
HAL Id: hal-00543297
https://hal.science/hal-00543297

Submitted on 6 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositionality in dataflow synchronous languages:
specification & distributed code generation

Albert Benveniste, Benoit Caillaud, Paul Le Guernic

To cite this version:
Albert Benveniste, Benoit Caillaud, Paul Le Guernic. Compositionality in dataflow synchronous
languages: specification & distributed code generation. Information and Computation, 2000, 163 (1),
pp.125-171. �10.1006/inco.2000.9999�. �hal-00543297�

https://hal.science/hal-00543297
https://hal.archives-ouvertes.fr

Compositionality in data
ow synchronouslanguages : speci�cation & distributed codegeneration �yzAlbert Benveniste Benô�t Caillaud Paul Le Guernic xOctober 16, 2001

�This paper is a signi�cantly revised version of a preliminary report which appearedunder the same title in the Proceedings of 1997 Malente Workshop on Compositionality,organized by W.P. de Roever and H. Langmaack ; these proceedings will be published inthe LNCS, Springer Verlag.yThis work is or has been supported in part by the following projects : Eureka-SYNCHRON, Esprit R&D -SACRES (Esprit project EP 20897), Esprit LTR-SYRF (Espritproject EP 22703).zIn addition to the listed authors, the following people have indirectly, but strongly,contributed to this work : the sts formalism has been shamelessly borrowed from AmirPnueli, the background on labelled partial orders is mostly ackowledged to Paul Caspi.xIrisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France; email : �rst-name.lastname@irisa.fr 1

AbstractModularity is advocated as a solution for the design of large sys-tems, the mathematical translation of this concept is often that ofcompositionality. This paper is devoted to the issues of composition-ality for modular code generation, in data
ow synchronous languages.As careless reuse of object code in new or evolving system designsfails to work, we �rst concentrate on what are the additional featuresneeded to abstract programs for the purpose of code generation: weshow that a central notion is that of scheduling speci�cation as result-ing from a causality analysis of the given program. Using this notion,we study separate compilation for synchronous programs. An entiresection is devoted to the formal study of causality and schedulingspeci�cations.Then we discuss the issue of distributed implementation using anasynchronous medium of communication. Our main results are thatit is possible to characterize those synchronous programs which canbe distributed on an asynchronous architecture without loosing se-mantic properties. Two new notions of endochrony and isochrony areintroduced for this purpose. As a result, we derive a theory for syn-thesizing additional schedulers and protocols needed to guarantee thecorrectness of distributed code generation.Corresponding algorithms are implemented in the framework of theDC+ common format for synchronous languages, and the V4-releaseof the Signal language.Keywords : synchronous languages, modularity, distributed code gen-eration, separate compilation, desynchronization.

2

Contents1 Rationale 42 Speci�cation 52.1 The essentials of the synchronous paradigm 62.2 Synchronous Transition Systems (sts) 73 Compositionality in code generation : informal analysis 113.1 What is the problem? . 113.2 Scheduling speci�cations . 133.3 Causality analysis : examples 183.4 Generating scheduling for separate modules 203.5 Relaxing synchrony . 223.6 Modular design, gals architectures 244 Formal study of desynchronization 254.1 Desynchronizing sts, and two fundamental problems 264.2 Endochrony and re-synchronization 294.2.1 Formal results . 294.2.2 Practical consequences 334.3 Isochrony, and synchronous and asynchronous compositions . . 344.4 Getting gals architectures . 424.5 Handling endo/isochrony in practice 424.5.1 Checking endo/isochrony 434.5.2 Enforcing endo/isochrony 445 Formal study of causality 455.1 Encoding scheduling speci�cations using an algebraic domain . 465.2 Circuitfree schedulings . 475.3 Deriving scheduling speci�cations as causality constraints . . . 515.4 Correct programs . 546 Conclusion 57
3

1 RationaleModularity is advocated as the ultimate solution for the design of large sys-tems, and this holds in particular for embedded systems, for both softwareand architecture. Modularity allows the designer to scale down design prob-lems, and facilitates the reuse of pre-existing modules.The mathematical translation of the concept of modularity is often thatof compositionality. Paying attention to the composition of speci�cation-s [Manna and Pnueli 1992] is central to any system model involving con-currency or parallelism. More recently, signi�cant e�ort has been devot-ed toward the introduction of compositionality in veri�cation, which aimsat deriving proofs of large programs from partial proofs involving (abstrac-tions of) components [Manna and Pnueli 1995]. See also the whole volume[de Roever et al., Eds, 1998] where a number of papers are devoted to thistopic.Compilation and code generation has been given less attention from thisvery same point of view. This is unfortunate, as it is critical for the designerto scale down the design of large systems by 1/ storing modules like black-box \procedures" or \processes" with minimal interface description, and 2/generating code which uses these modules only on the basis of their interfacedescription, while preserving in any case the correctness of the design. Thispaper is devoted to the issues of compositionality of data
ow synchronouslanguages, aimed at modular code generation.Data
ow synchrony is rather a paradigm than a set of concrete languagesor visual formalisms [Benveniste and Berry, 1991], hence it is desirable toabstract from such and such particular language. Thus we have chosen towork with Synchronous Transition Systems (sts), a lightweight formalismproposed by Amir Pnueli, general enough to capture the essence of the syn-chronous paradigm. This is the topic of section 2. Using this formalism, westudy in section 2 the composition of speci�cations.Most of our e�ort is then devoted to issues of compositionality that arecritical to code generation. Section 3 contains an informal discussion of thisproblem. It is known that careless storing of object code for further reusein systems design fails to work. Hence we �rst concentrate on the addition-al features that are required to abstract programs for the purpose of codegeneration and reuse : we show that a central notion is that of schedulingspeci�cation as resulting from a causality analysis of the given program. Re-lated issues of compositionality are investigated. Then we show that there4

is some appropriate level of \intermediate code", which at the same timeallows us to scale down code generation for large systems, and still main-tains correctness at the system integration phase. Finally we discuss theside issue of distributed implementation using an asynchronous medium ofcommunication.In section 4 we formally study desynchronization. We �rst formalize whatwe mean by desynchronization. Our theory requires that the communicationmedium or operating system : 1/ shall not loose messages, and 2/ shall pre-serve the total ordering of messages, for each
ow individually (but, of course,not globally). These assumptions are typically satis�ed by services o�ered byreliable communication media or operating system. Our main result is that itis possible to check, directly on the original synchronous speci�cation, whethersemantic properties will or will not be preserved after desynchronization. Thetwo fundamental notions are endochrony, which guarantees that, for a singlests, desynchronization is a \revertible" transformation, and isochrony, whichguarantees that, for a pair of sts, desynchronizing communications is also a\revertible" transformation. In some sense formalized in section 4, semanticsis preserved by desynchronization when these conditions are satis�ed.Then section 5 is devoted to a formal study of causality. In many re-spects, this formal study is important. First, it is instrumental in gettingexecutable, deterministic code from a given sts speci�cation. Then, it is acornerstone of proper abstractions for separate compilation and reuse. Wepay strong attention to this study, using a technique not unlike the one usedfor analyzing causality in Esterel [Berry, 1995]. Our analysis encompassesthe case of arbitrary data types, and suitable abstractions are used for thispurpose.In the conclusion we discuss how our views on compositionality are mod-i�ed by this study. We sketch the resulting system design methodology, andwe brie
y mention the implementation resulting from this theory, mostlydeveloped in the framework of the Esprit-SACRES project.2 Speci�cationThis section discusses compositionality aspects of speci�cations, �rst infor-mally, and then formally.
5

2.1 The essentials of the synchronous paradigmThere have been several attempts to characterize the essentials of the syn-chronous paradigm [Berry, 1989] [Benveniste and Berry, 1991] [Halbwachs, 1993].With some experience, we feel that the following features are indeed essentialand su�cient for characterizing this paradigm :1. Programs progress via an in�nite sequence of reactions, informally writ-ten : P = R!where R denotes the set of legal reactions1.2. Within a reaction, decisions can be taken on the basis of the absence ofsome events, as exempli�ed by the following typical statements, takenfrom Esterel, Lustre, and Signal respectively :present S else `stat'y = current xy := u default vThe �rst statement is self-explanatory. The \current" operator deliv-ers the most recent value of x at the clock of the considered node, itthus has to test for absence of x before producing y. The \default"operator delivers its �rst argument when it is present, and otherwiseits second argument.3. Communication is performed via instantaneous broadcast. In otherwords, when it is de�ned, parallel composition is always given by theconjunction of associated reactions :P1kP2 = (R1 ^R2)!The above formula is a perfect de�nition of parallel composition whenthe intention is specifying. In contrast, if producing executable codewas the intention, then this de�nition has to be compatible with anoperational semantics. This very much complicates the \when it isde�ned" prerequisite2.1In fact, \reaction" is a slightly restrictive term, as we shall see in the sequel that\reacting to the environment" is not the only possible kind of interaction a synchronoussystem may have with its environment.2For instance, most of the e�ort related to the semantics of Esterel has been directedtoward solving this issue satisfactorily [Berry, 1995].6

Of course, such a characterization of the synchronous paradigm makes theclass of \synchrony{compliant" formalisms much larger than usually consid-ered. However it has been our experience that these were the key features ofthe techniques we have developed so far.Clearly, this calls for the simplest possible formalism comprizing the abovefeatures, and on which fundamental questions should be investigated. Thisis one of the objectives of the sts formalism described next.2.2 Synchronous Transition Systems (sts)Synchronous Transition Systems (sts).We assume a vocabulary V which is a set of typed variables. All types areimplicitly extended with a special element ? to be interpreted as \absent".Some of the types we consider are the type of pure signals with domain ftg,and booleans with domain ft; fg (recall both types are extended with thedistinguished element ?).We de�ne a state s to be a type-consistent interpretation of V, assigningto each variable v a value s[v] over its domain. We denote by S the set ofall states. For a subset of variables V � V, we de�ne a V -state to be atype-consistent interpretation of V .We de�ne a Synchronous Transition System (sts) to be a triple� = hV;�; �iconsisting of the following components :� V is a �nite set of typed variables,� � is an assertion characterizing the set of initial states : fs j s j= �g.� � � S � S is the transition relation relating past and current statesdenoted by s� and s respectively3. For example the assertion x = x�+1states that the value of x in s is greater by 1 than its value in s�. If(s�; s) j= �, we say that state s� is a �-predecessor of state s.3Usually, states and primed states are used to refer to current and next states. This isequivalent to our present notation. We have preferred to consider s� and s, just becausethe formulas we shall write mostly involve current variables, rather than past ones. Usingthe standard notation would have resulted in a burden of primed variables in the formulas.7

Runs.A run � : s0; s1; s2; : : : is a sequence of states such thats0 j= � ^ 8i > 0 ; (si�1; si) j= � (1)Composition.The composition of two sts � = �1 k �2 is de�ned as follows :V = V1 [V2� = �1 ^ �2� = �1 ^ �2 ;the composition is thus the pairwise conjunction (denoted by ^) of initialand transition relations. Composition is thus commutative and associative.Note that, in sts composition, interaction occurs through common variablesonly.Notations for sts.For the convenience of speci�cation, sts have a set of declared variables,written Vd, implicitly augmented with associated auxiliary variables : thewhole constitutes the set V of variables. We shall use the following genericnotations in the sequel :� b; c; v; w; : : : denote sts declared variables, and b; c are used to refer tovariables of boolean type.� for v a declared variable, hv 2 ft;?g denotes its clock :[hv 6= ?] , [v 6= ?]� for v a declared variable, �v denotes its associated state-variable, de�nedby : if hv then �v = velse �v = ��v (2)Values can be given to s0[�v] as part of the initial condition. Then, �vis always present after the 1st occurrence of v. Note that ��v = �v, thusonly state variables of declared variables have to be considered.8

Stuttering.As modularity is desirable, an sts should be permitted to do nothing while it-s environment is possibly working. This feature has been yet identi�ed in thelitterature and is known as stuttering invariance or robustness [Lamport, 1983a,Lamport, 1983b]. Stuttering invariance of an sts � is de�ned as follows : if� : s0; s1; s2; : : :is a run of �, so is�0 : s0;?s0; : : : ;?s0| {z }0� #f?s0g <1; s1;?s1; : : : ;?s1 ; s2;?s2; : : : ;?s2 ; : : : ; (3)where, for every state s, symbol ?s denotes the silent state associated withs, de�ned by : 8v 2 Vd : (?s[v] = ??s[�v] = s[�v] :This means that state variables are kept unchanged, whenever their associ-ated declared variables are absent. Note that stuttering invariance allows forruns possessing only a �nite number of present states.We require in the sequel that all sts we consider are stuttering invariant.They should indeed satisfy :h (s�; s) j= � i) h (s�;?s�) j= � i ^ [(?s�; s) j= �] (4)By convention, we shall simply write ? when mentioning a particular states is not required.Examples of Transition Relations :� A selector : if b then z = u else z = v : (5)Note that the \else" part corresponds to the property \ [b = f] _ [b =?] ". 9

� A register : if hz then v = ��z else v = ? : (6)where �z is the state variable associated with z as in (2), and ��z denotesits past value. The more intuitive interpretation of this statement is :vn = zn�1, where index \n" denotes the instants at which both v andz are present (their clocks are speci�ed to be equal). Decrementing aregister would simply be speci�ed by :if hz then v = ��z � 1 else v = ? ; (7)where z is of integer type. Note that both statements (6,7) imply theequality of clocks : hz = hv :� Testing for a property :if hv then b = (v � 0) else b = ? : (8)Note that a consequence of this de�nition is, again,hv = hb :� A synchronization constraint :(b = t) = (hu = t) ; (9)meaning that the clock of u is the set of instants where the booleanvariable b is true.Putting (5,7,8,9) together yields the sts :
u

u

u

-1

time

z if b then z = u else z = v^ if hz then v = ��z � 1 else v = ?^ if hv then b = (v � 0) else b = ?^ hv = hz = hb^ (b = t) = (hu = t)10

A run of this sts for the variable z is depicted on the �gure above. Eachtime u is received, z is set to the value of u. Then z is decremented by oneat each activation cycle of the sts, until it reaches the value 0. Immediatelyafter this, a fresh u can be read, and so on. Note the schyzophrenic nature ofthe \inputs" of this sts. While the value carried by u is an input, the instantat which u is read is not : reading of the input is on demand-driven mode.This is re
ected by the fact that inputs of this sts are the pair factivationclock h, value of u when it is presentg.Using the primitives (5,6,8,9), data
ow synchronous languages such asLustre [Halbwachs, 1993] and Signal [LeGuernic et al., 1991] are easilyencoded. Note that primitives (5,6,8,9) and their composition are stutteringinvariant sts, i.e., they satisfy condition (4).3 Compositionality in code generation : in-formal analysisIn this section, we informally discuss issues of compositionality aiming at codegeneration. After a brief review of the problems, we acknowledge the impor-tance of extending our basic sts model with preorders ; preorders are usefulto capture causality, to specify schedulings, and to model communicationsin a distributed environment. Also, preorders are instrumental in handlingabstractions. Then we discuss causality analysis and we analyse a few simpleexamples. Separate compilation is discussed, using preorders : we show thatseparate compilation requires a new level of intermediate code which allowsus to store and reuse modules in a correct way. Finally we discuss the issueof distributed code generation on an asynchronous architecture.3.1 What is the problem ?Basically, the problem is twofold : 1/ bruteforce separate compilation can bethe source of deadlock, and 2/ generating distributed code is generally notcompatible with maintaining strict compliance with the synchronous modelof computation. We illustrate brie
y these two issues next.Naive separate compilation may be dangereous. This is illustratedin the following picture : 11

The �rst diagram depicts the \dependencies" associated with some sts spec-i�cation : the 1st output needs the 1st input for its computation, and the 2ndoutput needs the 2nd input for its computation. The second diagram showsa possible scheduling, corresponding to the standard scheduling : 1/ read in-puts, 2/ compute reaction, 3/ emit outputs. This gives a correct sequentialexecution of the sts. In the third diagram, an additional dependency is en-forced by setting the considered sts in some environment which reacts withno delay to its inputs : a deadlock is created. In the last diagram, however,it is revealed that this additional dependency caused by the environment in-deed was compatible with the original speci�cation, and no deadlock resultedfrom applying it. Here, deadlock was caused by the actual implementationof the speci�cation, not by the speci�cation itself.The traditional answer to this problem by the synchronous programmingschool has been to refuse considering separate compilation : modules forfurther reuse should be stored as source code, and combined as such beforecode generation. We shall later see that this does not need to be the case,however.Desynchronization. This is illustrated in the following picture :
This �gure depicts a communication scenario : two processors, modelled assequential machines, exchange messages using an asynchronous medium for12

their communications. The natural structure of time is that of a partial or-der, as derived from the directed graph composed of 1/ linear time on eachprocessor, and 2/ communications. This structure for time does not matchthe linear time corresponding to the in�nite sequence of reactions which isthe very basis of synchronous paradigm.The need for reasoning about causality, schedulings, and communi-cations. This need emerges from the above discussion. In the next subsec-tion, we shall introduce a unique framework to handle these diverse aspects :the formalism of scheduling speci�cations.3.2 Scheduling speci�cationsCausality relations have been investigated for several years in the past in thearea of models of distributed systems and computations. The classical ap-proach considers a classical automaton, in which concurrency is modelled viaan \independence" equivalence relation among the labels of the transitions.Since independence is generally not a symmetric relation (actions of writingand reading are not symmetric), the theory of traces [Aabelsberg and Rozenberg, 1988]has been extended to so-called \semi-commutations" [Clerbout and Latteux, 1987],and this technique has been recently applied to the implementation of reac-tive automata on distributed architectures [Caillaud et al., 1997]. Causalitypreorder relations have also been used in a di�erent way in [LeGuernic and Gautier, 1991],and also in [Benveniste Caspi et al., 1994], from which we borrow the essen-tials of the present technique. In addition to modelling causality relations,preorders can be used to specify scheduling requirements, they can also beused to model send/receive type of communications.sts with scheduling speci�cationsWe consider a set V of variables. A preorder on the set V is a relation(generically denoted by �) which is re
exive (x � x) and transitive (x � yand y � z imply x � z). To � we associate the equivalence relation �,de�ned by x � y i� x � y and y � x. If equivalence classes of � aresingletons, then � is a partial order. Preorders are naturally speci�ed via(possibly cyclic) directed graphs, denoted :x! y for x; y 2 V ; (10)13

by de�ning x � z i� there is a path originating from x and terminating in z.The supremum of two preorders, written�1 _ �2 ; (11)is the least preorder which is an extension of �1 and �2. The set of allpreorders on V is denoted �V .A labelled preorder on V is a preorder on V , together with a value s[v]for each v 2 V over its domain. A state ~s is a labelled preorder. The set ofall states is denoted ~S. As before for sts, we denote by S the set of all typeconsistent intepretations of V . Thus ~S = S � �V , and a state ~s decomposesas ~s = (s;�V) : (12)An sts with scheduling speci�cations is a triple ~� = hV;�; ~� i, where V;�are as before, and ~� � S � ~S = S � S � �V ; (13)i.e., ~� relates the value for the tuple of previous variables to the current state.By convention, transition relation ~� is trivially extended to a transitionon ~S, i.e., a subset of ~S � ~S, and runs are sequences s0; s1; s2; : : : that areconsistent with transition relation (13).We shall denote by � the transition relation on S obtained by projecting ~�on S�S, i.e., by ignoring the preorder component. Note that � = hV;�; � iis an ordinary sts. The composition of two sts with scheduling speci�cations~� = ~�1 k ~�2 ; (14)is de�ned as follows :1. Associated underlying sts (without scheduling speci�cations) are sim-ply composed : � = �1 k �2 : (15)Then we need to de�ne how preorders are combined.14

2. For s a state for �, for i = 1; 2 let si be the restriction of s to Vi, weknow that si is a state for �i. Let ~si = (si;�Vi) be the correspondingstate for ~�i, cf (12). De�ne�V =def �V1 _ �V2 (cf. (11), (16)~s =def (s;�V) : (17)Thus (15,16,17) de�ne how states of the components ~�i are combined to-gether, building up the states and runs of ~� = ~�1 k ~�2. Again, compositionk as extended to sts with scheduling speci�cations, is commutative andassociative.Notations for scheduling speci�cationsWe now introduce convenient notations for the graphs generating the aboveintroduced preorders. The notation u > v corresponds to the edge(10). For b a variable of type bool[f?g, and u; v variables of any type, thefollowing generic conjunct will be used to specify preorders :if b then u > v , resp. if b else u > valso written : u b > v resp. u b > vIn subsection 5.1, it is shown that scheduling speci�cations have the followingproperties : x b > y k y c > z) x b ^ c > z (18)x b > y k x c > y) x b _ c > y (19)Properties (18,19) can be used to compute input/output abstractions ofscheduling speci�cations :
h l

kch

b l

(a (b c)) ka

b

h

c

l

k

15

In this �gure, the diagram on the left depicts a scheduling speci�cation in-volving local variables. These are hidden in the diagram on the right, usingrules (18,19).Inferring scheduling speci�cations from causality analysisWe now provide a technique for inferring schedulings from causality analysisfor sts speci�ed as conjunctions of the particular set of generic conjuncts wehave introduced so far. Considering this restricted set of generic conjuncts isjusti�ed by the fact that 1/ all known synchronous languages can be encodedusing this set of basic conjuncts, and even more, 2/ these primitives allowto express the most general synchronization mechanisms that are compatiblewith the paradigm of perfect synchrony [Benveniste et al., 1992]. We recallnext this set of basic conjuncts for the sake of clarity :if b then w = uelse w = vu b > ww = f(u1; : : : ; uk)hw = hu1 = : : : = huk) (20)
In addition to the set (20) of primitives, state-variable �v associated to vari-able v can be used on the right hand side of each of the above primitivestatements. The third primitive involves a conjunction of statements thatare considered jointly. Later on, in the examples, we shall freely use nestedexpressions such as \if b then w = expr", where \expr" denotes an expres-sion built on the same set of primitives. It is understood that such expressionsneed to be expanded prior to applying the rules of formulas (21) given next.In formulas (21), each primitive statement has a scheduling speci�cationassociated with it, given on the corresponding right hand side of the table.Given an sts speci�ed as the conjunction of a set of such statements, for eachconjunct we add the corresponding scheduling speci�cation to the consideredsts. Since, in turn, scheduling speci�cations themselves have schedulingspeci�cations associated with them, this mechanism of adding schedulingspeci�cations must be applied until �xpoint is reached. Note that applyingthese rules until �xpoint is reached takes at most two successive passes. In16

formulas (21), labels of schedulings are expressions involving variables in thedomain f?; f;tg ordered by f? < f < tg ; with this in mind, expressionsinvolving the symbols \^" (min) and _" (max) have a clear meaning.(R-1) 8u hu > u
(R-2) if b then w = uelse w = v) 8>>>>>>>>>>>><>>>>>>>>>>>>:

b hb ^ (hu_hv) > hwhu b ^ hu > hwhv b ^ hv > hwu b ^ hu > wv b ^ hv > w(R-3) u b > w) b > hw(R-4) w = f(u1; : : : ; uk)hw = hu1 = : : : = huk)) ui hw > w
(21)

Note that there is no rule involving variables of the form ��z , as previousstate variables are available prior to starting the current reaction and thusdo not participate to the causality calculus. Rules (R-1,. . . ,R-4) are formallyjusti�ed in section 5. We brie
y report the corresponding results. For P ansts, �rst apply Rules (R-1,. . . ,R-4) until �xpoint is reached : this yields ansts we call sched(P). Then, a su�cient condition for P to have a uniquedeterministic run is :1. sched(P) is circuitfree at each instant, meaning that it is never truethat x1 b1 > x2 b2 > x1and(b1 ^ b2 = t)17

where x1 and x2 are distinct variables.2. sched(P) has no multiple de�nition of variables at any instant, meaningthat, whenever if b1 then x = exp1^ if b2 then x = exp2holds in P and the exp1 and exp2 are di�erent expressions, thenb1 ^ b2 = tnever holds in P.Then P is said to be executable, and sched(P) provides (dynamic) schedul-ing speci�cations for this run. Note that proof obligations resulting fromthe above two conditions are generally not automatically provable, thereforeabstractions may have to be considered.Summary. What do we have at this stage ?1. sts composition is just the conjunction of constraints.2. Scheduling speci�cations do compose as well.3. Since causality analysis is based on an abstraction, the rules (R-1,...,R-4) for inferring scheduling from causality are bound to the syntax of thests conjuncts. Hence, in order to maximize the chance of e�ectivelyrecognizing that an sts P is executable, P is generally rewritten in a dif-ferent but semantically equivalent syntax (runs remain the same) whilecausality analysis is performed4. But this latter operation is global andnot compositional : here we reach the limits of ideal compositionality.3.3 Causality analysis : examplesWe show here some sts statements and their associated scheduling as derivedfrom causality analysis. In the following �gures, vertices in boldface denoteinput clocks, vertices in bold-italic denote input data, and vertices in courier4This is part of the job performed by the Signal compiler's \clock calculus".18

denote other variables. It is of interest to split between these two di�erenttypes of inputs, as input reading for an sts can occur with any combina-tion of data{ and demand{driven mode. Note that, for each vertex of thegraph, the labels sitting on the incoming branches are evaluated prior to theconsidered vertex. Thus, when this vertex is to be evaluated, the other vari-ables needed for its evaluation are already known. Resulting directed graphs(which are labelled with booleans) specify the set of all legal schedulings forthe execution of the considered sts ; this is formalized in section 5.A reactive sts :if b then z = u else z = v (input clock)
(input data)
(other)

u

b

h v

h

h

u hvhb ()

hu b hv

h

hu b hv b

vu

b

z

h

b

zIn the above example, input data are associated with their correspondinginput clocks : this sts reads its inputs on a purely data-driven mode, inputpatterns (u; v; b) are free to be present or absent, and, when they are present,their value is free also. We call it a \reactive" sts.The full example, a proactive sts :
u

u

u

-1

time

z if b then z = u else z = v^ if hz then v = ��z � 1 else v = ?^ if hv then b = (v � 0) else b = ?^ hv = hz = hb^ (b = t) = (hu = t)Applying scheduling rules (R-1,. . . ,R-4) and then performing some straight-forward simpli�cations, we get the result shown in �gure 1. Note the changein control : f input clock, input datag have been drastically modi�ed fromthe \ if b then z = u else z = v" statement to the complete sts : inputsnow consist of the pair fh; vug, where vu refers to the value carried by u19

uh

b

vbzbu

h

h

h
h

hh

if b then z = u else z = v^ if hz then v = ��z � 1 else v = ?^ if hv then b = (v � 0) else b = ?^ hv = hz = hb =def h^ (b = t) = (hu = t)Figure 1: Scheduling from causality analysis for the example.when present. Reading of u occurs on demand, when condition b is true. Wepropose to call such an sts \proactive".3.4 Generating scheduling for separate modulesRelevant target architectures for embedded applications are typically 1/ pure-ly sequential code (such as C-code), 2/ code using a threading or taskingmechanism provided by some kind of a real-time OS (here the threadingmechanism o�ers some degree of concurrency), or 3/ DSP-type multiproces-sor architectures with associated communication media.On the other hand, the scheduling speci�cations we derive from causalityrules (R-1,...,R-4) still exhibit maximal concurrency. Actual implementationswill have to conform to these scheduling speci�cations. In general, theywill exhibit less (and even sometimes no) concurrency, meaning that furthersequentialization has been performed to generate code.Of course, this additional sequentialization can be the source of potential,otherwise unjusti�ed, deadlock when the considered module is reused in theform of object code in some environment, this was illustrated in subsection3.1. The traditional answer to this problem by the synchronous programmingschool has been to refuse considering separate compilation : modules forfurther reuse should be stored as source code, and combined as such beforecode generation.We shall however see that this does not need to be the case, however.Instead, a careful use of the scheduling speci�cations of an sts will allow usto decompose it into modules that can be stored as object code for furtherreuse, whatever the actual environment and implementation architecture willbe. For the sake of clarity, we restrict our discussion to the case of single-clocked sts, i.e., an sts in which all declared variables have the same clock.20

The issue is illustrated in the following picture, in which the directed graphde�ning the circuitfree scheduling speci�cation of some single-clocked sts isdepicted :
input clock
input data
other

they all depend on the same inputsIn the above picture, the gray zones group all variables which depend onthe same subset of inputs, let us call them \tasks". Tasks are not subject tothe risk of creating fake deadlocks from implementation, unlike the examplefrom subsection 3.1. In fact, as all variables belonging to the same task de-pend on the same inputs, each task can be executed safely according to thefollowing scheme : 1/ collect inputs, 2/ execute task.In the next picture, we show how the actual implementation is prepared :
task for reuseabstract schedulerThe thick arrows inside the task depicted on the right show one possiblefully sequential scheduling of this task. Then, what should be really storedas source code for further reuse is only the abstraction consisting of the tasksviewed as black-boxes, together with their associated interface scheduling spec-i�cations. In particular, if the supporting execution architecture involves areal-time tasking system implementing some preemption mechanism in orderto dynamically optimize scheduling for best response time, tasks can be freelysuspended/resumed by the real-time kernel, without impairing conformity ofthe object code to its speci�cation. Using our notion of scheduling speci�-cation, the above approach easily extends to general sts, in which severaldi�erent clocks are involved. 21

3.5 Relaxing synchronyLoosening synchrony. The major problem is that of testing for absencein an asynchronous environment. This is illustrated in the following picturein which the information about presence of variables in the considered instantis lost when passing from left{ to right{hand side, since explicit de�nition ofthe \instant" is not available any more :
absence
test for

synchrony asynchrony

?

The question mark indicates that it is generally not possible, in an asyn-chronous environment, to decide upon presence/absence of a signal relativelyto another one. While testing for absence is perfectly sound in a synchronousparadigm, it is meaningless in an asynchronous one.The solution consists in restricting ourselves to so-called endochronoussts. Endochronous sts are those for which the control depends only on1/ the past state, and 2/ the values possibly carried by environment signals,but not on the presence/absence status of these signals. For an endochronoussts, loosing the synchronization barriers that de�ne the successive reactionswill not result in changing its semantics ; this is formalized in subsection 4.2.An example of an sts which is \exochronous" is the \reactive" sts givenon the left{hand side of the following picture, whereas the \proactive" stsshown on the right{hand side is endochronous :
(input clock)
(input data)
(other)

u

b

h v

h

h

u hvhb ()

hu b hv

h

hu b hv b

vu

b

z

h

b

z uh

b

vbzbu

h

h

h
h

hhIn the diagram on the left{hand side, three di�erent clocks are source n-odes of the directed graph. This means that the �rst decision in executing a22

reaction consists in deciding upon relative presence/absence of these clock-s. In contrast, in the diagram on the right{hand side, only one clock, theactivation clock h, is a source node of the graph. Hence no test for relativepresence/absence is needed, and the control only depends on the value of theinternally computed boolean variable b.How endochrony allows us to desynchronize an sts is illustrated in an in-tuitive way on the following diagram, which depicts the scheduling speci�ca-tion associated with the (endochronous) pseudo-statement \ if b then get u" :
T TF F

u

b T TF Fb

uIn the diagram on the left, a history of this statement is depicted, showingthe successive instants (or reactions) separated by thick dashed lines. Inthe right{hand side diagram, thick dashed lines have been removed. Clearly,no information has been lost : we know that u should happen exactly whenb = t, and thus awaiting for the value of b is enough for deciding whether uis to be waited for. A formal study of desynchronization and endochrony ispresented in section 4.Moving from exochronous programs to endochronous programs can beperformed, we only show one typical but simple example :
k k’k k’

h

b b’
(other)
(input data)
(input clock)

hh

The idea is to add to the considered sts a monitor which delivers the pres-ence/absence information via two boolean variables b; b0 with identical clocksh, and such that [k = t] = [b = t], and similarly for k0; b0. The resultingsts is endochronous, since boolean variables b; b0 are scrutinized at the paceof activation clock h. Other schemes are also possible, this is discussed insubsection 4.5. 23

Loosening synchronous composition. The second question is that ofpreserving the semantics of synchronous composition when an asynchronouscommunication medium is used. In the synchronous programming paradigm,communication occurs via instantaneous broadcast, meaning that all com-ponents must agree on 1/ which variable is present/absent in the consideredreaction, and then 2/ what is the value carried by each present variable.Again this protocol is meaningless in an asynchronous communication medi-um. In subsection 4.3, it is shown that the condition for semantics preservingdesynchronization of the communication is that the considered pair of stsshould be isochronous.Isochrony is a property of the synchronous composition P k Q of two sts.Roughly speaking, a pair of sts is isochronous if every pair of reactions, ofP and Q respectively, which agree on present common variables, also agreeon all common variables. Thus, again, common agreement for compositionof reactions can disregard absence.Endochrony and isochrony are the basic concepts for our theory of desyn-chronization. For this theory to hold, requirements for the communicationmedium are : 1/ it should not lose messages, and, 2/ it should not changethe order of messages associated with each given variable.3.6 Modular design, gals architecturesFrom the theory informally presented in the previous subsections, the follow-ing approach results for modular design and distributed implementations ofreactive systems. The target architecture is Globally Asynchronous, LocallySynchronous (gals) by nature. The whole approach is summarized in thediagram of �gure 2, where the considered sts is assumed to possess a unique,deterministic execution, i.e., it satis�es the correctness criteria stated in sec-tion 3.2. In this diagram, gray rectangles denote three modules P1; P2; P3 ofthe source sts speci�cation, hence given by P = P1 k P2 k P3. We assume herethat this partitioning has been given by the designer, based on functional andarchitectural considerations.White bubbles inside the gray rectangles depict the structuration intotasks as discussed in subsection 3.4. The black half-ellipses denote the mon-itors. Monitors are in charge of 1/ providing the additional protocols ifasynchronous communication media are to be used, and 2/ specifying thescheduling of the abstract tasks. 24

original
module

monitor:
protocols
+ scheduling

Figure 2: Implementation architecture.In principle, communication media and real-time kernels do not needto be speci�ed here, as they can be used freely provided they respect thesend-receive abstract communication model and conform to the schedulingconstraints set by the monitors.4 Formal study of desynchronizationHow far/close is indeed synchrony from asynchrony has already been dis-cussed in the litterature, thus questioning the oversimpli�ed vision of \zerotime" computation and instantaneous broadcast communication. Early pa-per [Benveniste and Berry, 1991] informally discussed the link between per-fect synchrony and token-based asynchronous data
ow networks, see in par-ticular section V therein. The �rst formal and deep study is [Caspi 1992] :a precise relation is established between so-called well-clocked synchronousfunctional programs and the subset of Kahn networks amenable to \bu�er-less" evaluation.Distributed code generation from synchronous programs, requires to ad-dress the issue of the relationship between synchrony and asynchrony in someway or another. Mapping synchronous programs to a network of automa-ta, communicating asynchronously via unbounded �fos, has been proposedin [Caillaud et al., 1997]. Mapping Signal programs to distributed archi-tectures was proposed in [Ma�eis and LeGuernic, 1994, Aubry 1997], basedon an early version of the theory we present in this paper. The SynDEx25

tool [Sorel and Lavarenne, Sorel 1996] also implements a similar approach.Recent work [Berry and Sentovich 1998] on the Polis system proposes toreuse the \constructive semantics" approach for the Esterel synchronouslanguage, with CFSM (Codesign Finite State Machines) as a model of syn-chronous machines which can be desynchronized.Independently, another route to relate synchrony and asynchrony hasbeen followed. In [Benveniste and LeGuernic 1990, LeGuernic et al., 1991]it was shown how nondeterministic Signal programs can be used to mod-el asynchronous communication media such as queues, bu�ers, etc. ReactiveModules were proposed [Alur and Henzinger 1996] as a synchronous languagefor hardware modelling, in which asynchrony is emulated by the way of non-determinism. Although this is of interest, we believe this approach is notsuited to analyze true asynchrony, in which no notion of a global state isavailable, unlike for synchrony.We �rst informally discuss the essentials of asynchrony. SynchronousTransition Systems were de�ned in section 2.2, and their asynchronous coun-terpart is de�ned in subsection 4.1, where desynchronization is also formallyde�ned. The rest of this section is devoted to the analysis of desynchroniza-tion and its inverse, namely resynchronization.4.1 Desynchronizing sts, and two fundamental prob-lemsWe �rst start with an informal discussion, following the discussion of subsec-tion 2.1. Keeping in mind the essentials of the synchronous paradigm, we arenow ready to discuss informally how asynchrony relates to synchrony. Re-ferring to points 1, 2, and 3 of the discussion of subsection 2.1, the followingcan be stated about asynchrony :1. Reactions cannot be observed any more : as no global clock exists, theglobal synchronization barriers which indicate the transition from onereaction to the next one are no more available. Instead, we only assumea reliable distributed communication medium, in which messages arenot lost, and messages within each individual channel are sent anddelivered in the same order. We call a
ow such a totally orderedsequence of messages.2. Absence cannot be sensed, and thus cannot be used to exercise control.26

3. Composition occurs by means of separately unifying each common
owof the two components. This models in particular the communicationsvia asynchronous unbounded �fos, such as used, say, in Kahn networks.Rendez-vous type of communication can also be abstracted in this way.From the de�nition (1) of a run of an sts, we can say that a run is asequence of tuples of values in domains extended with the extra symbol ?.Desynchronizing a run amounts to discarding the synchronization barriersde�ning the successive reactions. Hence, for each variable v 2 V , we onlyknow the ordered sequence of present values. Thus desynchronizing a runamounts to mapping a sequence of tuples of values in domains extended withthe extra symbol ?, into a tuple of sequences of present values, one sequenceper each variable. This is formalized next.For � : s0; s1; s2; : : : a run for �, we decompose state sk assk = (sk[v])v2VThus we can rewrite run � as follows :� = (�[v])v2V ; where�[v] = s0[v] ; s1[v] ; : : : ; sk[v] ; : : : :Now, compress each �[v] by deleting those sk[v] that are equal to?. Formally,we denote by k0; k1; k2; : : : the subsequence of k = 0; 1; 2; : : : such that sk[v] 6=?. Then we set �a = (�a[v])v2V ; where�a[v] = sk0 [v] ; sk1 [v] ; sk2[v] ; : : : :This de�nes the desynchronization mapping� 7�! �a ; (22)where each �a[v] = sk0 [v] ; sk1[v] ; sk2[v] ; : : :is called a
ow in the sequel.For � = hV;�; �i an sts, we de�ne�a =def hV;�ai ; (23)27

where �a is the family of all �a, for � ranging over the set of runs of �. For�i = hVi;�i; �ii ; i = 1; 2, we de�ne�a1 ka �a2 =def hV;�ai ;where (V = V1 [V2�a = �a1 ^a �a2 (24)and ^a denotes the conjunction of sets of asynchronous runs, which wede�ne now. For �ai 2 �ai ; i = 1; 2, we say that �a1 and �a2 are uni�able, written�a1 ./a �a2 ; (25)if the following condition holds :8v 2 V1 \ V2 : �a1 [v] = �a2 [v] holds.If condition (25) holds, then we de�ne �a =def �a1 ^a �a2 as8v 2 V1 \ V2 : �a[v] = �a1 [v] = �a2 [v]8v 2 V1 n V2 : �a[v] = �a1 [v]8v 2 V2 n V1 : �a[v] = �a2 [v]Finally, �a is the set of the so de�ned �a. Thus asynchronous compositionproceeds via uni�cation of shared
ows.Synchrony vs. Asynchrony ? At this point two natural questions arise,namely :Question 1 (desynchronizing a single sts) Is resynchronization feasibleand uniquely de�ned ? More precisely, is it possible to uniquely reconstructthe original run � for our sts from its desychronised version �a as de�nedin (22) ?Question 2 (desynchronizing a communication) Does communicationbehave equivalently for both the synchronous and asynchronous compositions ?More precisely, does the following property hold :�a1 ka �a2 = (�1 k �2)a ? (26)
28

If question 1 had a positive answer, then we could desynchronize a run ofthe considered sts, and then still recover the original synchronous run. Thusa positive answer to question 1 would guarantee the preserving of the syn-chronous semantics when performing desynchronization, for a single sts.On the other hand, if question (26) had a positive answer, then we couldinterpret our sts composition equivalently as synchronous or asynchronous.Unfortunately, neither 1 nor 2 have positive answers in general, due tothe possibility to exercise control by the way of absence in synchronous com-position k . In the following section, we show that questions 1 and 2 havepositive answers under certain su�cient conditions, in which the two notionsof endochrony (for point 1) and isochrony (for point 2) play a central role 5.4.2 Endochrony and re-synchronization4.2.1 Formal resultsIn this section, we use notations from section 2.2. For � = hV;�; �i an sts,and s a reachable state of �, we denote by sh the clock-abstraction of s,de�ned by 8v 2 V : sh[v] 2 f?;>g; and sh[v] = ? , s[v] = ? (27)For � = hV;�; �i an sts, s� a reachable previous state for �, and W 0 �W � V , we say that W 0 is a clock inference of W given s�, writtenW 0 ,!s� W ; (28)if, for each state s reachable from s� for �, knowing the presence/absence andactual value carried by each variable belonging to W 0, allows us to determineexactly the presence/absence for each variable belonging to W . In otherwords, s[W 0] determines sh[W] : (29)If W 0 ,!s� W1 and W 0 ,!s� W2 hold, then W 0 ,!s� (W1 [W2) follows, thusthere exists a greatestW such thatW 0 ,!s� W holds. Hence we can considerthe unique increasing chain, for s� given,; = V (0) ,!s� V (1) ,!s� V (2) ,!s� : : : (30)5 Endochronous, from ancient greek "��o{inside and ��o�o&{time ; Isochronous, fromancient greek ��o{identical and ��o�o&{time. It's sometimes nice to remember that an-cient greeks used to be great scientists, and thus honor them by reusing their words in ourcontext. 29

of subsets of V such that, for each k, V (k) is the greatest set of variables suchthat V (k � 1) ,!s� V (k) holds. As ; = V (0), V (1) consists of the subset ofvariables that are present as soon as the considered sts gets activated 6. Ofcourse chain (30) must become stationary at some �nite kmax : V (kmax+1) =V (kmax). In general, we only know that V (kmax) � V . Chain (30) is calledthe synchronization chain of �.De�nition 1 (endochrony) sts � is said to be endochronous if, for eachstate s� reachable for �, V (kmax) = V , i.e., if the following condition issatis�ed : the synchronization chain(E) ; = V (0) ,!s� V (1) ,!s� V (2) ,!s� : : : converges to V . (31)Condition (31) expresses that presence/absence of all variables can be in-ferred incrementally from already known values carried by present variablesand state variables of the sts in consideration. Hence no test for pres-ence/absence on the environment is needed. The following theorem justi�esour approach :Theorem 1 Consider an sts � = hV;�; �i.1. Conditions (a) and (b) are equivalent, where :(a) � is endochronous.(b) For each � 2 �a, we can reconstruct the corresponding synchronousrun � such that �a = �, in a unique way up to silent reactions.2. Assume � is endochronous and stuttering invariant. If �0 = hV;�; �0iis another endochronous and stuttering invariant sts then(�0)a = �a) �0 = � (32)Proof : We prove successively points 1 and 2.1. We �x the previous state s� and prove the result by induction. Pick a� 2 �a, and assume for the moment that we were able to decompose itas : s1 ; s2 ; : : : ; sn| {z }n�initial segment of � ; �n (33)6Of course we assume here that no variable is absent in every reachable state.30

i.e., into a �nite sequence of length n composed of non-silent states si(the head of the synchronous run � we wish to reconstruct), followedby the tail of the asynchronous run �, which we denote by �n, and weassume that such a decomposition is unique. Then we claim that(33) is also valid with n substituted by n+ 1. (34)To prove (34), we note that, when sts � gets activated, then we knowthat variables belonging to V (1) will be present in the considered state.By assumption, the clock-abstracted state shn+1[V (1)], having V (1) asvariables, is uniquely determined. In the sequel we write shn+1(1) forshort instead of shn+1[V (1)]. Thus, presence/absence of variables forstate sn+1(1) is known, it remains to determine the values carried bypresent variables.For v 2 V1, we simply pick the value carried by the minimal elementof the sequence associated with variable v in �n. Values carried bycorresponding state variables are updated accordingly. Thus we knowall of sn+1(1).Next we move on constructing sn+1(2). From sn+1(1) we know shn+1(2).Thus we know how to split V2 into present and absent variables for theconsidered state. Pick the present ones, and repeat the same argumentas before to get sn+1(2).Repeat this argument until V (k) = V for some �nite k (by endochronyassumption). This proves claim (34).Given the initial condition for �, we get from (34), by induction, thedesired proof that (a)) (b).Next, we prove (b)) (a). We assume that � is not endochronous, andshow that condition (b) cannot be satis�ed. If � is not endochronous,there must be some reachable state s� for which chain (31) does notconverge to V . Thus again we pick a � 2 �a, decomposed as for case1, cf. formula (33) : s1 ; s2 ; : : : ; sn| {z }n�initial segment of � ; �nand we assume in addition that sn = s�, the given state for whichendochrony is violated. We now show that (34) is disproved. Let31

k� � 0 be the smallest index such that V (k) = V (k + 1), we knowVk� 6= V . Thus we can apply the algorithm of case 1 for reconstructingthe reaction, until variables of Vk�. Then presence/absence for variablesbelonging to V n Vk� cannot be determined based on the knowledge ofvariables belonging to Vk�. Thus there are several possible extensionsfor shn+1(k� + 1) and thus (n + 1)-st reaction is not determined in aunique way. Hence condition (b) is falsi�ed.2. Assume � is endochronous, and consider �0 as in point 2 of the theo-rem. As both � and �0 are stuttering invariant, point 2 is an immediateconsequence of point 1. �Comments.1. For an sts, endochrony is not decidable in general. It is decidable forsts involving, say, only �nite domains for their variables, and modelchecking can be used for that. For general sts, model checking can beused, in combination with abstraction techniques. The case of interestis when the chain V (0); V (1); : : : does not depend upon the particularstate s�, and we write simply V (k) ,! V (k + 1) in this case.2. The proof of this theorem in fact provides an e�ective algorithm forthe on-the-
y reconstruction of the successive reactions, for a desyn-chronized run of an endochronous program.(Counter)examples.examples :� a single-clocked sts.� sts \ if b = t then get u ", where b; u are the two inputs, andb is boolean. The clock of b coincides with the activation clockfor this sts, and thus V (1) = fbg. Then, knowing the value for bindicates whether or not u is present, thus V (2) = fb; ug = V .counterexample : sts \ if ([present a] k [present b]) then::: " is notendochronous, as the environment is free to o�er any combination ofpresence/absence for the two inputs a; b. Thus ; = V (0) = V (1) =V (2) = : : : �6= V , and endochrony does not hold.32

4.2.2 Practical consequencesA �rst use of endochrony is shown in the following �gure :
1 2Φ

Ψ1,2

ΦIn this �gure, a pair (�1;�2) of sts is depicted, with W as set of sharedvariables. Rewrite their composition as follows :�1 k �2 = �1 k 	1;2 k �2where 	1;2 is the restriction of �1 k �2 to W , hence 	1;2 models the syn-chronous communication channel. Using the property � k � = � for everysts �, we get�1 k �2 = (�1 k 	1;2)| {z }e�1 k (1;2 k �2)| {z }e�2 = e�1 k e�2 (35)Assume now that channel model 	1;2 is endochronous, and composition�1 k �2 is implemented as the (equivalent) composition e�1 k e�2. Then,as e�1 knows channel 	1;2 and the latter is endochronous, then communica-tion can be equivalently implemented according to perfect synchrony or fullasynchrony.This is �ne, but it does not extend to networks of sts involving morethan two nodes. The following �gure shows an example :
1 Φ2Φ Φ

ΨΨ1 2Assume 	1;	2 are both endochronous. Then communication between �1and � on the one hand, and � and �2 on the other hand, can be desynchro-nized. Unfortunately, communication between �1 and �2 via � can't, as itis not true in general that 	1 k � k 	2 is endochronous. The problem isthat endochrony is not compositional, hence even ensuring in addition that� itself is endochronous would not do. Thus we would need to ensure that	1;	2 as well as 	1 k � k 	2 are all endochronous, not an elegant solution33

when networks are considered ! Thus we move on introducing the alternativenotion of isochrony, which focusses on communication, and is compositional.4.3 Isochrony, and synchronous and asynchronous com-positionsThe next result addresses the question of when property (26) holds true. Weare given two sts �i = hVi;�i; �ii ; i = 1; 2. Denote by W = V1\V2 the set oftheir common variables, and by � = �1 k �2 their synchronous composition.For s a reachable state in �, we denote by s1 =def s[V1] and s2 =def s[V2] therestrictions of state s to �1 and �2, respectively. Note that, for i = 1; 2, si isa reachable state for �i. Corresponding notations s�; s�1 ; s�2 for past stateswill be used accordingly.De�nition 2 (isochrony) Consider a pair (�1;�2) of sts. Transitions of�i; i = 1; 2, are written (s�i ; si). Consider the following conditions on pairs((s�1 ; s1); (s�2 ; s2)) of transitions for (�1;�2) :(i) 1. s�1 = s�[V1] and s�2 = s�[V2] holds for some reachable state s� for�, in particular s�1 and s�2 are uni�able ;2. none of the states si; i = 1; 2 are silent on the common variables,i.e., it is not the case that, for some i = 1; 2 : si[v] = ? holds8v 2 W ;3. s1 and s2 coincide over the set of present common variables 7, i.e. :8v 2 W : (s1[v] 6= ? and s2[v] 6= ?)) s1[v] = s2[v] ;(ii) States s1 and s2 coincide over the whole set of common variables, i.e.,states s1 and s2 are uni�able :s1 = s[V1] and s2 = s[V2] holds for some state s for � :The pair (�1;�2) is called isochronous if condition (i) implies condition (ii),for each pair ((s�1 ; s1); (s�2 ; s2)) of transitions for (�1;�2).7By convention this is satis�ed if the set of present common variables is empty.34

Comment. Roughly speaking, condition of isochrony expresses that unify-ing over present common variables is enough to guarantee the uni�cation ofthe two considered states s1 and s2. Condition of isochrony is illustrated onthe following �gure :
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

s [w]s [w]
1

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

2
s [w]

1

2

s [w]

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

The �gure depicts, for uni�able previous states s�1 ; s�2 , corresponding statess1; s2 where (s�i ; si) is a valid transition for �i. It shows the interpretationof s1 (circle on the left) and s2 (circle on the right) over shared variables W .White and dashed areas represent absent and present values, respectively.The two left and right circles are superimposed in the mid circle. In general,vertically and horizontally dashed areas do not coincide, even if s1 and s2unify over the subset of shared variables that are present for both transitions(double-dashed area). Pictorially, uni�cation over double-dashed area doesnot imply in general that dashed areas coincide. Isochrony indeed requiresthat uni�cation over double-dashed area does imply that dashed areas coin-cide, hence uni�cation of s1 and s2 follows. It is interesting to reformulateisochrony in a di�erent way.De�ne the desynchronized conjunction of two transition relations �1 ^a �2as follows. For t1 and t2 two transitions, we de�ne asynchronous uni�abilityt1 ./a t2 by :t1 ./a t2 i� v 2 V1 \ V2; andt1[v] 6= ? and t2[v] 6= ? !) (t1[v] = t2[v]) (36)Note that t1 ./a t2 means that transitions t1 and t2 are uni�able on theircommon present ports, regardless of absence (this is just the restriction totransitions of the de�nition of ./a which was formulated for
ows). De�nition(36) is in contrast to synchronous uni�ability, or uni�ability for short, t1 ./ t2de�ned by : t1 ./ t2 i� (v 2 V1 \ V2)) (t1[v] = t2[v]) (37)35

which means that transitions t1 and t2 are uni�able on their common ports,including presence/absence. Condition (37) corresponds to the conjunctionof transition relations introduced in the de�nition of sts composition. Ift1 ./a t2, we can de�ne t1 ta t2 by(t1 ta t2)[v]=def if 9i = 1; 2 : (v 2 Vi and ti[v] 6= ?) then ti[v] else ?With this in mind, we de�ne �1 ^a �2 as follows :�1 ^a �2 = ft1 ta t2 : ti j= �i8i = 1; 2 ^ t1 ./a t2g ;and isochrony is equivalently reformulated as follows :De�nition 3 (Isochrony, reformulation) Let (�1;�2) be a pair of stsand � = �1 k �2 be their parallel composition. The pair (�1;�2) is calledisochronous if �1 ^ �2 = �1 ^a �2 (38)holds, restricted to the set of reachable states for �.The following theorem justi�es introducing this notion of isochrony.Theorem 21. If the pair (�1;�2) is isochronous, then it satis�es property (26).2. Conversely, assume in addition that �1 and �2 are both endochronous.If the pair (�1;�2) satis�es property (26), then it is isochronous.Thus, isochrony is su�cient for (26) to hold, and it is also in fact necessarywhen the components are endochronous.Comments :1. We already discussed the importance of guaranteing property (26).Now, why is this theorem interesting ? Mainly because it replaces con-dition (26), which involves in�nite runs, by condition (I) of isochrony,which only involves a single reaction for the considered pair of sts.2. Comment 1 for endochrony also applies here.36

Proof : We successively prove points 1 and 2.1. Isochrony implies property (26). We proceed into two steps.1. The desynchronization of �, de�ned by (23), is denoted by �a, andwe denote by � a run of �a. For each � 2 �a, there is at least onecorresponding synchronous run � for � such that � = �a. Any such� is clearly the synchronous composition of two uni�able runs �1 and�2 for �1 and �2, respectively. Hence associated asynchronous runs �a1and �a2 are also uni�able, and their asynchronous composition �a1 ^a �a2belongs to �a1 ^a �a2. Thus we always have the inclusion�a1 ka �a2 � (�1 k �2)a ; (39)which proves the �rst part of (26). So far we have only used the def-inition of desynchronization and asynchronous composition, isochronyhas not yet been used.2. To prove the opposite inclusion, we need to prove that, when mov-ing from asynchronous composition to synchronous one, the additionalneed for a reaction-per-reaction matching of uni�able runs will not re-sult in rejecting pairs of runs that otherwise would be uni�able in theasynchronous sense. This is where condition (I) of isochrony enters thegame.Pick a pair (�1; �2) such that �1 ./a �2 (cf. (25)) : they can be combinedwhile performing the asynchronous composition �a1 ka �a2 to form some� (cf. (24)), this is denoted by �1 ^a �2 = �. By de�nition of desynchro-nization (cf. subsection 4.1), there exist a (synchronous) run �1 for �1,and a (synchronous) run �2 for �2, such that �i is obtained by desyn-chronizing �i, i = 1; 2 (as we do not assume endochrony at this point,run �i is not uniquely determined). Thus each run �i is a succession ofstates. Clearly, inserting �nitely many silent states between successivestates of �i would also provide valid candidates for recovering �i afterdesynchronization. We shall show, by induction over successive states,that :properly inserting such a silent state in the appropriatecomponent will provide two runs which areuni�able in the synchronous sense. (40)37

This will show that, from a pair (�1; �2) such that �1 ./a �2, we canreconstruct (at least) one pair (�1; �2) of runs for �1 and �2 that areuni�able in the synchronous sense, and thus will prove the alternativeinclusion �a1 ka �a2 � (�1 k �2)a : (41)From (39) and (41) we then deduce property (26). We prove (40) now,by induction over successive states.We are given a pair (�1; �2) such that �1 ./a �2. Pick a �1 such that�a1 = �1 , and similarly for �2. For s1 ; s2 ; : : : ; sn a �nite run, wesay that another run s01 ; s02 ; : : : ; s0m is a stretching of s1 ; s2 ; : : : ; sn,written s01 ; s02 ; : : : ; s0m = (s1 ; s2 ; : : : ; sn)" (42)if there is a strictly increasing subsequence k1; : : : ; kn of 1; : : : ; m suchthat s0kj = sj; j = 1; : : : ; n, and s0k = ? for k 6= k1; : : : ; kn. Note that(42) implies m � n. Using notation (42) we introduce the followinghypothesis, for use in our inductive reasoning : for i = 1; 2, run �idecomposes as �i = si;1 ; si;2 ; : : : ; si;ni| {z }initial segment of length ni ; �i;ni (43)and there are stretchings such thats0i;1 ; s0i;2 ; : : : ; s0i;n = (si;1 ; si;2 ; : : : ; si;ni)" for i = 1; 2s01;m ./ s02;m for m = 1; : : : ; n (44)Note that (44) implies �a1;n1 ./a �a2;n2 . De�ne index�(n) = minfn1; n2gwhere ni is de�ned in (43). To perform the proof by induction, we needto extend (43,44) in such a way that index �(n) grows to in�nity.To this end, decompose the tail �i;ni into�i;ni = si;ni+1 ; �i;ni+1 :The following cases can occur : 38

case 1 : none of the two states s1;n1+1 and s2;n2+1 is silent over thecommon W variables. Concentrate on those v 2 W variables thatare present in both states s1;n1+1 and s2;n2+1. As �1 ./a �2 holds,then we must have s1;n1+1[v] = s2;n2+1[v] for any such v. Thuspoints 1,2,3 of condition (I) of isochrony are satis�ed. Hences1;n1+1 and s2;n2+1 are indeed uni�able in this case, by isochrony.Therefore, in this case, hypothesis (43,44) extends in such a waythat �(n+ 1) = minfn1 + 1; n2 + 1g = �(n) + 1 holds.case 2 : both states s1;n1+1 and s2;n2+1 are silent over the common Wvariables. They are uni�able. Again, hypothesis (43,44) extendsin such a way that �(n+ 1) = �(n) + 1 holds.case 3 : one and only one of the two states s1;n1+1 and s1;n1+1 is silentover the common W variables, say 8v 2 W : s1;n1+1[v] = ?.In this case we unify state s1;n1+1 with the silent state ? for �2.Thus the matching hypothesis (44) is extended as :s01;1 ; s01;2 ; : : : ; s01;n ; s01;n+1 = (s1;1 ; s1;2 ; : : : ; s1;n1 ; s1;n1+1)"s02;1 ; s02;2 ; : : : ; s02;n ; ?|{z}s02;n+1 = (s2;1 ; s2;2 ; : : : ; s2;n2)"s01;m ./ s02;m for m = 1; : : : ; n+ 1 : (45)Therefore �(n + 1) = minfn1 + 1; n2g and we cannot infer that�(n+ 1) > �(n) holds in this case.Given the analysis above, we only need to show thatcase 3 cannot occur for in�nitelymany successive induction steps. (46)Assume (46) does not hold. Then this implies that the whole tail �1;n1 issilent over the commonW variables, while �2;n2 is not. But on the otherhand we should have �a1;n1 ./a �a2;n2 , see(44), whence a contradiction.This �nishes the induction proof, hence (41) follows.2. Under endochrony of the components, property (26) impliesisochrony. This is easy. From Theorem 1 we know that, in our argumentfor proving point 1 of theorem 2, the synchronous runs �i are uniquely de-�ned, up to silent states, from their desynchronized respective versions �ai .39

Now, focus on case 1 of this argument. If isochrony is not satis�ed, then, forsome pair �a1 ./a �a2 of uni�able asynchronous runs, and some decomposition(43) of them, it follows that points 1,2,3 of condition (I) of isochrony are sat-is�ed, but states s1;n+1 and s2;n+1 are not uni�able. As our only possibility isto try to insert silent states for one of the two components { not feasible incase 1 { our process of incremental uni�cation on a per reaction basis fails.Thus (41) is violated, and so is property (26). This �nishes the proof of thetheorem. �The following result is intrumental in proving compositionality of isochrony.Lemma 1 If pairs (;�1) and (;�2) are isochronous, then so is pair(;�1 k �2).Proof : Let (s�; s) and (t�; t) be pairs of successive states, for 	 and�1 k �2 respectively, satisfying condition (I) for isochrony, see de�nition2 or 3. Let t be the uni�cation of the two states s1 and s2 for �1 and �2,respectively. By point 2 of (I), at least one of these two states is not silent,assume s1 is not silent. From point 3 of (I), s and s1 coincide over the set ofpresent common variables, and thus, since pair (;�1) is isochronous, statess and s1 coincide over the whole set of common variables for 	 and �1. Thuss and s1 are uni�able. But, on the other hand, s1 and s2 are also uni�ablesince they are just restrictions of the same global state t for �1 k �2. Thusstates s and t are uni�able, and thus pair (;�1 k �2) is isochronous. Thisproves lemma 1. �An interesting immediate byproduct is the extension of the results ondesynchronization, to networks of communicating synchronous components :Corollary 1 (desynchronizing a network of components) We are giv-en a �nite family (�k)k=1;:::;K of sts. Assume that each pair (�k;�k0) isisochronous. Then1. For each disjoints subsets I and J of set f1; : : : ; Kg, the pair� kk2I �k ; kk02J �k0 � (47)is isochronous. Thus isochrony is compositional.2. Also, desynchronization extends to the network :(�1 k : : : k �K)a = �a1 ka : : : ka �aK : (48)40

Proof :1. Property (47) follows from lemma 1 via obvious induction on the car-dinal of sets I; J .2. The second statement is proved via induction on the cardinal of thenumber of components :(�1 k : : : k �K)a = ((�1 k : : : k �K�1) k �K)a= (�1 k : : : k �K�1)a ka �aK ;and the induction step follows from (47). �The next corollary expresses that isochrony is a \local" property.Corollary 2 (locality of isochrony) Assume pair (�1;�2) is isochronous,and pair (1;	2) is such that 	1 has no common variable with �2 k 	2 and	2 has no common variable with �1 k 	1. Then pair (1 k �1 ; �2 k 	2)is also isochronous.Proof : This follows directly from lemma 1. �This is a useful result, it says that, in order for a pair (kk2I �k ; kk02J �k0)to be isochronous, it is enough to check isochrony for pairs (�k;�k0) ofinteracting components.Note however that, in order for a pair (1 k�1 ; �2 k	2) to be isochronous,it is not necessary, but only su�cient, that the pair (�1;�2) is isochronous.(Counter)examples.examples :� a single-clocked communication between two sts.� the pair (e�1; e�2) of formula (35).counterexample : assume an sts communicates with another one accord-ing to the synchronous protocol \ await x k await y ", the resultingpair of sts is not isochronous. 41

4.4 Getting gals architecturesIn practice, only partial desynchronization of networks of communicatingsts may be considered. This means that we really want to have locallysynchronous components communicating via a globally asynchronous com-munication medium | this is refered to as gals architectures.In fact, theorems 1 and 2 provide the adequate solution. Let us assumewe have a �nite collection �i of sts such that :1. each �i is endochronous, and2. each pair (�i;�j) is isochronous.Then, from corollary 1 and theorem 1, we know that(�1 k : : : k �K)a = �a1 ka : : : ka �aKand each �ak is in one-to-one correspondence with its synchronous counterpart�k. Here is the resulting running mode for this gals architecture :� For communications involving a pair (�i;�j) of sts, each
ow is pre-served individually, but global synchronization is lost.� Each sts �i reconstructs its own successive reactions by just observ-ing its (desynchronized) environment, and then locally behaves as asynchronous sts.� Note that it is allowed, for each �i, to have an internal activation clockwhich is faster than communication clocks. Resulting local activationclocks evolve asynchronously from one another.4.5 Handling endo/isochrony in practiceWhile we have given criteria for endochrony and isochrony, we did not pro-pose a practical algorithm for checking these criteria. We do this now. Ouraim is to prepare for gals architectures such as discussed in subsection 4.4.In particular, throughout this subsection, a network of sts satisfying condi-tions 1 and 2 of subsection 4.4 will be called endo/isochronous.In this subsection, we shall indicate 1/ how a (tight) su�cient conditionfor endo/isochrony can be actually tested, and 2/ how making an sts en-do/isochronous can be performed. As both the Dc+ format and the Signal42

.
.
.

.
.
.

.
.
.

[c2]

c2

[c1]

c1

k0h0

b2

[b2]

.
.
.

.
.
.

.
.
.

b1

[b1]

Figure 3: The clock hierarchy computed by the Dc+ or Signal compiler.language can be considered as concrete instances of our sts model, we shallrely for our explanation on tools and algorithms already developed in theseenvironments.4.5.1 Checking endo/isochronyAs one of the modules of the existing Dc+ or Signal compiler, the datastructure shown in Figure 3 is computed, for a given program P : In this�gure, b; c denote boolean variables, [b]; [c] denote clocks composed of the in-stants at which b; c = t holds, respectively. Finally, h; k are also clocks. Thedown-arrows h0 ! b1, [b1]! b2, [b2]! b3, etc, indicate that boolean variableb1 has a clock equal to h0 and only needs variables with clock h0 for its eval-uation, and so on. Roots of the trees are related by clock equations, depictedfor instance by the bidirectional arrow relating h0 and k0. This de�nes a treeunder each clock h0; k0; : : :, and yields the so-called clock hierarchy in theform of a \forest", i.e., a collection of trees related by clock equations. Thisstructure is detailed in [Amagbegnon et al., 1994] [Amagbegnon et al., 1995],where it is shown to be a canonical representation of the combination of clockequations and scheduling speci�cations of a program. Now, considering thisclock hierarchy, one easily proves the following :43

Theorem 3 Assume program P has a clock hierarchy consisting of a singletree. Also assume it is decomposed as P = P1 k : : : k PK, and, for each k,the clock hierarchy of component Pk is a subtree of the clock tree of P . Thenthe corresponding network of sts is endo/isochronous.Theorem 3 is an immediate corollary of Theorem 1 of section 4, it onlystates a su�cient condition. In computing a clock hierarchy, the abstractionsperformed are twofold : 1/ inferring dependencies from causality analysis,and 2/ abstracting boolean variables which result from the evaluation of apredicate involving a non-boolean expression. In practice, we shall use theclock hierarchy as the practical criterion for checking endo/isochrony.4.5.2 Enforcing endo/isochronyAssume we have an sts P having a clock hierarchy which is not a tree, andwe still want it to be a tree. What can we do ? As revealed by inspectingthe previous �gure, it is su�cient to make the roots h0; k0; : : : of the clockhierarchy belonging to some single clock tree. In other words, we can concen-trate on the roots of the clock hierarchy. Thus the problem can be restatedas follows :We are given a set h1; : : : ; hk of clocks, which are related by a set of clockequations of the form : p1(h1; : : : ; hk) 6= f: : : (49)pq(h1; : : : ; hk) 6= fThis corresponds to having a collection p1; : : : ; pq of predicates on clocks,which are boolean-valued expressions that are either true or absent. Notethat being always true is the case for predicates in classical boolean log-ic, while in our case, due to the requirement for stuttering robustness, wemust accept the possibility for a \clock predicate" to be absent. Systems ofequations of the form (49) can be solved for their variables h1; : : : ; hk, mean-ing that we can �nd a set ho1; : : : ; hol of clocks, and a set po1; : : : ; pok of clockexpressions, such that equation system :h1 = po1(ho1; : : : ; hol): : : (50)hk = pok(ho1; : : : ; hol)44

has the same set of solutions for h1; : : : ; hk as the original system (49), andnew clocks ho1; : : : ; hol are free, i.e., unconstrained by the system of equations(50). Finally, we introduce boolean variables bo1; : : : ; bol , and a \master clock"ho, such that ho1 = [bo1] ; : : : ; hol = [bol]hbo1 = : : : = hbol = h (51)The bottom line is :1. System of clock equations (49) is equivalent to (50,51) after hidingauxiliary variables h; bo1; : : : ; bol .2. System (50,51) is a clock tree.Discussion. Basically, building (51,50) from (49) intuitively correspondsto equipping the original P program with a suitable communication protocolQ in such a way that the compound program P kQ is endo/isochronous. Thisis not surprising indeed, for it is known in the area of distributed systemsthat components in a distributed system must be equipped with suitableprotocols for their communications.Finally, the way we moved from (49) to (50) reveals one unpleasant featureof this technique, namely : this part of the process is not unique, and thusthere are possibly many di�erent correct protocols.5 Formal study of causalityIn this section we develop a formal theory of causality for sts. Our basic toolis that of scheduling speci�cations and labelled preorders. We �rst formal-ize this, by adding the value unkown to our domains, like in the Construc-tive Boolean logic used in [Berry and Sentovich 1998]. Using this extendeddomain, we are able to formally state and prove our criterion that circuit-freedom implies executability. Then we formalize the rules (R-1,2,3,4) of(21), and we �nally show how correct deterministic execution results from asuccessful causality analysis.
45

5.1 Encoding scheduling speci�cations using an alge-braic domainIn this section, we consider the following domain D and its two orderings �and < as an abstraction of arbitrary domains of values :D = f? ; >z }| {?; f;t|{z}> g (52)? � ?; f;t ? < f < t (53)In these formulas , symbols ? (resp. >) indicate that the value is \unknown"(resp. \known"). The \unknown" status should not be confused with absence(?) : absence is a perfectly known status, while \unknown" is intended tomodel that a variable has not been produced yet in the current reaction. Non-boolean types are abstracted as the single distinguished element >, hence,for booleans, the pair ff;tg can be seen as a re�nement of the symbol >,this is shown by the underbrackets. And f?;>g is a re�nement of >, this isshown by the overbrackets. Ordering < has already been introduced, and theadditional partial order � is the Scott information ordering : ? � ?; f;t,the three values ?; f;t being incomparable with respect to �.De�nition : Relation x b > y is de�ned in table 1, where it is speci�edin the form of a multivalued function. Its main feature is that it forbids,whenever b = t, that y gets known while x is not.Properties of scheduling speci�cations. The following properties hold :if b; c 6= ?, then : x b > y V y c > z) x b^c > zx b > y V x c > y) x b_c > y (54)In these equations, b^c and b_c are respectively de�ned as the in�mum (resp.supremum) w.r.t. relation \<" de�ned in (53) when both values belong tothe subdomain f?;t; fg. In fact, we do not need formulas (54) in case b or care unknown, because the label of a branch is known prior to its extremity, inexecutable programs equipped with their scheduling speci�cations as inferredfrom rules (R-1,. . . ,R-4). 46

x ? ? >b? ? ? ??ft ?Table 1: De�nition of the dependency x b > y. This table gives the resultof this multivalued function for its output y. When nothing is written, this meansthat any value is accepted. If x is boolean, then > is to be re�ned as any of thetwo values ff;tg.5.2 Circuitfree schedulingsWe are given a set of variables x1; : : : ; xn. Some of them are boolean ; forthe sake of readability, boolean variables used as labels in scheduling spec-i�cations, will be generically denoted by b1; b2; : : : Then we are given 1/ aset of constraints of the form C(b1; : : : ; bk) on boolean variables restrictedto subdomain f?;t; fg of known values ; and 2/ a set of scheduling speci�-cations de�ned on x1; : : : ; xn. Constraints C(b1; : : : ; bk) are extended to the\unknown" value by simply assuming C(b1; : : : ; bk) is satis�ed as soon as atleast one of the variables b1; : : : ; bk is \unknown".Each dependency is interpreted as speci�ed in Table 1. Thus, togetherwith the boolean constraints of the form C(b1; : : : ; bk), they specify a sub-domain of the product domain Dn of all possible states. The set of statessatisfying these constraints is denoted by S, and we call it a scheduling ofx1; : : : ; xn. States in S are written s; t; : : : and corresponding interpretationsare denoted by s1; : : : ; sn for short instead of s[x1]; : : : ; s[xn], and similarlyfor t. The \totally unknown state" :8i; si = ?, is denoted by s?. (55)Two states of S are said to be neighbours if they di�er exactly in one variable,we call it their discriminating variable. We call a path in S any �nite sequences(1); s(2); : : : ; s(K) of neighbouring states belonging to S.For s and t two neighbouring states of S, we write s � t if their respectivevalues for their discriminating variable xi satisfy the relation si � ti de�ned47

in (52). A path s(1); s(2); : : : ; s(K) such that s(k) � s(k + 1) is calledincreasing.A scheduling S is called circuitfree if it is never true in S thatxi1 b1 > xi2 b2 > xi3 : : : xip bp > xi1and (56)(b1 ^ : : : ^ bp = t)Theorem 4 (circuitfree schedulings) A scheduling is circuitfree i�, forevery state s 2 S satisfying 8i : si 6= ?, there is an increasing path linkings? to s.The intuitive interpretation of this theorem is that, for an sts with a cir-cuitfree scheduling, it is possible to compute sequentially without deadlockall variables, starting from the inputs. Each increasing path mentioned intheorem 4 corresponds to one possible sequential execution.Proof : We �rst prove the \if" part by contradiction. Assume (56)is violated for some circuit xi1 b1 > xi2 b2 > xi3 : : : xip bp > xi1 ,i.e., b1 ^ : : :^ bp = t is possible for this circuit in S. We want to deduce fromthis assumption that there are states for which all variables are known, butthere is no increasing path originating from s? and terminating at the statesin consideration. Without loss of generality, we can restrict S to those statesfor which 8i = 1; : : : ; p : [bi = ? or bi = t] holds,the set of such states is called S(b1^:::^bp=t): (57)By table 1, condition xi1 b1 > xi2 b2 > xi3 : : : xip bp > xi1 impliesthat, on S(b1^:::^bp=t), the following holds :xi1 � xi2 � : : : � xip � xi1 ;and thus the xij 's are either all unknown, or alternatively all known. Thusthere is no increasing path originating from s? and leading to any knownstate belonging to S(b1^:::^bp=t). This proves the \if" part.48

Next, we prove the \only if" part, also by contradiction. Before-hand, we need a lemma. Two states s and s0 are said complementary if, foreach variable x, either s[x] = ? or s0[x] = ? :Two states s and s0 are said compatible if, for each variable x,either s[x] = ? or s0[x] = ? or s0[x] = s[x] :Complementary states are also compatible. For two compatible states s ands0, we de�ne their sum s] s0 by :(s] s0)[x] = if s[x] 6= ? then s[x] else s0[x]Lemma 2 (monotonicity) Let t0 and t1 be two neighbouring states belong-ing to S, such that t0 � t1. Let t be a state such that1. t1 and t are complementary,2. t0] t 2 S,3. there is an increasing path contained in S originating from t0 and ter-minating in t0] t, and4. t1] t satis�es the boolean constraints C(b1; : : : ; bk) which contribute tothe de�nition of S.Then, t1] t 2 S and there is an increasing path contained in S originatingfrom t1 and terminating in t1] t.Proof : Note that t0]t is well de�ned, since t0 and t are also complementary.Let t0 ! t0] t denote the path referred to in item 3. Denote by ~t the statesuch that 1/ ~t and t0 are complementary, and 2/ t1 = t0]~t, such a state existsand is unique. Denote by t0] ~t! t0] t] ~t the increasing path obtained bycomplementing each state belonging to path t0 ! t0] t by ~t. This is possiblesince each intermediate state of path t0 ! t0] t and ~t are complementary.We claim that path t0] ~t! t0] t] ~t is contained in S. (58)49

Clearly, claim (58) is equivalent to the conclusion of the lemma. To prove(58), using item 4, we �rst note that each state belonging to path t0] ~t !t0] t] ~t satis�es the boolean constraints C(b1; : : : ; bk) which contribute tothe de�nition of S. We thus only need to check that they also satisfy thedependencies contributing to the de�nition of S ; but the latter results froman inspection of table 1. This proves the lemma. �We now return to the proof of theorem 4 and proceed by steps.1. Assume 9s? 2 S satisfying 8i : s?i 6= ?, such that there is no increasingpath linking s? to s?. Denote by b1; : : : ; bp the boolean variables suchthat b1 ^ : : : ^ bp = t holds at state s?. Denote by S the set of statess 2 S such that s � s?. We have s? 2 S and s? 2 S. States belongingto S are all compatible.2. Let s; s0 2 S be two states such that increasing paths s? ! s ands? ! s0 are both contained in S. Then we claim thats00 = s] s0 2 S; and there exists an increasing path contained in S;originating from s?;and terminating in s00 (59)As all s 2 S satisfy s � s?, they satisfy in particular the boolean con-straints b1^ : : :^bp = t. Thus we only need to verify the dependencies.There is a unique state s0 2 S such that 1/ s0 2 [s? ! s] \ [s? ! s0],and 2/ [s0 ! s] \ [s0 ! s0] = fs0g, meaning that s0 is the latest pointat which the two considered path deviate from each other. Let s1 bethe neighbour state of s0 belonging to path [s0 ! s0]. Apply lemma 2with the following substitutions : t0=s0; t1=s1; t=~s such that s = s0] ~s.We deduce that path [s? ! s] s1] � S. Then, let s2 be the neighbourstate of s1 belonging to path [s1 ! s0], we can repeat the same argu-ment. And we proceed repeatedly in the same way until we prove theclaim (59).3. Consider the set of s 2 S for which there exists an increasing path [s? !s] � S. From (59) we know that this set has a unique maximal elementsmax for partial order �. By hypothesis we have smax � s?; smax 6= s?.Thus there are at least two variables, denote them by x and x0, such that50

smax[x] = smax[x0] = ?, but s[x] = s[x0] 6= ? for every s 2 Sn[s? ! smax].Hence, the following holds at each state belonging to S :x b > x0 b > x where b = b1 ^ : : : ^ bp = tHence condition of circuit freedom is violated on S, and thus it can be vio-lated on S. This �nishes the proof of theorem 4. �In the sequel, for � an sts with scheduling speci�cations, we shall considerits associated scheduling S� (60)which is obtained by keeping, from the set of predicates de�ning the transitionrelation of �,1. the scheduling speci�cations, and2. the assertions involving only boolean variables and clocks,and discarding the other ones.5.3 Deriving scheduling speci�cations as causality con-straintsIn this section, we formally justify rules (21). The principles we follow forour abstraction mechanism are given next :(P-1) For x not a boolean variable, we abstract its domain Dx as the singletonf>g, and then extend f>g with the additional values f?;?g.(P-2) Within equations of the form \y = exp" or \if b then y = exp1 else y =exp2" we shall further abstract y by mapping the set f?; f;tg to thesingle value > (known). Note the asymmetry of this abstraction prin-ciple : for the statement \if b then y = x" where x; y are booleans, weabstract y but not x. 51

(P-3) Since we are interested in causality constraints, we only need to keeptrack of con�gurations for which y cannot be known, i.e., y = ? isthe only allowed possibility. For other con�gurations, we weaken theconstraint on y to \y unconstrained", which is depicted in the tablesby an empty box.We now proceed on deriving the scheduling associated to each primitive s-tatement, using (P-1,2,3). We use the notation: ?;? to indicate that, forthe considered con�guration, either y = ? or y = ? holds, and similarly forother cases.Lemma 3 The following holds :x b > y) b > hyProof : by inspection of table 1.Lemma 4 The following holds :hx > xProof : by inspection of the following tables (the �rst table relates x to hx,as extended to unknown values) : hx ? ? tx ? ?;? ?;> ,abstacted as (using P-2) : hx ? ? tx ? ?; > ?; > ,which is equal to : hx ? ? tx ?which turns out to be equivalent to hx > x by table 1.Lemma 5 The following holds :(f) : (y = f(u; v)hu = hv = hy) (u; v) hy > y52

Proof : by inspection of table 1 and of the following tables (# denotes aprohibited value) :abstraction of (f), using (P-1) : u ? ? >v? ? ?;? ?? ?;? ? #> ? # > ,
using (P-2) : u ? ? >v? ? ?; > ?? ?; > > #> ? # > ,
using (P-3) : u ? ? >v? ? ??> ?

,
which is equivalent to the formulas of the conclusion of the rule of lemma 5.Lemma 6 The following holds :[if b then x = u] ^ [if b then hx = hu]) 8>>>>>><>>>>>>: u b ^ hu > xb hb ^ hu > hxhu b ^ hu > hxProof : by inspection of table 1 and of the following two tables. Thesetables de�ne the possible values, of x and hx respectively, for [if b then x =u] ^ [if b then hx = hu] :

53

u ? ? >b? ? ?;? ?? ?;? ?;? ?;?t ? ?;? ?;>f ?;? ?;? ?;?
hu ? ? tb? ? ?;? ?? ?;? ?;? ?;?t ? ?;? ?;>f ?;? ?;? ?;? ,Applying principles (P-2,3) then yields the formulas corresponding to theconclusion of the rule of lemma 6. Note the asymmetry between x and u,while statements x = u and u = x are clearly identical. This asymmetry isdue to principle (P-2) for sts abstraction.5.4 Correct programsIn this subsection, we formally state and prove the result establishing thelink between circuit freedom and executable sts.Theorem 5 (correct programs) Let P be an sts satisfying the followingconditions :1. For each statement of P, the scheduling speci�cations derived from ap-plying the rules of lemmas 3, 4, 5, 6 are also statements of P.2. The scheduling SP (cf. (60)) de�ned by P is circuitfree.3. There is no multiple de�nition of a variable, meaning that, wheneverif b1 then x = exp1^ if b2 then x = exp2is part of P, then : b1 ^ b2 = t never holds.Then :1. As far as control is concerned, the inputs of P are the source nodes ofthe dependency graph.2. Input values are those variables which never occur on the left{hand sideof statements of the form \x =exp".3. For each given input control history of P and compatible input valuehistory, there is exactly one run of P, i.e., P is deterministic.54

Nota : Clearly, theorem 5 provides us with a su�cient condition, this con-dition is not necessary. Furthermore, the rules for inferring scheduling speci-�cations as causality constraints is bound to the syntax, not to the semanticsof the program. In particular, from statement \ if b then x = u", we chooseto infer dependency u b ^ hu > x but not the symmetric one in which xand u are exchanged. This means that, while P may not satisfy the assump-tions of theorem 5 for a given syntactic form of P, it may satisfy them after aproper rewriting into a semantically equivalent form. Here, semantic equiv-alence means identical runs when scheduling speci�cations are discarded.Proof : It is organized into several steps.1. With the formula x b > y we associate the following automaton :
x,y

set x

set y

set y

set x

set x
set b

set x

x,b,y

or Fb =

x y

x,y b,x

b=T

Transitions are labelled with actions. Label \set x" indicates that vari-able x is set to an arbitrary value of its (extended) domain Dx [f?g.States are labelled with those variables that are ?, i.e., have not beenset. This automaton is the most permissive one with the followingproperties :(a) states are valued with con�gurations of the triple (x; b; y) that arecompatible with the scheduling constraint x b > y.(b) Variables are set sequentially.(c) All variables are eventually set.55

Thus each path of this automaton speci�es an evaluation scheme for thetriple (x; b; y) which is compatible with the considered scheduling spec-i�cation. Conversely, any correct evaluation scheme for triple (x; b; y)can be speci�ed in this way. We call this automaton the executionautomaton associated to scheduling speci�cation x b > y.2. To each primitive statement we associate the conjunction of its causal-ity constraints and possible constraints involving clocks and booleanvariables, and we take the product of associated execution automata.The paths of the resulting automaton specify all correct schedulings toevaluate the involved variables. We call the resulting product automa-ton the execution automaton associated to the considered primitive.3. Then we take the product of the execution automata associated toeach statement. By theorem 4 we know that, for each tuple of vari-ables which satis�es the speci�cation, there is a path of the productautomaton which originates from its initial state and terminates at the�nal state in which all variables are set, meaning that all variables ofthe considered tuple are sequentially set.4. Finally, we re�ne the transition labels of the form \set x" etc., by as-signing to x etc the value speci�ed by the program. As source nodesof the dependency graph are set �rst, they appear as inputs of P for itscontrol. Also, variables u that are set and do not occur on the left{handside of any statement u =expression must be read from the environ-ment : their values are inputs of the considered program P. Finally,thanks to condition 3 of theorem 5, actions of the form \set x" etc.,are re�ned into single writings. This �nishes the proof of the theorem.�We illustrate this technique on the following simple sts :y = f(u; v) V hu = hv = hy =def h :The causality constraint and associated execution automaton are :
56

h > (u; v; y)V (u; v) h > yV hu = hv = hy =def h
set vset u

set uset v

set y

h,u,v,y

y

u,yv,y

u,v,y

h=T

Clock h is the activation clock. The re�ned execution automaton is ob-tained by replacing set u and set v by read u and read v, and set y by theassignment y := f(u; v).6 ConclusionOur contribution can be summarized as follows :� We have proposed sts with scheduling speci�cations as a paradigm forcausality analysis, sts abstraction, separate compilation and reuse.� We have characterized those sts for which asynchronous and syn-chronous semantics are equivalent in some precise meaning.We advocate system design methodology based on the synchronous paradig-m, possibly followed by a provably correct desynchronization. Advantages ofthis approach are numerous, they are listed below according to the di�erentphases of the design :Speci�cation : designing within the synchronous paradigm allows the de-signer to exploit the simplicity and elegance of compositionality of syn-chronous speci�cations. In addition, speci�cation can be performed in-57

dependently from the execution architecture ; therefore, upgrading anexecution architecture does not require redesigning the speci�cations.Veri�cation :� In the synchronous paradigm, composition of speci�cations andcomposition of properties are both performed by using the com-position \ k " of sts. This facilitates reasoning in general, and inparticular compositional reasoning.� For endo/isochronous sts, proofs based on the synchronous se-mantics carry over without modi�cations to asynchrony. For suchsystems, veri�cations can be performed within the synchronousframework. This allows to avoid state explosion resulting fromthe use of the asynchronous interleaving semantics.Abstraction, modularity, and reuse :� Scheduling speci�cations provide the adequate notion of abstrac-tion for separate compilation. It allows the designer to checkthe correctness of component encapsulation at systems integra-tion phase.� sts with scheduling speci�cations can be composed using a propergeneralization of the composition \ k " of sts. Thus advantagesof compositionality naturally extend to sts with scheduling spec-i�cations.� The structuration of speci�cations into scheduler and tasks allowsus to de�ne proper reusable modules. Of course, if assumptionsare available on the possible behaviours of the environment, thenlarger modules can be stored as object code for further reuse.gals networks : the elegant feature is that isochrony is a local proper-ty within a network of components. As isochrony is composition-al, adding a new component �new to a pre-existing gals network(�i)i=1;:::;n while preserving its gals nature, only requires to checkwhether pairs (�new;�i) are isochronous, for each �i having direct com-munication with �new in the extended network. Thus gals designs canbe built compositionally, it is not needed to desynchronize at once thewhole synchronous design. 58

Thanks to the outcomes of the SACRES project, the above approach issupported by the Signal-V4 language8, and by the Dc+ common formatfor synchronous languages [DC+ Sacres 1996]. Signal-V4 and the Dc+format both are concrete implementations of our sts model. This includesscheduling speci�cations, which are available as primitive statements in bothformalisms.In particular, the 1999 release of Sildex [Sildex] 9 implements distributedcode generation based on the approach presented in this paper. The targetarchitectures above all else are POSIX compliant real-time OS.The new Signal-V4 compiler developed at Inria implements the wholemethodology, including separate compilation. Services for architecture gen-eration are also provided, using our notion of abstraction.Research perspectives. Further work is needed to show that the aboveprinciples are viable for generating architectures built up from pre-existingC/C++/Java/. . .modules. Then, not all communication media or operatingsystems provide services satisfying the requirements of our theory of desyn-chronization, namely : no loss of messages, �rst-in/�rst-out semantics foreach individual channel. Additional work is needed for getting a full im-plementation on each di�erent type of distributed architecture ; this can bevery easy (writing a few generic drivers, e.g., for POSIX), or can be moredemanding when adequate services are not provided by the architecture, andthus need to be emulated.Acknowledgement. The authors are gratefully indebted to Michael Siegelfor a thorough reading and detailed comments, and in particular the discov-ery of several inconsistencies in an earlier version of this manuscript in theformal study of causality.References[Aabelsberg and Rozenberg, 1988] I.J. Aabelsberg, and G. Rozenberg, \The-ory of traces", Theoretical Computer Science, 60, 1{82, 1988.8Loic Besnard and other members of the \EpAtr" team at IRISA are gratefully ac-knowledged for the development of this environment.9the Sildex tool is a commercial tool for reactive systems design based on the Signallanguage. It is marketed by TNI, Brest, France.59

[Alur and Henzinger 1996] R. Alur and T. A.Henzinger, \Reactive Mod-ules", Proceedings of the 11th IEEE Symposium on Logic in ComputerScience 9LICS), 207{218, 1996, extended version submitted for publica-tion.[Amagbegnon et al., 1994] T.P. Amagbegnon, L. Besnard and P. Le Guernic,\Arborescent canonical form of boolean expressions", Inria ResearchReport no2290, June 1994.[Amagbegnon et al., 1995] T.P. Amagbegnon, L. Besnard and P. Le Guernic,\Implementation of the data
ow language Signal", in ProgrammingLanguages Design and Implementation, ACM, 163{173, 1995.[Aubry 1997] P. Aubry, \Mises en �uvre distribu�ees de programmes syn-chrones", PhD Thesis, Univ. Rennes I, 1997.[Benveniste and LeGuernic 1990] A. Benveniste and P. Le Guernic, \Hybriddynamical systems theory and the Signal language", IEEE Transactionson Autom. Control, 35 No 5, 535{546, may 1990.[Benveniste and Berry, 1991] A. Benveniste and G. Berry, \Real-Time sys-tems design and programming", Another look at real-time programming,special section of Proc. of the IEEE, vol. 9 no 9, September 1991, 1270{1282.[Benveniste LeGuernic and Jacquemot, 1991] A. Benveniste, P. Le Guernic,and C. Jacquemot. \Synchronous programming with events and rela-tions: the SIGNAL languages and its semantics", Sci. Comp. Prog.,16:103{149, 1991.[Benveniste et al., 1992] A. Benveniste, P. Le Guernic, Y. Sorel, andM. Sorine, \A denotational theory of synchronous communicating sys-tems", Information and Computation, Vol. 99 No 2, 192{230, August1992.[Benveniste Caspi et al., 1994] A. Benveniste, P. Caspi, N. Halbwachs, andP. Le Guernic, \Data-
ow synchronous languages", In A Decade of Con-currency, re
exions and perspectives, REX School/Symposium, pages 1{45, LNCS Vol. 803, Springer Verlag, 1994.60

[Berry, 1989] G. Berry, \Real time programming: Special purpose or generalpurpose languages", In IFIP World Computer Congress, San Francisco,1989.[Berry, 1995] G. Berry, The Constructive Semantics of Esterel, Draft book,http://www.inria.fr/meije/esterel, December 1995.[Berry and Sentovich 1998] G. Berry and E.M. Sentovich, \An implementa-tion of construtive synchronous programs in polis", manuscript, Novem-ber 1998.[Caillaud et al., 1997] B. Caillaud, P. Caspi, A. Giraud, and C. Jard, \Dis-tributing automata for asynchronous networks of processors", EuropeanJournal on Automated Systems (JESA), Hermes, 31(3), 503{524, May1997.[Caspi 1992] P. Caspi, \Clocks in Data
ow languages", Theoretical Comput-er Science, vol. 94:125{140, 1992.[Clerbout and Latteux, 1987] M. Clerbout, and M. Latteux, \Semi-commutations", Information and Computation, 73, 59{74, 1987.[de Roever et al., Eds, 1998] W-P. de Roever, H. Langmaack, and A. Pnueli,Eds. Compositionality: the signi�cant di�erence, Proc. of the Interna-tional Symposium COMPOS'97, Bad Malente, Germany, Sept. 1997,LNCS vol 1536, Springer Verlag, 1998.[DC+ Sacres 1996] Sacres consortium, The Declarative Code DC+, Ver-sion 1.2, May 1996; Esprit project EP 20897: Sacres, seehttp://www.tni.fr/sacres/[LeGuernic and Gautier, 1991] P. Le Guernic and T. Gautier, \Data
ow tovon Neumann : the Signal approach", in Advanced topics in data
owcomputing, L. Biv and J-L. Gaudiot Eds., Prentice Hall, 413-438, 1991.[Halbwachs, 1993] N. Halbwachs, Synchronous programming of reactive sys-tems,. Kluwer Academic Pub., 1993.[Lamport, 1983a] L. Lamport, \Specifying concurrent program modules",ACM Trans. on Prog. Lang. and Sys., 5(2):190-222, 1983.61

[Lamport, 1983b] L. Lamport, \What good is temporal logic ?", In Proc.IFIP 9th World Congress, R.E.A. Mason (Ed.), North Holland, 657-668, 1983.[LeGuernic et al., 1991] P. Le Guernic, T. Gautier, M. Le Borgne, C. LeMaire, \Programming real-time applications with Signal", Anotherlook at real-time programming, special section of Proc. of the IEEE,vol. 9 no 9, September 1991, 1321{1336.[Ma�eis and LeGuernic, 1994] O. Ma�eis and P. Le Guernic, \Distributedimplementation of Signal : scheduling and graph clustering", in: 3rd In-ternational School and Symposium on Formal Techniques in Real-Timeand Fault-Tolerant Systems, Lecture Notes in Computer Science 863,Springer Verlag, 149{169, Sept. 1994.[Manna and Pnueli 1992] Z. Manna and A. Pnueli, The Temporal Logic ofReactive and Concurrent Systems: Speci�cation. Springer-Verlag, NewYork, 1992.[Manna and Pnueli 1995] Z. Manna and A. Pnueli, The Temporal Logic ofReactive and Concurrent Systems: Safety. Springer-Verlag, New York,1995.[Sorel and Lavarenne] Y. Sorel and C. Lavarenne, \SynDEx v4.2 UserGuide",http://www-rocq.inria.fr/syndex/.articles/doc/doc/SynDEx42.html[Sorel 1996] Y. Sorel, \Sorel: Real-time embedded image processing appli-cations using the A3 methodology", Proc. IEEE International Conf. onImage Processing, (Lausanne, September 1996).[Sildex] TNI, Sildex tool, see http://www.tni.fr/indexgb.html
62

