 3 : one and only one of the two states s 1;n 1 +1 and s 1;n 1 +1 is silent over the common W variables, say 8v 2 W : s 1;n 1 +1 v] = ?. In this case we unify state s 1;n 1 +1 with the silent state ? for 2 .

Thus the matching hypothesis ( 44) is extended as : s 0 1;1 ; s 0 1;2 ; : : : ; s 0 1;n ; s 0 1;n+1 = (s 1;1 ; s 1;2 ; : : : ; s 1;n 1 ; s 1;n 1 +1 ) " s 0 2;1 ; s 0 2;2 ; : : : ; s 0 2;n ; ? |{z} s 0 2;n+1 = (s 2;1 ; s 2;2 ; : : : ; s 2;n 2 ) " s 0 1;m ./ s 0 2;m for m = 1; : : : ; n + 1 : (45) Therefore (n + 1) = minfn 1 + 1; n 2 g and we cannot infer that (n + 1) > (n) holds in this case. Given the analysis above, we only need to show that case 3 cannot occur for in nitely many successive induction steps.

(46)

Assume ( 46) does not hold. Then this implies that the whole tail 1;n 1 is silent over the common W variables, while 2;n 2 is not. But on the other hand we should have a 1;n 1 ./ a a 2;n 2 , see(44), whence a contradiction. This nishes the induction proof, hence (41) follows.

2. Under endochrony of the components, property (26) implies isochrony. This is easy. From Theorem 1 we know that, in our argument for proving point 1 of theorem 2, the synchronous runs i are uniquely dened, up to silent states, from their desynchronized respective versions a i .

Now, focus on case 1 of this argument. If isochrony is not satis ed, then, for some pair a 1 ./ a a 2 of uni able asynchronous runs, and some decomposition (43) of them, it follows that points 1,2,3 of condition (I) of isochrony are satis ed, but states s 1;n+1 and s 2;n+1 are not uni able. As our only possibility is to try to insert silent states for one of the two components { not feasible in case 1 { our process of incremental uni cation on a per reaction basis fails. Thus ( 41) is violated, and so is property (26). This nishes the proof of the theorem.

The following result is intrumental in proving compositionality of isochrony.

Lemma 1 If pairs ( ; 1 ) and ( ; 2 ) are isochronous, then so is pair ( ; 1 k 2 ).

Proof : Let (s ; s) and (t ; t) be pairs of successive states, for and 1 k 2 respectively, satisfying condition (I) for isochrony, see de nition 2 or 3. Let t be the uni cation of the two states s 1 and s 2 for 1 and 2 , respectively. By point 2 of (I), at least one of these two states is not silent, assume s 1 is not silent. From point 3 of (I), s and s 1 coincide over the set of present common variables, and thus, since pair ( ; 1 ) is isochronous, states s and s 1 coincide over the whole set of common variables for and 1 . Thus s and s 1 are uni able. But, on the other hand, s 1 and s 2 are also uni able since they are just restrictions of the same global state t for 1 k 2 . Thus states s and t are uni able, and thus pair ( ; 1 k 2 ) is isochronous. This proves lemma 1.

An interesting immediate byproduct is the extension of the results on desynchronization, to networks of communicating synchronous components :

Corollary 1 (desynchronizing a network of components) We are given a nite family ( k ) k=1;:::;K of sts. Assume that each pair ( k ; k 0) is isochronous. Then 1. For each disjoints subsets I and J of set f1; : : : ; Kg, the pair k k2I k ; k k 0 2J k 0 (47) is isochronous. Thus isochrony is compositional. 2. Also, desynchronization extends to the network :

( 1 k : : : k K ) a = a 1 k a : : : k a a K :

(48)

Getting gals architectures

In practice, only partial desynchronization of networks of communicating sts may be considered. This means that we really want to have locally synchronous components communicating via a globally asynchronous communication medium | this is refered to as gals architectures.

In fact, theorems 1 and 2 provide the adequate solution. Let us assume we have a nite collection i of sts such that :

1. each i is endochronous, and 2. each pair ( i ; j ) is isochronous. Then, from corollary 1 and theorem 1, we know that ( 1 k : : : k K ) a = a 1 k a : : : k a a K and each a k is in one-to-one correspondence with its synchronous counterpart k . Here is the resulting running mode for this gals architecture : For communications involving a pair ( i ; j ) of sts, each ow is preserved individually, but global synchronization is lost. Each sts i reconstructs its own successive reactions by just observing its (desynchronized) environment, and then locally behaves as a synchronous sts. Note that it is allowed, for each i , to have an internal activation clock which is faster than communication clocks. Resulting local activation clocks evolve asynchronously from one another.

Handling endo/isochrony in practice

While we have given criteria for endochrony and isochrony, we did not propose a practical algorithm for checking these criteria. We do this now. Our aim is to prepare for gals architectures such as discussed in subsection 4.4.

In particular, throughout this subsection, a network of sts satisfying conditions 1 and 2 of subsection 4.4 will be called endo/isochronous. In this subsection, we shall indicate 1/ how a (tight) su cient condition for endo/isochrony can be actually tested, and 2/ how making an sts endo/isochronous can be performed. As both the Dc + format and the Signal language can be considered as concrete instances of our sts model, we shall rely for our explanation on tools and algorithms already developed in these environments.

Checking endo/isochrony

As one of the modules of the existing Dc + or Signal compiler, the data structure shown in Figure 3 b 1 has a clock equal to h 0 and only needs variables with clock h 0 for its evaluation, and so on. Roots of the trees are related by clock equations, depicted for instance by the bidirectional arrow relating h 0 and k 0 . This de nes a tree under each clock h 0 ; k 0 ; : : :, and yields the so-called clock hierarchy in the form of a \forest", i.e., a collection of trees related by clock equations. This structure is detailed in [START_REF] Amagbegnon | [END_REF]] Amagbegnon et al., 1995], where it is shown to be a canonical representation of the combination of clock equations and scheduling speci cations of a program. Now, considering this clock hierarchy, one easily proves the following :

Theorem 3 Assume program P has a clock hierarchy consisting of a single tree. Also assume it is decomposed as P = P 1 k : : : k P K , and, for each k, the clock hierarchy of component P k is a subtree of the clock tree of P. Then the corresponding network of sts is endo/isochronous. Theorem 3 is an immediate corollary of Theorem 1 of section 4, it only states a su cient condition. In computing a clock hierarchy, the abstractions performed are twofold : 1/ inferring dependencies from causality analysis, and 2/ abstracting boolean variables which result from the evaluation of a predicate involving a non-boolean expression. In practice, we shall use the clock hierarchy as the practical criterion for checking endo/isochrony.

Enforcing endo/isochrony

Assume we have an sts P having a clock hierarchy which is not a tree, and we still want it to be a tree. What can we do ? As revealed by inspecting the previous gure, it is su cient to make the roots h 0 ; k 0 ; : : : of the clock hierarchy belonging to some single clock tree. In other words, we can concentrate on the roots of the clock hierarchy. Thus the problem can be restated as follows :

We are given a set h 1 ; : : : ; h k of clocks, which are related by a set of clock equations of the form : p 1 (h 1 ; : : : ; h k ) 6 = f : : :

(49) p q (h 1 ; : : : ; h k ) 6 = f

This corresponds to having a collection p 1 ; : : : ; p q of predicates on clocks, which are boolean-valued expressions that are either true or absent. Note that being always true is the case for predicates in classical boolean logic, while in our case, due to the requirement for stuttering robustness, we must accept the possibility for a \clock predicate" to be absent. Systems of equations of the form (49) can be solved for their variables h 1 ; : : : ; h k , meaning that we can nd a set h o 1 ; : : : ; h o l of clocks, and a set p o 1 ; : : : ; p o k of clock expressions, such that equation system : h 1 = p o 1 (h o 1 ; : : : ; h o l ) : : : (50) h k = p o k (h o 1 ; : : : ; h o l ) has the same set of solutions for h 1 ; : : : ; h k as the original system (49), and new clocks h o 1 ; : : : ; h o l are free, i.e., unconstrained by the system of equations ( 50 The bottom line is :

1. System of clock equations ( 49) is equivalent to (50,51) after hiding auxiliary variables h; b o 1 ; : : : ; b o l . 2. System (50,51) is a clock tree.

Discussion. Basically, building (51,50) from ( 49) intuitively corresponds to equipping the original P program with a suitable communication protocol Q in such a way that the compound program P k Q is endo/isochronous. This is not surprising indeed, for it is known in the area of distributed systems that components in a distributed system must be equipped with suitable protocols for their communications.

Finally, the way we moved from ( 49) to (50) reveals one unpleasant feature of this technique, namely : this part of the process is not unique, and thus there are possibly many di erent correct protocols.

Formal study of causality

In this section we develop a formal theory of causality for sts. Our basic tool is that of scheduling speci cations and labelled preorders. We rst formalize this, by adding the value unkown to our domains, like in the Constructive Boolean logic used in [START_REF] Berry | [END_REF]. Using this extended domain, we are able to formally state and prove our criterion that circuitfreedom implies executability. Then we formalize the rules (R-1,2,3,4) of ( 21), and we nally show how correct deterministic execution results from a successful causality analysis.

x ? ? > b ?

? ? ? ? f t ? Table 1: De nition of the dependency x b > y. This table gives the result of this multivalued function for its output y. When nothing is written, this means that any value is accepted. If x is boolean, then > is to be re ned as any of the two values ff; tg.

Circuitfree schedulings

We are given a set of variables x 1 ; : : : ; x n . Some of them are boolean ; for the sake of readability, boolean variables used as labels in scheduling speci cations, will be generically denoted by b 1 ; b 2 ; : : : Then we are given 1/ a set of constraints of the form C(b 1 ; : : : ; b k ) on boolean variables restricted to subdomain f?; t; fg of known values ; and 2/ a set of scheduling specications de ned on x 1 ; : : : ; x n . Constraints C(b 1 ; : : : ; b k ) are extended to the \unknown" value by simply assuming C(b 1 ; : : : ; b k ) is satis ed as soon as at least one of the variables b 1 ; : : : ; b k is \unknown".

Each dependency is interpreted as speci ed in Table 1. Thus, together with the boolean constraints of the form C(b 1 ; : : : ; b k ), they specify a subdomain of the product domain D n of all possible states. The set of states satisfying these constraints is denoted by S, and we call it a scheduling of x 1 ; : : : ; x n . States in S are written s; t; : : : and corresponding interpretations are denoted by s 1 ; : : : ; s n for short instead of s x 1 ]; : : : ; s x n ], and similarly for t. The \totally unknown state" : 8i; s i = ?, is denoted by s ? .

(55) Two states of S are said to be neighbours if they di er exactly in one variable, we call it their discriminating variable. We call a path in S any nite sequence s(1); s(2); : : :; s(K) of neighbouring states belonging to S.

For s and t two neighbouring states of S, we write s t if their respective values for their discriminating variable x i satisfy the relation s i t i de ned in (52). A path s(1); s(2); : : : ; s(K) such that s(k) s(k + 1) is called increasing.

A scheduling S is called circuitfree if it is never true in S that

x i 1 b 1 > x i 2 b 2 > x i 3 : : : x ip bp > x i 1 and (56)

(b 1 ^: : : ^bp = t) Theorem 4 (circuitfree schedulings) A scheduling is circuitfree i , for every state s 2 S satisfying 8i : s i 6 = ?, there is an increasing path linking s ? to s.

The intuitive interpretation of this theorem is that, for an sts with a circuitfree scheduling, it is possible to compute sequentially without deadlock all variables, starting from the inputs. Each increasing path mentioned in theorem 4 corresponds to one possible sequential execution.

Proof : We rst prove the \if" part by contradiction. Assume ( 56) is violated for some circuit x i 1 b 1 > x i 2 b 2 > x i 3 : : : x ip bp > x i 1 , i.e., b 1 ^: : :^b p = t is possible for this circuit in S. We want to deduce from this assumption that there are states for which all variables are known, but there is no increasing path originating from s ? and terminating at the states in consideration. Without loss of generality, we can restrict S to those states for which 8i = 1; : : : ; p : b i = ? or b i = t ] holds, the set of such states is called S (b 1 ^:::^bp=t) :

(57) By table 1, condition x i 1 b 1 > x i 2 b 2 > x i 3 : : : x ip bp > x i 1 implies that, on S (b 1 ^:::^bp=t) , the following holds :

x i 1 x i 2 : : : x ip x i 1 ; and thus the x i j 's are either all unknown, or alternatively all known. Thus there is no increasing path originating from s ? and leading to any known state belonging to S (b 1 ^:::^bp=t) . This proves the \if" part.

Clearly, claim (58) is equivalent to the conclusion of the lemma. To prove (58), using item 4, we rst note that each state belonging to path t 0 ] t ! t 0 ] t ] t satis es the boolean constraints C(b 1 ; : : : ; b k ) which contribute to the de nition of S. We thus only need to check that they also satisfy the dependencies contributing to the de nition of S ; but the latter results from an inspection of table 1. This proves the lemma.

We now return to the proof of theorem 4 and proceed by steps.

1. Assume 9s ? 2 S satisfying 8i : s ? i 6 = ?, such that there is no increasing path linking s ? to s ? . Denote by b 1 ; : : : ; b p the boolean variables such that b 1 ^: : : ^bp = t holds at state s ? . Denote by S the set of states s 2 S such that s s ? . We have s ? 2 S and s ? 2 S. States belonging to S are all compatible. 2. Let s; s 0 2 S be two states such that increasing paths s ? ! s and s ? ! s 0 are both contained in S. Then we claim that s 00 = s ] s 0 2 S; and there exists an increasing path contained in S;

originating from s ? ; and terminating in s 00

As all s 2 S satisfy s s ? , they satisfy in particular the boolean constraints b 1 ^: : :^b p = t. Thus we only need to verify the dependencies.

There is a unique state s 0 2 S such that 1/ s 0 2 s ? ! s] \ s ? ! s 0 ], and 2/ s 0 ! s] \ s 0 ! s 0 ] = fs 0 g, meaning that s 0 is the latest point at which the two considered path deviate from each other. Let s 1 be the neighbour state of s 0 belonging to path s 0 ! s 0 ]. Apply lemma 2 with the following substitutions : t 0 =s 0 ; t 1 =s 1 ; t=s such that s = s 0 ] s. We deduce that path s ? ! s ] s 1 ] S. Then, let s 2 be the neighbour state of s 1 belonging to path s 1 ! s 0 ], we can repeat the same argument. And we proceed repeatedly in the same way until we prove the claim (59).

3. Consider the set of s 2 S for which there exists an increasing path s ? ! s] S. From (59) we know that this set has a unique maximal element s max for partial order . By hypothesis we have s max s ? ; s max 6 = s ? .

Thus there are at least two variables, denote them by x and x 0 , such that s max x] = s max x 0 ] = ?, but s x] = s x 0 ] 6 = ? for every s 2 Sn s ? ! s max ].

Hence, the following holds at each state belonging to S :

x b > x 0 b > x where b = b 1 ^: : : ^bp = t Hence condition of circuit freedom is violated on S, and thus it can be violated on S. This nishes the proof of theorem 4.

In the sequel, for an sts with scheduling speci cations, we shall consider its associated scheduling S (60) which is obtained by keeping, from the set of predicates de ning the transition relation of , 1. the scheduling speci cations, and 2. the assertions involving only boolean variables and clocks, and discarding the other ones.

Deriving scheduling speci cations as causality constraints

In this section, we formally justify rules (21). The principles we follow for our abstraction mechanism are given next :

(P-1) For x not a boolean variable, we abstract its domain D x as the singleton f>g, and then extend f>g with the additional values f?; ?g. (P-2) Within equations of the form \y = exp" or \if b then y = exp 1 else y = exp 2 " we shall further abstract y by mapping the set f?; f; tg to the single value > (known). Note the asymmetry of this abstraction principle : for the statement \if b then y = x" where x; y are booleans, we abstract y but not x.

(P-3) Since we are interested in causality constraints, we only need to keep track of con gurations for which y cannot be known, i.e., y = ? is the only allowed possibility. For other con gurations, we weaken the constraint on y to \y unconstrained", which is depicted in the tables by an empty box.

We now proceed on deriving the scheduling associated to each primitive statement, using (P-1,2,3). We use the notation: ?; ? to indicate that, for the considered con guration, either y = ? or y = ? holds, and similarly for other cases. h x ? ? t x ? ?; ? ?; > , abstacted as (using P-2) : h x ? ? t x ? ?; > ?; > , which is equal to : h x ? ? t x ?

which turns out to be equivalent to h x > x by table 1.

Lemma 5 The following holds : , Applying principles (P-2,3) then yields the formulas corresponding to the conclusion of the rule of lemma 6. Note the asymmetry between x and u, while statements x = u and u = x are clearly identical. This asymmetry is due to principle (P-2) for sts abstraction.

(f) : ( y = f(u; v) h u = h v = h y ) (u; v) h

Correct programs

In this subsection, we formally state and prove the result establishing the link between circuit freedom and executable sts.

Theorem 5 (correct programs) Let P be an sts satisfying the following conditions :

1. For each statement of P, the scheduling speci cations derived from applying the rules of lemmas 3, 4, 5, 6 are also statements of P.

2. The scheduling S P (cf. ( 60)) de ned by P is circuitfree.

3. There is no multiple de nition of a variable, meaning that, whenever if b 1 then x = exp 1 ^if b 2 then x = exp 2 is part of P, then : b 1 ^b2 = t never holds.

Then :

1. As far as control is concerned, the inputs of P are the source nodes of the dependency graph. 2. Input values are those variables which never occur on the left{hand side of statements of the form \x =exp". 3. For each given input control history of P and compatible input value history, there is exactly one run of P, i.e., P is deterministic.
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Nota : Clearly, theorem 5 provides us with a su cient condition, this condition is not necessary. Furthermore, the rules for inferring scheduling specications as causality constraints is bound to the syntax, not to the semantics of the program. In particular, from statement \ if b then x = u", we choose to infer dependency u b ^hu > x but not the symmetric one in which x and u are exchanged. This means that, while P may not satisfy the assumptions of theorem 5 for a given syntactic form of P, it may satisfy them after a proper rewriting into a semantically equivalent form. Here, semantic equivalence means identical runs when scheduling speci cations are discarded.

Proof : It is organized into several steps.

1. With the formula x b > y we associate the following automaton : 

Conclusion

Our contribution can be summarized as follows :

We have proposed sts with scheduling speci cations as a paradigm for causality analysis, sts abstraction, separate compilation and reuse.

We have characterized those sts for which asynchronous and synchronous semantics are equivalent in some precise meaning. We advocate system design methodology based on the synchronous paradigm, possibly followed by a provably correct desynchronization. Advantages of this approach are numerous, they are listed below according to the di erent phases of the design : Speci cation : designing within the synchronous paradigm allows the designer to exploit the simplicity and elegance of compositionality of synchronous speci cations. In addition, speci cation can be performed in-dependently from the execution architecture ; therefore, upgrading an execution architecture does not require redesigning the speci cations.

Veri cation :

In the synchronous paradigm, composition of speci cations and composition of properties are both performed by using the composition \ k " of sts. This facilitates reasoning in general, and in particular compositional reasoning. For endo/isochronous sts, proofs based on the synchronous semantics carry over without modi cations to asynchrony. For such systems, veri cations can be performed within the synchronous framework. This allows to avoid state explosion resulting from the use of the asynchronous interleaving semantics.

Abstraction, modularity, and reuse : Scheduling speci cations provide the adequate notion of abstraction for separate compilation. It allows the designer to check the correctness of component encapsulation at systems integration phase. sts with scheduling speci cations can be composed using a proper generalization of the composition \ k " of sts. Thus advantages of compositionality naturally extend to sts with scheduling speci cations. The structuration of speci cations into scheduler and tasks allows us to de ne proper reusable modules. Of course, if assumptions are available on the possible behaviours of the environment, then larger modules can be stored as object code for further reuse. gals networks : the elegant feature is that isochrony is a local property within a network of components. As isochrony is compositional, adding a new component new to a pre-existing gals network ( i ) i=1;:::;n while preserving its gals nature, only requires to check whether pairs ( new ; i ) are isochronous, for each i having direct communication with new in the extended network. Thus gals designs can be built compositionally, it is not needed to desynchronize at once the whole synchronous design.

Thanks to the outcomes of the SACRES project, the above approach is supported by the Signal-V4 language 8 , and by the Dc + common format for synchronous languages DC+ Sacres 1996]. Signal-V4 and the Dc + format both are concrete implementations of our sts model. This includes scheduling speci cations, which are available as primitive statements in both formalisms.

In particular, the 1999 release of Sildex Sildex] 9 implements distributed code generation based on the approach presented in this paper. The target architectures above all else are POSIX compliant real-time OS.

The new Signal-V4 compiler developed at Inria implements the whole methodology, including separate compilation. Services for architecture generation are also provided, using our notion of abstraction.

Research perspectives. Further work is needed to show that the above principles are viable for generating architectures built up from pre-existing C/C++/Java/. . . modules. Then, not all communication media or operating systems provide services satisfying the requirements of our theory of desynchronization, namely : no loss of messages, rst-in/ rst-out semantics for each individual channel. Additional work is needed for getting a full implementation on each di erent type of distributed architecture ; this can be very easy (writing a few generic drivers, e.g., for POSIX), or can be more demanding when adequate services are not provided by the architecture, and thus need to be emulated.
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 2 Figure 2: Implementation architecture.

  1. Conditions (a) and (b) are equivalent, where :(a) is endochronous.(b) For each 2 a , we can reconstruct the corresponding synchronous run such that a = , in a unique way up to silent reactions.2. Assume is endochronous and stuttering invariant. If 0 = hV; ; 0 i is another endochronous and stuttering invariant sts then ( 0 ) a = a ) 0 = (32)

  b = t then get u ", where b; u are the two inputs, and b is boolean. The clock of b coincides with the activation clock

Figure 3 :

 3 Figure 3: The clock hierarchy computed by the Dc + or Signal compiler.

  is computed, for a given program P : In this gure, b; c denote boolean variables, b]; c] denote clocks composed of the instants at which b; c = t holds, respectively. Finally, h; k are also clocks. The down-arrows h 0 ! b 1 , b 1 ] ! b 2 , b 2 ] ! b 3 , etc, indicate that boolean variable

  ). Finally, we introduce boolean variables b o 1 ; : : : ; b o l , and a \master clock" h o , such that h o 1 = b o 1 ] ; : : : ; h o l = b o l ] h b o 1 = : : : = h b o l = h (51)

  with actions. Label \set x" indicates that variable x is set to an arbitrary value of its (extended) domain D x f?g. States are labelled with those variables that are ?, i.e., have not been set. This automaton is the most permissive one with the following properties : (a) states are valued with con gurations of the triple (x; b; y) that are compatible with the scheduling constraint x b > y. (b) Variables are set sequentially. (c) All variables are eventually set.

  the activation clock. The re ned execution automaton is obtained by replacing set u and set v by read u and read v, and set y by the assignment y := f(u; v).

In fact, \reaction" is a slightly restrictive term, as we shall see in the sequel that \reacting to the environment" is not the only possible kind of interaction a synchronous system may have with its environment.

For instance, most of the e ort related to the semantics of Esterel has been directed toward solving this issue satisfactorilyBerry, 1995].

This is part of the job performed by the Signal compiler's \clock calculus".

Endochronous, from ancient greek " o{inside and o o&{time ; Isochronous, from ancient greek o{identical and o o&{time. It's sometimes nice to remember that ancient greeks used to be great scientists, and thus honor them by reusing their words in our context.

Of course we assume here that no variable is absent in every reachable state.

;

as well as 1 k k 2 are all endochronous, not an elegant solution

By convention this is satis ed if the set of present common variables is empty.
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Proof :

1. Property (47) follows from lemma 1 via obvious induction on the cardinal of sets I; J. 2. The second statement is proved via induction on the cardinal of the number of components :

( 1 k : : : k K ) a = ( ( 1 k : : : k K 1 ) k K ) a = ( 1 k : : : k K 1 ) a k a a K ;

and the induction step follows from (47).

The next corollary expresses that isochrony is a \local" property.

Corollary 2 (locality of isochrony) Assume pair ( 1 ; 2 ) is isochronous, and pair ( 1 ; 2 ) is such that 1 has no common variable with 2 k 2 and 2 has no common variable with 1 k 1 . Then pair ( 1 k 1 ; 2 k 2 ) is also isochronous.

Proof : This follows directly from lemma 1. This is a useful result, it says that, in order for a pair ( k k2I k ; k k 0 2J k 0)

to be isochronous, it is enough to check isochrony for pairs ( k ; k 0) of interacting components.

Note however that, in order for a pair ( 1 k 1 ; 2 k 2 ) to be isochronous, it is not necessary, but only su cient, that the pair ( 1 ; 2 ) is isochronous. counterexample : assume an sts communicates with another one according to the synchronous protocol \ await x k await y ", the resulting pair of sts is not isochronous.

Encoding scheduling speci cations using an algebraic domain

In this section, we consider the following domain D and its two orderings and < as an abstraction of arbitrary domains of values :

? ?; f; t ? < f < t (53)

In these formulas , symbols ? (resp. >) indicate that the value is \unknown" (resp. \known"). The \unknown" status should not be confused with absence (?) : absence is a perfectly known status, while \unknown" is intended to model that a variable has not been produced yet in the current reaction. Nonboolean types are abstracted as the single distinguished element >, hence, for booleans, the pair ff; tg can be seen as a re nement of the symbol >, this is shown by the underbrackets. And f?; >g is a re nement of >, this is shown by the overbrackets. Ordering < has already been introduced, and the additional partial order is the Scott information ordering : ? ?; f; t, the three values ?; f; t being incomparable with respect to .

De nition : Relation x b > y is de ned in table 1, where it is speci ed in the form of a multivalued function. Its main feature is that it forbids, whenever b = t, that y gets known while x is not.

Properties of scheduling speci cations. The following properties hold :

In these equations, b^c and b_c are respectively de ned as the in mum (resp. supremum) w.r.t. relation \<" de ned in ( 53) when both values belong to the subdomain f?; t; fg. In fact, we do not need formulas (54) in case b or c are unknown, because the label of a branch is known prior to its extremity, in executable programs equipped with their scheduling speci cations as inferred from rules (R-1,. . . ,R-4).

Next, we prove the \only if" part, also by contradiction. Beforehand, we need a lemma. Two states s and s 0 are said complementary if, for each variable x, either s x] = ? or s 0 x] = ? :

Two states s and s 0 are said compatible if, for each variable x, either s x] = ? or s 0 x] = ? or s 0 x] = s x] :

Complementary states are also compatible. For two compatible states s and s 0 , we de ne their sum s ] s 0 by : (s ] s 0 ) x] = if s x] 6 = ? then s x] else s 0 x] Lemma 2 (monotonicity) Let t 0 and t 1 be two neighbouring states belonging to S, such that t 0 t 1 . Let t be a state such that 1. t 1 and t are complementary, 2. t 0 ] t 2 S, 3. there is an increasing path contained in S originating from t 0 and terminating in t 0 ] t, and 4. t 1 ] t satis es the boolean constraints C(b 1 ; : : : ; b k ) which contribute to the de nition of S. Then, t 1 ] t 2 S and there is an increasing path contained in S originating from t 1 and terminating in t 1 ] t.

Proof : Note that t 0 ]t is well de ned, since t 0 and t are also complementary. Let t 0 ! t 0 ] t denote the path referred to in item 3. Denote by t the state such that 1/ t and t 0 are complementary, and 2/ t 1 = t 0 ] t, such a state exists and is unique. Denote by t 0 ] t ! t 0 ] t ] t the increasing path obtained by complementing each state belonging to path t 0 ! t 0 ]t by t. This is possible since each intermediate state of path t 0 ! t 0 ] t and t are complementary.

We claim that path t 0 ] t ! t 0 ] t ] t is contained in S. (58) Proof : by inspection of table 1 and of the following tables (# denotes a prohibited value) : abstraction of (f), using (P-1) : u ? ? > v ?

? ?; ? ? ? ?; ? ? # > ? # > , using (P-2) :

u ? ? > v ? ? ?; > ? ?

?; > > # > ? # > , using (P-3) :

u ? ? > v ? ? ? ? > ?

, which is equivalent to the formulas of the conclusion of the rule of lemma 5.

Lemma 6 The following holds :

Proof : by inspection of table 1 and of the following two tables. These tables de ne the possible values, of x and h x respectively, for if b then

Thus each path of this automaton speci es an evaluation scheme for the triple (x; b; y) which is compatible with the considered scheduling speci cation. Conversely, any correct evaluation scheme for triple (x; b; y) can be speci ed in this way. We call this automaton the execution automaton associated to scheduling speci cation x b > y. 2. To each primitive statement we associate the conjunction of its causality constraints and possible constraints involving clocks and boolean variables, and we take the product of associated execution automata.

The paths of the resulting automaton specify all correct schedulings to evaluate the involved variables. We call the resulting product automaton the execution automaton associated to the considered primitive.

3. Then we take the product of the execution automata associated to each statement. By theorem 4 we know that, for each tuple of variables which satis es the speci cation, there is a path of the product automaton which originates from its initial state and terminates at the nal state in which all variables are set, meaning that all variables of the considered tuple are sequentially set.

4. Finally, we re ne the transition labels of the form \set x" etc., by assigning to x etc the value speci ed by the program. As source nodes of the dependency graph are set rst, they appear as inputs of P for its control. Also, variables u that are set and do not occur on the left{hand side of any statement u =expression must be read from the environment : their values are inputs of the considered program P. Finally, thanks to condition 3 of theorem 5, actions of the form \set x" etc., are re ned into single writings. This nishes the proof of the theorem.

We illustrate this technique on the following simple sts : y = f(u; v) V h u = h v = h y = def h :

The causality constraint and associated execution automaton are :