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GRASP for set packing problems

Introduction

This study concerns the resolution of the "set packing problem" (SPP), a classical optimization problem, close to the "set covering problem" [START_REF] Gondran | Graphes et algorithmes[END_REF][START_REF] Nemhauser | Integer and combinatorial optimization[END_REF], which can also be reformulated as a "no de packing problem" . Surprisingly, the SPP has not received much attention in the literature. ln comparison with the "set covering" and "no de packing" problems, very few studies have examined the SPP resolution.

The impetus for our research cornes from a real railway problem which can be formulated as an SPP [START_REF] Delorme | Application de la métaheuristique GRASP à la résolution d'un problème de capacité d'infrastructure ferroviaire[END_REF][START_REF] Delorme | Heuristics for railway infrastructure saturation[END_REF]. The principal concerns revolve around the evaluation of infrastructure capacity in a railway network. The numerical instances used in this study come from the Pierrefitte Gonesse junction, north of Paris. However, because these instances have a specifie structure, they do not allow us to obtain general information concerning the advantages and disavantages of a resolution method. For this reason, we have also used several randomly generated instances of a similar size, but with more varied characteristics. ln the first stage of our study, we used Cplex to resolve the problem [START_REF]Using the CPLEX callable library (user's guide), version 4.0[END_REF]. However, given the size ofthe numerical instances, exact resolution was impossible within a reasonable period of time. Our second stage involved the development of a heuristic method derived from the GRASP (Greedy Randomized Adaptative Search Procedure) metaheuristic [START_REF] Féo | A probabilistic heuristic for a computationally difficult set covering problem[END_REF] . Several general algorithms, which can solve any SPP, were developped. Within the basic GRASP framework, we considered three different greedy methods, including one involving a new learning process, as well as two extensions of this standard framework (reactive GRASP and path relinking). We compared their abilities to solve a range of SPP, particularly those where Cplex can not pro duce good quality results. This comparison demonstrates the efficiency of the various parameters and strategies with regard to the characteristics of the instances. This information will be useful in future studies when we will seek to develop a particular algorithm for our specifie railway problem. Section 2 introduces the SPP and its particularities. The principles of GRASP are reviewed in section 3, along with the algorithmic description of our different operational procedures. ln section 4 and 5, We report and comment on the characteristics of our instances (including a description of the railway problem) (section 4) and the numerical results collected (section 5). Section 6 concludes the discussion.

The set packing problem

Given a finite set J = {1,..., n} of valuated items and {Tj}, j E J = {1, . . ., m} a collection of subsets of 1, a packing is a subset P ç J such that ITj n PI ~1, Vj E J. The set Jean also be seen as a set of constraints between the items of the set J. The objective of the SPP is to maximise the total value of the packing obtained. This problem can be formulated with a mathematical model [START_REF] Gondran | Graphes et algorithmes[END_REF] :

Max Z =LCiXi iEI Lti,jXi ~1,Vj E J iEI ( 1 
)
Xi E {O, 1} , Vi E J ti,j E {0,1} ,Vi E J,Vj E J . a matnx t = (ti,j) where ti,j = o otherwise

The no de packing problem (2) is a specifie case of the SPP in which the constraints are between pairs of items:

Max Z =LCiXi iEI Xi + Xj ~1, V pair (i, j) of incompatible items Xi E {O, 1} , Vi E J (2)
Every SPP can be formulated as anode packing problem, where each constraint is split into several constraints, one for each pair of items. However, this reformulation increases the number of constraints ; each constraint involving n items is rewritten as C~constraints on two items. Every no de packing problem can also be expressed as a set covering problem with a simple change of variable (x~= 1 -Xi, Vi E 1).

The SPP is known to be strongly NP-Hard, according to Garey and Johnson [START_REF] Garey | Computers and intractability : a guide to the theory of NP-Completeness[END_REF]. Its particularities are described in more detail by Gondran and Minoux [START_REF] Gondran | Graphes et algorithmes[END_REF] and Nemhauser and Wolsey [START_REF] Nemhauser | Integer and combinatorial optimization[END_REF]. The best exact method known for solving this problem is a Branch & Cut algorithm using polyhedral theory to obtain facets, essentially by determining cliques as defined by Padberg [START_REF] Padberg | On the facial structure of set packing polyhedra[END_REF]. However, only small-sized instances can be solved exactly. To our knowledge, and according to Osman and Laporte [START_REF] Osman | Metaheuristics : a bibliography[END_REF], no one has ever applied metaheuristics to SPP resolution.

Surprisingly, few applications of the SPP formulation have been reported in the literature. Of those, five recent applications are summarized briefly in chronological order in the lines below. Ronnqvist [START_REF] Ronnqvist | A method for the cutting stock problem with different qualities[END_REF] worked on a cutting stock problem formulated as an SPP and solved using a Lagrangian relaxation combined with subgradient optimization. Zwaneveld et al. [START_REF] Zwaneveld | Routing trains through railway stations: Model formulation and algorithms[END_REF] formulated a real railway feasibility problem as an SPP and solved it exactly using reduction tests and a Branch & Cut method. Kim [START_REF] Kim | An optimization-based decision support system for ship scheduling[END_REF] represented a ship scheduling problem as an SPP and used LINDO software to solve it. Mingozzi et al. [START_REF] Mingozzi | An exact algorithm for the project scheduling with ressource constraints based on a new mathematical formulation[END_REF] used an SPP formulation to calculate the bounds for a Resource Constrained Project Scheduling Problem using a greedy method. Rossi [START_REF] Rossi | A set packing model for the ground holding problem in congested networks[END_REF] considered an SPP formulation for a ground holding problem and solved it exactly with a Branch & Cut method.

3 Aigorithmic description of the operational procedures

Overview of GRASP

GRASP is a multistart two-phase metaheuristic for combinatorial optimization proposed by Feo and Resende [START_REF] Féo | A probabilistic heuristic for a computationally difficult set covering problem[END_REF]. The first phase is a construction phase that builds an initial solution using a greedy randomized procedure, whose randomness allows solutions in different are as of the solution space to be obtained. The second phase is a local search phase that improves these solutions. This two-phase pro cess is reiterative (for a general overview of GRASP, see the article by Pitsoulis and Resende [START_REF] Pitsoulis | Greedy randomized adaptive search procedures[END_REF]). Several new components have extended the scheme of GRASP (reactive GRASP, parameter variations, bias functions, memory and learning, improved local search, path relinking, hybrids, ...). These components are presented and discussed in Resende and Ribeiro [START_REF] Resende | Greedy randomized adaptive search procedures[END_REF].

To implement GRASP for a specifie problem, six main choices must be made:

. It is easy to customize the GRASP metaheuristic to solve any problem for which construction and local search algorithms are available. GRASP has been applied to a wide range of optimization problems, including academic and industrial problems in scheduling, routing, logic, partitioning, location and layout, graph theory, assignment, manufacturing, transportation, telecommunications, electrical power systems, and VLSI design. An extensive annotated bibliography has been proposed by Festa and Resende [START_REF] Festa | GRASP : an annotated bibliography[END_REF]. Several studies have shown that GRASP produces good quality solutions for hard combinatorial optimization problems, particularly the set covering problems [START_REF] Delorme | Optimisation combinatoire et problèmes de capacité d'infrastructure ferroviaire[END_REF][START_REF] Féo | Greedy randomized adaptative search procedures[END_REF][START_REF] Gandibleux | A first making use of GRASP for solving MOCO problems[END_REF][START_REF] Vancoppenolle | Résolution par GRASP de problèmes d'optimisation combinatoire[END_REF], the no de packing problems [START_REF] Féo | Greedy randomized adaptative search procedures[END_REF][START_REF] Féo | A greedy randomized adaptative search procedure for maximum independant set[END_REF] and the set packing problems [START_REF] Delorme | Application de la métaheuristique GRASP à la résolution d'un problème de capacité d'infrastructure ferroviaire[END_REF][START_REF] Delorme | Heuristics for railway infrastructure saturation[END_REF].

The greedy randomized phase

For the greedy phase of our GRASP algorithm, we propose three different greedy algori thms (called greedy 1, greedy2 and greedy3). Their characteristics are described in the following sections, respectively 3.2.1, 3.2.2 and 3.2.3.

3.2.1

The greedy1 algorithm

The greedy1 procedure (Algorithm 2) is inspired by sorne of the implementations [START_REF] Delorme | Optimisation combinatoire et problèmes de capacité d'infrastructure ferroviaire[END_REF][START_REF] Gandibleux | A first making use of GRASP for solving MOCO problems[END_REF][START_REF] Vancoppenolle | Résolution par GRASP de problèmes d'optimisation combinatoire[END_REF] of a GRASP for the set covering problem proposed by Féo and Resende [START_REF] Féo | Greedy randomized adaptative search procedures[END_REF]. This procedure builds a solution from the trivial non-feasible so- Considering n as the number of variables and m as the number of constraints, the complexity of the greedy1 algorithm is O(n2m) in the worst case.

The greedy2 algorithm

The greedy2 procedure (Algorithm 3) is inspired by a GRASP for the no de packing problem proposed by Féo et al. [START_REF] Féo | Greedy randomized adaptative search procedures[END_REF][START_REF] Féo | A greedy randomized adaptative search procedure for maximum independant set[END_REF]. This procedure builds a solution from the trivial feasible solution, Xi = 0,ViE I. Sorne variable values are set to 1, as long as the solution is maintained feasible. Changes concern only one variable at each iteration. To increase the objective function, variables which involve a minimum number of constraints with a maximum value are prioritized, but the choice is random among the most interesting variables.

Changes stop when no variable can be fixed to 1 without losing feasibility.

Xi +-0, \Ii E It Evali +-cd LjEJ ti,j, \Ii E It while (It =1-0) loop Limit +-miniElt (Evali) + OE * (maXiElt (Evali) -miniElt (Evali)) RCL +-{i E lt, Evali ~Limit} i* +-RandomSelect(RCL) It +-It \ {i*} It +-It \ {i : ::Jj E J, ti,j + ti*,j > 1} endWhile Algorithm 3.
The greedy randomized construction algorithm greedy2

The complexity of the greedy2 algorithm is O(j3nm) in the worst case, with j3 representing the maximum number of iterations. This number is equal to the maximal number of variables that can be fixed to 1 in a feasible solution. This means that the complexity can theoretically be O(n2m) (where j3 ~n), but in practice j3 is often very small compared to n. Thus, the complexity of the greedy2 algorithm is less than that of the greedy1 algorithm (section 3.2.1).

The greedy3 algorithm

The greedy3 procedure (Algorithm 4) is an evolution of the greedy2 algorithm described in the previous section (3.2.2) and includes a learning process. It seeks to improve on the evaluation of the variables throughout the main loop of the GRASP algorithm. Each constraint is weighted by its frequency saturation on the generated set of solutions. ln the Aigorithm 4, SaturationFrequency(j) denotes the ratio of the number of times the constraint j has been saturated to the number of generated solutions. A constraint is considered saturated by a solution if a variable appearing in this constraint is fixed to 1 in this solution (i.e. ::Ji E l, Xi = 1 and ti,j = 1). This computation is done by a function UpdateO. SaturationFrequency is initialized to 0 for the first GRASP iteration.

Xi +-0, \Ii E It Evali +-cd LjEJ (ti,j * (1 + SaturationFrequenc:y(j))), \Ii E It while (It =1-0) loop Limit +-miniElt (Evali) + OE * (maXiElt (Evali) -miniElt (Evali)) RCL +-{i E lt, Evali ~Limit} i* +-RandomSelect(RCL) It +-It \ {i*} It +-It \ {i : :3j E J, ti,j + ti*,j > 1} endWhile Update(SaturationFrequency(j)), \lj E J Algorithm 4.
The greedy randomized construction algorithm greedy3

As with the greedy2 algorithm, the complexity of this algorithm is O(j3nm).

The choice of the OE parameter : reactive GRASP

Preliminary experimentation showed us that no particular value for the OEparameter can be determined as best for all or even a large part of the instances.

The same observation was reported by Resende and Ribeiro [START_REF] Resende | Greedy randomized adaptive search procedures[END_REF]. As a result, we decided to consider several values for the OE parameter. Our first strategy was to choose OErandomly from a set alphaSet with a uniform discrete probability distribution. However, we also examined a second, reportedly better, strategy called reactive GRASP, in which the parameter OE is self-adjusted according to the quality of the solutions previously obtained. The algorithm that we propose (Algorithm 5) is an evolution of Aigorithm 1 which is inspired by the GRASP algorithm of Prais and Ribeiro [START_REF] Prais | Reactive GRASP : An application to a matrix decomposition problem in TDMA traffic assignment[END_REF].

Starting from a uniform discrete probability distribution among each value of the set alphaSet, probaa is updated periodically according to a probaUpdate condition. New probabilities are calculated from the average value of the elite solutions obtained for each OE value (the elite solutions are listed in a Poola with a limited size). The parameter 6 is introduced to attenuate the updated values of the probabilities Pi. 

The local search phase

The neighbourhood N used for the local search procedure (Algorithm 6) is based on kp exchanges. The k -p exchange neighbourhood of a solution x is the set of solutions obtained from x by changing the value of k variables from 1 to 0, and changing p variables from 0 to 1. Due to the combinatorial explosion of the number of exchange possibilities when k and p increase, we were obliged to limit them, testing only 0 -1 exchanges, 1 -1 exchanges, 2 -1 exchanges and 1 -2 exchanges. Moreover, the search procedure was implemented using a first-improving strategy (i.e. we selected the first neighbour whose value is better than the current solution). Whenever an exchange is accepted, the local search is re-started from this new solution. The local search stops when no further improving exchanges are possible.

The complexity of the searchNeighbourhood algorithms (for 1-2 exchanges and 2-1 exchanges) is O(n4m) in the worst case. However, the practical time can be significantly reduced when the local search algorithm is applied to a good initial solution. 

The intensification phase: path relinking

The intensification method is based on path relinking, which was originally proposed for the tabu search by Glover and Laguna [START_REF] Glover | Tabu Search[END_REF]. With this procedure, paths from one elite solution to another are generated (in the solution space) and explored to obtain better solutions. Path relinking was first used as an intensification of a GRASP procedure by Laguna and Marti [START_REF] Laguna | Grasp and path relinking for 2-layer straight line crossing minimization[END_REF]. However, our path relinking algorithm for the SPP (Algorithm 7) is inspired by the one proposed by Resende and Ribeiro [START_REF] Resende | A GRASP with path relinking for permanent virtual circuit routing[END_REF].

ln the intensification method, the best solutions obtained by GRASP are placed in a Pool with a limited size. For each GRASP iteration, the path relinking algorithm is applied to the solution generated by the local search phase and to one solution randomly selected among those in the Pool. The best of these two solutions is taken as the initial Solution and the other as the targetSolution. At each iteration of the path relinking, the solution is repaired if necessary. The repairing function used is the greedy1 algorithm described in section 3.2.1, with a value of 1 for the OE parameter (i.e. a pure greedy procedure). Then the solution is saturated, using a saturation function which is the greedy2 algorithm described in section 3.2.2, also with a value of 1 for OE. The solutions thus generated can also be included in the Pool. Since the complexity of the repairing algorithm is O(n2m), the complexity of this algorithm is O(n3m) in the worst case.

N umerical instances

Given the lack of available SPP benchmarks, we decided to consider two types of instances to evaluate our GRASP implementations. The first type consists of randomly-generated instances, and the second type is related to a real railway problem.

Randomly generated instances

Several instances were generated randomly using the following parameters :

. the number of variables is equal to 1,000 or 2,000

. the number of constraints is equal to 100% or 500% of the number of vari-

ables

. the maximum number of non-null elements by constraint is equal to 1% or 5% of the number of variables (i.e. the actual number of non-null elements is a random number between two and this parameter)

. the values of items (Ci) are uniformly distributed III the interval [START_REF] Gondran | Graphes et algorithmes[END_REF][START_REF] Nemhauser | Integer and combinatorial optimization[END_REF][START_REF] Delorme | Application de la métaheuristique GRASP à la résolution d'un problème de capacité d'infrastructure ferroviaire[END_REF][START_REF] Delorme | Heuristics for railway infrastructure saturation[END_REF][START_REF]Using the CPLEX callable library (user's guide), version 4.0[END_REF][START_REF] Féo | A probabilistic heuristic for a computationally difficult set covering problem[END_REF][START_REF] Garey | Computers and intractability : a guide to the theory of NP-Completeness[END_REF][START_REF] Padberg | On the facial structure of set packing polyhedra[END_REF][START_REF] Osman | Metaheuristics : a bibliography[END_REF][START_REF] Ronnqvist | A method for the cutting stock problem with different qualities[END_REF][START_REF] Zwaneveld | Routing trains through railway stations: Model formulation and algorithms[END_REF][START_REF] Kim | An optimization-based decision support system for ship scheduling[END_REF][START_REF] Mingozzi | An exact algorithm for the project scheduling with ressource constraints based on a new mathematical formulation[END_REF][START_REF] Rossi | A set packing model for the ground holding problem in congested networks[END_REF][START_REF] Pitsoulis | Greedy randomized adaptive search procedures[END_REF][START_REF] Resende | Greedy randomized adaptive search procedures[END_REF][START_REF] Festa | GRASP : an annotated bibliography[END_REF][START_REF] Delorme | Optimisation combinatoire et problèmes de capacité d'infrastructure ferroviaire[END_REF][START_REF] Féo | Greedy randomized adaptative search procedures[END_REF][START_REF] Gandibleux | A first making use of GRASP for solving MOCO problems[END_REF] (weighted) or fixed to 1 (unicost)

AlI combinations of these parameters were considered. Sixteen different instances, labeled Rnd, were thus generated.

The characteristics of these instances are presented in Table 1. The density corresponds to the percentage of non-null elements in the constraint matrix.

We also indicated the weighted instances. The objective value of the linear relaxation (LP) is also shown, as well as that of the best known solution, with an asterisk if it is optimal (note that there can be quite a significant gap between the values for the best known solutions and the linear relaxation). ln addition, the number of non-redundant variables is given, as well as the percentage of reduction that can be obtained by removing the redundant variables. This number was obtained by applying a dominance test algorithm (Algorithm 8).

for il E l loop if {i2 E 1\ {id, (Vj E J, th,j ~ti2,j) and (c(il) ~c(i2))} #-0 then l +--l \ {id The dominance test algorithm compares each pair of variables. We consider that a variable il is dominated by another variable i2, if il saturates all the constraints that i2 saturates (and potentially more) and if the value of the item il is less than or equal to that of the item i2. Such a variable il can be removed from the problem without changing its optimal solution. Addition-alIy, constraints which have only one ti,j different of zero after removing the variables can also be removed from the problem.

J +--J \ {j E J, ti1,j =

2 Railway problem instances

The second set of SPP instances considered in the evaluation of our GRASP implementations cornes from an actual railway planning problem. Railway infrastructure managers now have to deal with operators' requests for increased capacity. Planning the construction or reconstruction of infrastructures must be done very carefully in light of the huge investments required. UsualIy, assessing the capacity of one component of a rail system is done by measuring the maximum number of trains that can be operated on this component within 1 Characteristics of the randomly generated instances a certain time period. Measuring the capacity of junctions is a matter of solving an optimisation problem called the jeasibility problem. As mentioned in section 2, this problem has been formulated in terms of an SPP by Zwaneveld et al. [START_REF] Zwaneveld | Routing trains through railway stations: Model formulation and algorithms[END_REF] and more recently by Delorme et al. [START_REF] Delorme | Application de la métaheuristique GRASP à la résolution d'un problème de capacité d'infrastructure ferroviaire[END_REF][START_REF] Delorme | Heuristics for railway infrastructure saturation[END_REF]. The feasibility problem of a junction can be stated as follows :

Given the layout of a junction and a set of trains T, how many trains from T can be routed through the junction within a certain time period such that all safety constraints are satisfied ?

The construction of the set T is detailed in Delorme et al. [START_REF] Delorme | Heuristics for railway infrastructure saturation[END_REF]. Each train of the set T has an allowed set of routes and an allowed set of entrance times. To design the feasibility problem, binary decision variables are introduced. These decision variables are :

Xi = { 1

if the combination i of a train, a route and an entrance time is used o otherwise

This formulation is close to the model developed in Zwaneveld et al. [START_REF] Zwaneveld | Routing trains through railway stations: Model formulation and algorithms[END_REF], in which the decisions of the entrance times were not included. The objective is to maximize the number of trains that can be routed through the junction without preference between trains. This is reflected in the objective function with the item coefficients Ci = 1,Vi E J. This particularity raises a unicost SPP (USPP).

The set J of items corresponds to the set of the allowed combinations of trains/routes/entrance times ; the set J corresponds to the set of constraints between these combinations. There are two types of constraints. The first ensures that only one route and one entrance time value can be set for each train. The second ensures the safety conditions of the mns between the combinations of trains/routes/entrance times. Here, ns denotes the number of trains, and Sk denotes the set of the allowed combinations of routes/entrance times for a train k. Because of this, the set J is split into disjoint subsets (SI, ..., Sns).

One consequence of formulating the railway feasibility problem as a USPP is : according to first set of constraints, we know that

ns Z = LXi = L L Xi ~ns iEI k=1 iESk
thus, we can deduce the parameter /3 ~ns (see section 3.2.2).

We experimented with the railway feasibility problem as a USPP, using data from the junction of Pierrefitte Gonesse, north of Paris. ln the instances considered (labeled Rail 1 to Rail 16), the time period is generally one hour. The characteristics of these instances are presented in Table 2. This table also shows the value of the linear relaxation (LP), when it is known, as well as the best known solution, with an asterisk indicating the optimal solutions. ln those cases where no value is available, due to an internaI error reported by Cplex, N.A. is noted in the table. As with the randomly generated instances, the number of non-redundant variables and the reductions obtained are also provided.

Computational Results

This section presents the computational results obtained for all the instances considered in our study. Both the solutions generated with the Cplex solver and our GRASP implementations are included. AlI our implementations of 2 Characteristics of the railway instances GRASP were performed with Ada (Gnat 3.13). The results were obtained on a UltraSPARC-II at 296 MHz for the Cplex, and on a Pentium III at 800 MHz for the GRASP. This difference in equipment prevents comparisons, particularly time comparisons ; however, such comparisons are not within the scope of this paper. We used the MIP-Solver of Cplex 6.0 to solve our instances exactly whenever it was possible. When Cplex could not find the optimal solution within a reasonable time period, we considered the best solution obtained within that framework. We stopped the Cplex after 50,000 seconds for the random instances and after 200,000 seconds for the railway instances. According to Gondran and Minoux [START_REF] Gondran | Graphes et algorithmes[END_REF], determining clique cuts is generally efficient for solving the SPP problems. ln this way, despite the length of time needed to obtain the cliques, the use of clique cuts is more efficient than the use of Cplex with default parameters (particulary given the poor quality of the LP relaxation). ln this study, most of the best results for the biggest instances (more than 100 variables) were also obtained when these cuts were set. Moreover, the best bounds were obtained using these cuts. The reduction test algorithm (Algorithm 8) was used prior to the Cplex when the results (or the bounds) obtained could be improved.

We considered the foHowing components in our GRASP implementations :

. The greedy methods described in section 3.2.2 and 3.2.3. Preliminary practical tests convinced us that the greedy algorithm described in section 3.2.1 would require too much computational time to be used effectively here.

. The two choices of a proposed in section 3. . The local search phase described in section 3.4 . The intensification phase described in section 3.5 with

IPooll = 5
A different Pool for each a value since sorne preliminary tests with only one Pool for aH a values provided inferior results. This concurs with comments made by Glover and Laguna [START_REF] Glover | Tabu Search[END_REF] on the use of path relinking as an intensification phase.

. The stopping criterion : 260 GRASP iterations or 18,000 seconds.

Several independant runs of GRASP have been done. Only the best solution for each run is considered. AH the results reported for GRASP are the average of these best solutions.

The instances Rail 1 to 7 are smaH (less than 300 variables and 1,000 constraints), and so Cplex could solve them exactly without any problem. Our experiments shows that the GRASP procedures also provide the optimal solution regardless of the version used. Given that for these instances both Cplex and our experimental method can resolve the problem exactly and without difficulty, we have eliminated further discussion of Rail 1-7 in this paper.

Resolution with Cplex and bounds

First, we examined both the resolution of our instances with the Cplex solver, and the quality of the lower and upper bounds obtained. These results are presented in figure 1. AH the values are indicated in comparison with the best known value of each instance (i.e. the best known value is equal to 100 % in the figure). The results indicated for Cplex are the best we could obtain. The lower bounds come from a pure greedy algorithm (based on our greedy2 algorithm with a = 1), and the upper bounds are the best provided by Cplex. 

Greedv -Upper bound 1----1 

1 T T '1-' '1-' '-L' X , , , , ,', ,', 
Cplex was not able to provide even one bound for sorne of the biggest railway instances, due to an internaI error. ln these cases, we considered /3 (see section 4.2) as our upper bound. We can distinguish three main cases :

. Strongly constrained instances, i.e. with a high density and many constraints as compared to the number of variables (Rnd 1, 2, 9 and 10) : For strongly constrained instances, Cplex can provide optimal solutions due to the high quality of the upper bound. The greedy procedure is more irregular, sometimes giving results which are sometimes good, sometimes bad, though it do es seem to perform better on the larger instances.

. Weakly constrained instances, i.e. with a low density and few constraints as compared to the number of variables (Rnd 7, 8, 15 and 16, Rail 10, 12 and 15) : For weakly constrained instances, Cplex can provide optimal or at least very good solutions. The greedy results are also good with a good upper bound. However, the gap between the upper and lower bounds seems to increase for the larger instances, which tends to reduce the quality of Cplex results.

. Intermediate instances (Rnd 3 to 6 and 11 to 14, Rail 8, 9, 11, 13, 14 and 16) : For intermediate instances, the Cplex results are far from the best known solutions with the exception of the sm aller instances (Rail 8 and 9). Instance Rnd 11 is another exception, only solvable by Cplex using reduction tests. This is natural, given the poor quality of the greedy solutions and the very poor quality of the upper bounds, which are even worse for the larger instances. It would appear that these instances can not be solved efficiently with the Cplex and thus an exact resolution seems to be compromised.

These results indicate that a heuristic method would be very useful to solve sorne instances, notably the intermediate instances. . a version with the greedy3 algorithm, where OE was randomly selected from the set alphaBet for each GRASP iteration, designed to measure the impact of the learning pro cess alone . a version with the greedy2 algorithm and the reactive GRASP, designed to measure the impact of reactive GRASP alone . a version with the greedy3 algorithm and the reactive GRASP, designed to measure the impact of both used together.

AlI the versions presented also contain a local search phase and an intensification phase with path relinking.

The evaluation of the impact of each strategy shows that the learning strategies are efficient for many instances and almost never have a negative impact. On the other hand, reactive GRASP alone provides disappointing results. Its impact is less significant, sinking into the negative for sorne instances. Except the instance Rnd2, the average impact of reactive GRASP is nearly null.

The combination of both provides the best average results, even though the combination reflects sorne of the negative results of reactive GRASP (instance Rnd 11). It is interesting to note that the combination of both strategies can both underperform (instances Rnd 3 and 5) and overperform (instances Rnd 1, 4 and 12) the results of the two strategies taken individualIy. ActualIy, it would appear that the learning pro cess can change the significance of sorne OE values during the process, which means that reactive GRASP can not stabilize the OE values' probability. Avoiding this phenomenon (e.g. by waiting for the probabilities to stabilize before using the learning pro cess) would certainly lead to even better results. 

Impact of each phase of GRASP

ln this section, the impact of each phase of GRASP (greedy randomized construction, local search, intensification with path relinking) is examined with regard to the best version of our GRASP implementations (i.e. reactive GRASP with the greedy3 and the path relinking algorithms). Figure 3 presents the average solutions obtained after each phase of our GRASP algorithm in comparison with the best known solution (which is equal to 100 % in the figure). Such a comparison permits us to evaluate the importance of each phase in the overall quality of the solutions generated. The time ratio used for each phase is indicated in Figure 4.

The solutions obtained after the greedy randomized phase can be very good (even optimal for two instances), but are often far from the best known solutions (8.9% on average and up to 20% less than the best known solution). The local search phase improves these results significantly (+5.9% in average). The instances with poor results following the greedy phase often show an improved, though still poor, result following the local search phase (e.g. instance Rnd 6). The path relinking phase permits an additional improvement, over that of the local search phase (+1.5% on average). These improvements have a cost : together, the local search phase and the path relinking phase use the greater part of the CPU time (respectively 27.5% and . Fig. 4. Time ratio of each phase of our GRASP procedure 65%). The greedy phase uses more time for the strongly constrained instances (Rnd 1, 2, 9 and 10), due to the time needed to evaluate the variables, and do es not ensure better results.

Solution spectrum of our complete GRASP procedure

Figure 5 plots the min / max range and the average value observed at the end of each run for aH solutions provided, using the best version of our GRASP algorithm. Given that, to our knowledge, there is no other metaheuristic for the SPP available to compare with our GRASP algorithm, we can only compare our results with the best known results. Our GRASP procedure provides good results for each type of instance (strongly constrained, weakly constrained or intermediate). The average results obtained are only 2.2% less than the optimal solutions (when they are known) and only 2.2% less than the best known solutions. Except for one instance (Rnd 2), they are, at worst, 6.7% less than the best known solution. For 88% of the considered instances, they are, at worst, 4.0% less than the best known solution. These values indicate a regular solution quality. This is both remarkable and important for the future practical use of the algorithm as solver for railway planning problems.

6 Conclusion and Perspectives ln this paper, we have considered a difficult classic combinatorial optimization problem, the SPP, and presented several heuristic algorithms issued from the GRASP metaheuristic and its extensions to solve such problems. The computational results observed show that our GRASP implementation is efficient for solving a large range of SPP. These results seem particularly interesting in terms of the intermediate instances, where exact resolution is not possible within reasonable time constraints, if the well-known commercial software, Cplex, is used. However, we must admit that even GRASP needs quite a lot of time. ln order to improve GRASP performances on SPP problems, we have considered two different possibilities. One possibility would be to reconsider the local search and path relinking algorithms which represent the major part of the computational time. For the local search algorithm, either reducing the research are a for 1 -2 and for 2 -1 exchanges or using a different local search algorithm (tabu search, for example) could improve performances. Stopping the pro cess before the end of the path, as indicated by Resende and Ribeiro [START_REF] Resende | Greedy randomized adaptive search procedures[END_REF], might improve the performances of the path relinking algorithm. A second possibility would be to study anode packing problem formulation, though the increase in the size of the problem could cause problems. ln addition, modifications could be made to improve our reactive GRASP procedure and to use the learning pro cess and reactive GRASP together more efficiently. Moreover, we could study the impact of sorne other preprocessing phases to reduce the size of the problem and to improve our upper bounds : reduction tests like those used by Zwaneveld et al. [START_REF] Zwaneveld | Routing trains through railway stations: Model formulation and algorithms[END_REF] and valid inequalities as defined by Padberg [START_REF] Padberg | On the facial structure of set packing polyhedra[END_REF] constitute two likely directions for research.

  x = (Xi) where Xi = o otherwise . a vector C = (Ci) where Ci = value of the item i

7 .

 7 Solution +-initial Solution for i E l loop if initialSolution(i) i-targetSolution(i) then Solution(i) +-targetSolution(i) c:urrentSolution +-Solution if currentSolution not feasible then 1 currentSolution +-repairing(currentSolution) endlf currentSolution +-saturation(currentSolution) Pool +-Pool U {c:urrentSolution} endlf endFor Algorithm The path relinking algorithm

1 andAlgorithm 8 .

 18 LiEI ti,j ~2} endlf endFor The dominance test algorithm

  3 with -alphaBet = {O.O, 0.15, 0.30, 0.45, 0.50, 0.60, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0} -IPoolal = 5,Va E alphaBet (only for reactive GRASP) -probaUpdate condition: the probabilities are updated every 52 GRASP iterations (only for reactive GRASP) -6 = 5 (only for reactive GRASP)
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 2 Impact of each strategy considered for GRASP ln this section, we evaluate the impact of the use of the different strategies proposed. AlI the results presented in Figure2have been given in comparison with a version of a GRASP based on the greedy2 algorithm where OEwas randomly selected from the set alphaBet for each GRASP iteration. This version, labeled GRASP-Ref, corresponds to a value of 100 % in the figure. Three other different versions are presented :

Fig. 2 .

 2 Fig. 2. Impact of each strategy considered for GRASP

Fig. 5 .

 5 Fig. 5. Computational results of our complete GRASP procedure

  The greedy method . The random character importance, fixed by a parameter a E [0; 1] . The neighbourhood considered for the local search . The possible intensification phase . The stopping criterion . The possible post-optimization phaseThe complete GRASP scheme is described in the Aigorithm 1, in which the optional phases are indicated in brackets.

	Solutions +-0
	repeat	
	initial Sol +-greedyRandomized(problem,	a)
	improvedS ol +-localS earch( initialS ol)
	[improvedSol +-intensijication(improvedSol)]
	Solutions +-Solutions U {improvedSol}
	until stopping criteria
	[Solutions +-postOptimization(Solutions)]
	jinalSol +-best(Solutions)
	Algorithm	1. The GRASP algorithm
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