N

HAL

open science

GRASP for set packing problems

Xavier Delorme, Xavier Gandibleux, J. Rodriguez

» To cite this version:

Xavier Delorme, Xavier Gandibleux, J. Rodriguez. GRASP for set packing problems. European
Journal of Operational Research, 2004, 153 (3), pp.564-580. 10.1016/S0377-2217(03)00263-7 . hal-

00543193

HAL Id: hal-00543193
https://hal.science/hal-00543193
Submitted on 6 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00543193
https://hal.archives-ouvertes.fr

GRASP for Set Packing Problems

Xavier DELORME 2? Xavier GANDIBLEUX P
Joaquin RODRIGUEZ?

AINRETS-ESTAS, 20 rue Elisée Reclus, F-59650 Villeneuve d’Ascq — France

PLAMIH - UMR CNRS 8530, Université de Valenciennes, Campus “Le Mont
Houy”?, F-59313 Valenciennes cedex 9 — France

Abstract

The principles of the Greedy Randomized Adaptative Search Procedure (GRASP)
metaheuristic are instantiated for the set packing problem. We investigated several
construction phases, and evaluated improvements based on advanced strategies.
These improvements include a self-tuning procedure (using reactive GRASP), an
intensification procedure (using path relinking) and a procedure involving the diver-
sification of the selection (using a learning process). Two sets of various numerical
instances were used to perform the computational experiments. The first set con-
tains randomly generated instances, while the second includes instances relating to
real problems in railway planning. No metaheuristic has previously been applied
to this combinatorial problem. Consequently, we have discussed GRASP’s perfor-
mances both in relation to lower/upper bounds and to the results obtained with
Cplex when such results are available. OQur analysis, based on the average perfor-
mances observed, shows the impact of the suggested strategies, and indicates the
configuration that produces the best results.

Key words: combinatorial optimization, set packing problem, metaheuristic,
reactive GRASP, path relinking, railway planning problem.

Email addresses: Xavier .Delorme@inrets.fr (Xavier DELORME),
Xavier.GandibleuxQuniv-valenciennes.fr (Xavier GANDIBLEUX),
Joaquin.Rodriguez@inrets.fr (Joaquin RODRIGUEZ).

URLs: http://www3.inrets.fr/"delorme/ (Xavier DELORME),
http://www.univ-valenciennes.fr/ROAD/XavierG/ (Xavier GANDIBLEUX).

Preprint submitted to Elsevier Science 10 March 2003

1 Introduction

This study concerns the resolution of the “set packing problem” (SPP), a
classical optimization problem, close to the “set covering problem” [1,2], which
can also be reformulated as a “node packing problem”. Surprisingly, the SPP
has not received much attention in the literature. In comparison with the “set
covering” and “node packing” problems, very few studies have examined the
SPP resolution.

The impetus for our research comes from a real railway problem which can be
formulated as an SPP [3,4]. The principal concerns revolve around the evalu-
ation of infrastructure capacity in a railway network. The numerical instances
used in this study come from the Pierrefitte Gonesse junction, north of Paris.
However, because these instances have a specific structure, they do not allow
us to obtain general information concerning the advantages and disavantages
of a resolution method. For this reason, we have also used several randomly
generated instances of a similar size, but with more varied characteristics.

In the first stage of our study, we used Cplex to resolve the problem [5]. How-
ever, given the size of the numerical instances, exact resolution was impossible
within a reasonable period of time. Our second stage involved the development
of a heuristic method derived from the GRASP (Greedy Randomized Adap-
tative Search Procedure) metaheuristic [6] . Several general algorithms, which
can solve any SPP, were developped. Within the basic GRASP framework,
we considered three different greedy methods, including one involving a new
learning process, as well as two extensions of this standard framework (reac-
tive GRASP and path relinking). We compared their abilities to solve a range
of SPP, particularly those where Cplex can not produce good quality results.
This comparison demonstrates the efficiency of the various parameters and
strategies with regard to the characteristics of the instances. This informa-
tion will be useful in future studies when we will seek to develop a particular
algorithm for our specific railway problem.

Section 2 introduces the SPP and its particularities. The principles of GRASP
are reviewed in section 3, along with the algorithmic description of our different
operational procedures. In section 4 and 5, We report and comment on the
characteristics of our instances (including a description of the railway problem)
(section 4) and the numerical results collected (section 5). Section 6 concludes
the discussion.

2 The set packing problem

Given a finite set I = {1,...,n} of valuated items and {Tj},j € J =
{1,...,m} a collection of subsets of I, a packing is a subset P C I such
that |T; N P| < 1,Vj € J. The set J can also be seen as a set of constraints
between the items of the set I. The objective of the SPP is to maximise the
total value of the packing obtained. This problem can be formulated with a
mathematical model (1) :

-Ma:s z :Z CiT;

el
tiizi <1Vjed
zfezr w (1)

z; € {0,1} ,Viel
ti; €{0,1} ,Vie ILVj € J

considering :

lifieP
e a vector z = (x;) where z; =
0 otherwise

e a vector ¢ = (¢;) where ¢; = value of the item ¢
. 1ifieT)
e a matrix ¢ = (¢;;) where ¢; ; =
0 otherwise

The node packing problem (2) is a specific case of the SPP in which the
constraints are between pairs of items :

Maz z =Z CiT;

iel
z; +x; < 1,V pair (4, j) of incompatible items (2)
z; €{0,1} ,\Viel

Every SPP can be formulated as a node packing problem, where each con-
straint is split into several constraints, one for each pair of items. However,
this reformulation increases the number of constraints ; each constraint involv-
ing n items is rewritten as C? constraints on two items. Every node packing
problem can also be expressed as a set covering problem with a simple change
of variable (z} =1 — z;,Vi € I).

The SPP is known to be strongly NP-Hard, according to Garey and Johnson
[7]. Its particularities are described in more detail by Gondran and Minoux [1]
and Nemhauser and Wolsey [2]. The best exact method known for solving this
problem is a Branch & Cut algorithm using polyhedral theory to obtain facets,
essentially by determining cliques as defined by Padberg [8]. However, only
small-sized instances can be solved exactly. To our knowledge, and according
to Osman and Laporte [9], no one has ever applied metaheuristics to SPP
resolution.

Surprisingly, few applications of the SPP formulation have been reported in
the literature. Of those, five recent applications are summarized briefly in
chronological order in the lines below. Ronnqvist [10] worked on a cutting
stock problem formulated as an SPP and solved using a Lagrangian relaxation
combined with subgradient optimization. Zwaneveld et al. [11] formulated a
real railway feasibility problem as an SPP and solved it exactly using reduction
tests and a Branch & Cut method. Kim [12] represented a ship scheduling
problem as an SPP and used LINDO software to solve it. Mingozzi et al. [13]
used an SPP formulation to calculate the bounds for a Resource Constrained
Project Scheduling Problem using a greedy method. Rossi [14] considered an
SPP formulation for a ground holding problem and solved it exactly with a
Branch & Cut method.

3 Algorithmic description of the operational procedures

3.1 Querview of GRASP

GRASP is a multistart two-phase metaheuristic for combinatorial optimiza-
tion proposed by Feo and Resende [6]. The first phase is a construction phase
that builds an initial solution using a greedy randomized procedure, whose
randomness allows solutions in different areas of the solution space to be ob-
tained. The second phase is a local search phase that improves these solutions.
This two-phase process is reiterative (for a general overview of GRASP, see
the article by Pitsoulis and Resende[15]). Several new components have ex-
tended the scheme of GRASP (reactive GRASP, parameter variations, bias
functions, memory and learning, improved local search, path relinking, hy-
brids, ...). These components are presented and discussed in Resende and
Ribeiro [16].

To implement GRASP for a specific problem, six main choices must be made :

e The greedy method

e The random character importance, fixed by a parameter a € [0;1]
e The neighbourhood considered for the local search

e The possible intensification phase

e The stopping criterion

e The possible post-optimization phase

The complete GRASP scheme is described in the Algorithm 1, in which the
optional phases are indicated in brackets.

Solutions < 0

repeat

initialSol < greedyRandomized(problem, o)
improvedSol < localSearch(initialSol)
[tmprovedSol + intensification(improvedSol)]

Solutions < Solutions U {improvedSol}

until stopping criteria
[Solutions < postOptimization(Solutions))
finalSol « best(Solutions)

Algorithm 1. The GRASP algorithm

It is easy to customize the GRASP metaheuristic to solve any problem for
which construction and local search algorithms are available. GRASP has
been applied to a wide range of optimization problems, including academic
and industrial problems in scheduling, routing, logic, partitioning, location and
layout, graph theory, assignment, manufacturing, transportation, telecommu-
nications, electrical power systems, and VLSI design. An extensive annotated
bibliography has been proposed by Festa and Resende [17]. Several studies
have shown that GRASP produces good quality solutions for hard combina-
torial optimization problems, particularly the set covering problems [18-21],
the node packing problems [19,22] and the set packing problems [3,4].

3.2 The greedy randomized phase

For the greedy phase of our GRASP algorithm, we propose three different
greedy algorithms (called greedyl, greedy2 and greedy3). Their characteristics
are described in the following sections, respectively 3.2.1, 3.2.2 and 3.2.3.

3.2.1 The greedyl algorithm

The greedyl procedure (Algorithm 2) is inspired by some of the implementa-
tions [18,20,21] of a GRASP for the set covering problem proposed by Féo and
Resende [19]. This procedure builds a solution from the trivial non-feasible so-
lution, z; = 1,Vi € I. Several variable values are flipped to 0 until a feasible
solution is obtained. These changes concern only one variable per iteration. To
keep a maximal value for the objective function, variables involving a maxi-
mum number of constraints with a minimum value (i.e. with ¢; minimum) are
prioritized. A Restricted Candidate List (RCL) is constituted of the variables
at the top of the priority listing according to a threshold parameter o € [0, 1]
applied to their evaluation. The choice of the variable fixed to 0 is random
among the variables included in the RCL. With a value a = 0, the algorithm
corresponds to a random construction ; with a value o = 1, it is equivalent to
a greedy algorithm.

I« 1

T;]_,VE € It

Je = I\{J : Tier, tijos < 1}

while (J; # 0) loop
EBuval; + ZjGJ: tg,j/q, Vi € I,
Limit + min;ey, (Eval;) + o * (max;er, (Eval;) — mingey, (Eval;))
RCL «+ {i € I, Eval; > Limit}
t* <~ RandomSelect(RCL)
T 0
If, — Ig \ {3*}
Je = I\ {j : Zier, tijzi < 1}
endWhile

Algorithm 2. The greedy randomized construction algorithm greedyl

Considering n as the number of variables and m as the number of constraints,
the complexity of the greedyl algorithm is O(n?m) in the worst case.

3.2.2 The greedy? algorithm

The greedy2 procedure (Algorithm 3) is inspired by a GRASP for the node
packing problem proposed by Féo et al. [19,22]. This procedure builds a solu-
tion from the trivial feasible solution, z; = 0,Vi € I. Some variable values are
set to 1, as long as the solution is maintained feasible. Changes concern only

one variable at each iteration. To increase the objective function, variables
which involve a minimum number of constraints with a maximum value are
prioritized, but the choice is random among the most interesting variables.
Changes stop when no variable can be fixed to 1 without losing feasibility.

Ii+ 1

z; + 0,Vi € I

Bual; < cif Yjestij, Vi € I

while (I; # @) loop

Limit < min;ey, (Eval;) + a * (max;er, (Fval;) — minge, (Eval;))
RCL «+ {i € I, Eval; > Limit}

i* + RandomSelect(RCL)

T+ — 1

I + I\ {7*}

L+ I\{i:3j € J,ti; +tw ;> 1}
endWhile

Algorithm 3. The greedy randomized construction algorithm greedy2

The complexity of the greedy2 algorithm is O(Snm) in the worst case, with S
representing the maximum number of iterations. This number is equal to the
maximal number of variables that can be fixed to 1 in a feasible solution. This
means that the complexity can theoretically be O(n?m) (where 3 < n), but
in practice 8 is often very small compared to n. Thus, the complexity of the
greedy2 algorithm is less than that of the greedyl algorithm (section 3.2.1).

3.2.83 The greedyd algorithm

The greedy3 procedure (Algorithm 4) is an evolution of the greedy2 algorithm
described in the previous section (3.2.2) and includes a learning process. It
seeks to improve on the evaluation of the variables throughout the main loop of
the GRASP algorithm. Each constraint is weighted by its frequency saturation
on the generated set of solutions. In the Algorithm 4, SaturationFrequency(j)
denotes the ratio of the number of times the constraint j has been saturated
to the number of generated solutions. A constraint is considered saturated
by a solution if a variable appearing in this constraint is fixed to 1 in this
solution (i.e. 37 € I,z; =1 and ¢;; = 1). This computation is done by a func-
tion Update(). SaturationFrequency is initialized to 0 for the first GRASP
iteration.

I+ 1

z; <+ 0,Vie I

Eval; < ¢;/ ¥jer (tij * (1 + SaturationFrequency(j))), Vi € I
while (I; # 0) loop

Limit + min;ey, (Eval;) + a * (max;er, (Fval;) — minge, (Eval;))
RCL «+ {i € I, Eval; > Limit}

i* < RandomSelect(RCL)

T +— 1

I + I\ {#*}

L+ L\ {i:3j € Jty+tr;>1}

endWhile

Update(SaturationFrequency(j)),Vj € J

Algorithm 4. The greedy randomized construction algorithm greedy3

As with the greedy2 algorithm, the complexity of this algorithm is O(8nm).

3.3 The choice of the a parameter : reactive GRASP

Preliminary experimentation showed us that no particular value for the o pa-
rameter can be determined as best for all or even a large part of the instances.
The same observation was reported by Resende and Ribeiro [16]. As a result,
we decided to consider several values for the o parameter. Our first strategy
was to choose a randomly from a set alphaSet with a uniform discrete prob-
ability distribution. However, we also examined a second, reportedly better,
strategy called reactive GRASP, in which the parameter « is self-adjusted
according to the quality of the solutions previously obtained. The algorithm
that we propose (Algorithm 5) is an evolution of Algorithm 1 which is inspired
by the GRASP algorithm of Prais and Ribeiro [23].

Starting from a uniform discrete probability distribution among each value of
the set alphaSet, proba, is updated periodically according to a probaUpdate
condition. New probabilities are calculated from the average value of the elite
solutions obtained for each a value (the elite solutions are listed in a Pool,
with a limited size). The parameter ¢ is introduced to attenuate the updated
values of the probabilities p;.

Solutions + 0

proba, <+ 1/|alphaSet|, Yo € alphaSet

repeat

a* + RandomSelect(alphaSet, proba)
initialSol <+ greedyRandomized(problem, a*)
improvedSol + local Search(initialSol)
[improvedSol +— intensification(improvedSol)]
Solutions + Solutions U {improvedSol}
Pooly < Pooly U {improvedSol}

if probaUpdate condition is true then

—z(worst(Solutions 4
MEan s ¢ pooly (2(s)) —2(wor st(Solut })) , Vo € alphaSet

valuatwna £~ (z(best(So!utions}}—z(worst(Squtéons)}

proba, valuation,/ (Za’EaIphaSet Ualuationar) ,Va € alphaSet
endIf

until stopping criteria
[Solutions < postOptimization(Solutions))
finalSol <+ best(Solutions)

Algorithm 5. The reactive GRASP algorithm

3.4 The local search phase

The neighbourhood N used for the local search procedure (Algorithm 6) is
based on k —p exchanges. The k —p exchange neighbourhood of a solution z is
the set of solutions obtained from z by changing the value of £ variables from 1
to 0, and changing p variables from 0 to 1. Due to the combinatorial explosion
of the number of exchange possibilities when % and p increase, we were obliged
to limit them, testing only 0 — 1 exchanges, 1 — 1 exchanges, 2 — 1 exchanges
and 1 — 2 exchanges. Moreover, the search procedure was implemented using
a first-improving strategy (i.e. we selected the first neighbour whose value is
better than the current solution). Whenever an exchange is accepted, the local
search is re-started from this new solution. The local search stops when no
further improving exchanges are possible.

The complexity of the searchNeighbourhood algorithms (for 1-2 exchanges
and 2-1 exchanges) is O(n*m) in the worst case. However, the practical time
can be significantly reduced when the local search algorithm is applied to a
good initial solution.

function searchNeighbourhood(s,N')
while s not locally optimal loop
Find ' € N (s) with z(s") > z(s)
54§
endWhile

return s

end searchNeighbourhood

repeat

Solution < searchN eighbourhood(Solution, 0 — lexchanges)
Solution + searchNeighbourhood(Solution,1 — lexchanges)

Solution < searchNeighbourhood(Solution,2 — lexchanges)

Solution < searchNeighbourhood(Solution,1 — 2exchanges)
until Solution not improved

return Solution

Algorithm 6. The local search algorithm

3.5 The intensification phase : path relinking

The intensification method is based on path relinking, which was originally
proposed for the tabu search by Glover and Laguna [24]. With this procedure,
paths from one elite solution to another are generated (in the solution space)
and explored to obtain better solutions. Path relinking was first used as an
intensification of a GRASP procedure by Laguna and Marti [25]. However,
our path relinking algorithm for the SPP (Algorithm 7) is inspired by the one
proposed by Resende and Ribeiro [26].

In the intensification method, the best solutions obtained by GRASP are
placed in a Pool with a limited size. For each GRASP iteration, the path
relinking algorithm is applied to the solution generated by the local search
phase and to one solution randomly selected among those in the Pool. The
best of these two solutions is taken as the initialSolution and the other as
the targetSolution. At each iteration of the path relinking, the solution is
repaired if necessary. The repairing function used is the greedyl algorithm
described in section 3.2.1, with a value of 1 for the a parameter (i.e. a pure
greedy procedure). Then the solution is saturated, using a saturation function
which is the greedy2 algorithm described in section 3.2.2, also with a value of
1 for a. The solutions thus generated can also be included in the Pool.

10

Solution + initial Solution
for ¢ € I loop
if initialSolution(i) # targetSolution(i) then
Solution(i) < targetSolution(q)
currentSolution < Solution
if currentSolution not feasible then

‘ currentSolution < repairing(currentSolution)
endIf
currentSolution < saturation(currentSolution)
Pool < Pool U {currentSolution}
endIf

endFor

Algorithm 7. The path relinking algorithm

Since the complexity of the repairing algorithm is O(n?m), the complexity of
this algorithm is O(n®*m) in the worst case.

4 Numerical instances

Given the lack of available SPP benchmarks, we decided to consider two types
of instances to evaluate our GRASP implementations. The first type consists of
randomly-generated instances, and the second type is related to a real railway
problem.

4.1 Randomly generated instances

Several instances were generated randomly using the following parameters :

e the number of variables is equal to 1,000 or 2,000

e the number of constraints is equal to 100% or 500% of the number of vari-
ables

e the maximum number of non-null elements by constraint is equal to 1% or
5% of the number of variables (i.e. the actual number of non-null elements
is a random number between two and this parameter)

11

e the values of items (¢;) are uniformly distributed in the interval [1-20]
(weighted) or fixed to 1 (unicost)

All combinations of these parameters were considered. Sixteen different in-
stances, labeled Rnd, were thus generated.

The characteristics of these instances are presented in Table 1. The density
corresponds to the percentage of non-null elements in the constraint matrix.
We also indicated the weighted instances. The objective value of the linear re-
laxation (LP) is also shown, as well as that of the best known solution, with an
asterisk if it is optimal (note that there can be quite a significant gap between
the values for the best known solutions and the linear relaxation). In addition,
the number of non-redundant variables is given, as well as the percentage of
reduction that can be obtained by removing the redundant variables. This
number was obtained by applying a dominance test algorithm (Algorithm 8).

for i, € I loop

if {iy € I'\ {i1}, (V] € J,ti, j > ti, ;) and (c(i1) < c(iz))} # 0 then
I+ 1\ {i}
J—J\{jeJty;=1and i ti; <2}

endIf

endFor

Algorithm 8. The dominance test algorithm

The dominance test algorithm compares each pair of variables. We consider
that a variable 7, is dominated by another variable iy, if i; saturates all the
constraints that i, saturates (and potentially more) and if the value of the
item ¢, is less than or equal to that of the item 45. Such a variable 7; can be
removed from the problem without changing its optimal solution. Addition-
ally, constraints which have only one ¢; ; different of zero after removing the
variables can also be removed from the problem.

4.2 Railway problem instances

The second set of SPP instances considered in the evaluation of our GRASP
implementations comes from an actual railway planning problem. Railway in-
frastructure managers now have to deal with operators’ requests for increased
capacity. Planning the construction or reconstruction of infrastructures must
be done very carefully in light of the huge investments required. Usually, as-
sessing the capacity of one component of a rail system is done by measuring
the maximum number of trains that can be operated on this component within

12

N° Initial problem Best || Reduced problem
1] |J| | Density | ¢ LP known || |I| | Reduction

1 | 1,000 | 5,000 | 2.60% | [1-20] 330.26 67* 997 0.3%

2 | 1,000 | 5,000 | 2.59% | [1-1] 22.81 4* 999 0.1%

3 | 1,000 | 5,000 | 0.60% | [1-20] | 1,365.64 661 || 1,000 0.0%

4 | 1,000 | 5000]| 0.60% | [1-1] | 11177 48 || 1,000 0.0%

5 | 1,000 | 1,000 | 2.60% |[1-20] | 43471 | 222 1,000 0.0%

6 | 1,000 | 1,000 | 2.65% | [1-1] | 29.91 15 || 1,000 0.0%

7 | 1,000 | 1,000 | 0.58% | [1-20] | 2,349.19 2,255 949 5.1%

8 | 1,000 | 1,000 | 0.60% | [1-1] 184.32 175 920 8.0%

9 | 2,000 | 10,000 | 2.54% | [1-20] 339.62 40* 513 74.4%

10 | 2,000 | 10,000 | 2.54% | [1-1] | 22.59 2% || 476 76.2%
11 | 2,000 | 10,000 | 0.55% | [1-20] | 1,500.10 | 478 || 2,000 0.0%
12 | 2,000 | 10,000 | 0.55% | [1-1] | 114.01 32 || 2,000 0.0%
13 || 2,000 | 2,000 | 2.55% | [1-20] 423.98 140 || 2,000 0.0%
14 [2,000 | 2,000 | 2.56% | [1-1] 28.70 9 || 2,000 0.0%
15 | 2,000 | 2,000 | 0.56% | [1-20] | 2,209.57 | 1,784 || 2,000 0.0%
16 | 2,000 | 2,000 | 0.56% | [1-1] | 168.82 | 131 || 2,000 0.0%

Table 1

Characteristics of the randomly generated instances

a certain time period. Measuring the capacity of junctions is a matter of solv-
ing an optimisation problem called the feasibility problem. As mentioned in
section 2, this problem has been formulated in terms of an SPP by Zwaneveld
et al. [11] and more recently by Delorme et al. [3,4]. The feasibility problem
of a junction can be stated as follows :

Given the layout of a junction and a set of trains T, how many trains from T
can be routed through the junction within a certain time period such that all
safety constraints are satisfied 7

The construction of the set 7 is detailed in Delorme et al. [4]. Each train of
the set 7 has an allowed set of routes and an allowed set of entrance times. To
design the feasibility problem, binary decision variables are introduced. These
decision variables are :

13

1 if the combination 7 of a train, a route and an entrance time is used
T; =
0 otherwise

This formulation is close to the model developed in Zwaneveld et al. [11], in
which the decisions of the entrance times were not included. The objective is
to maximize the number of trains that can be routed through the junction
without preference between trains. This is reflected in the objective function
with the item coefficients ¢; = 1,Vi € I. This particularity raises a unicost
SPP (USPP).

The set I of items corresponds to the set of the allowed combinations of
trains/routes/entrance times ; the set J corresponds to the set of constraints
between these combinations. There are two types of constraints. The first en-
sures that only one route and one entrance time value can be set for each train.
The second ensures the safety conditions of the runs between the combinations
of trains/routes/entrance times. Here, ng denotes the number of trains, and
Sk denotes the set of the allowed combinations of routes/entrance times for a
train k. Because of this, the set I is split into disjoint subsets (S, ..., Sng).

One consequence of formulating the railway feasibility problem as a USPP is :
according to first set of constraints, we know that

ng
z=Y zi=)» Y 7 <ng
i€l k=14€S
thus, we can deduce the parameter 5 < ng (see section 3.2.2).

We experimented with the railway feasibility problem as a USPP, using data
from the junction of Pierrefitte Gonesse, north of Paris. In the instances con-
sidered (labeled Rail 1 to Rail 16), the time period is generally one hour.
The characteristics of these instances are presented in Table 2. This table also
shows the value of the linear relaxation (LP), when it is known, as well as
the best known solution, with an asterisk indicating the optimal solutions. In
those cases where no value is available, due to an internal error reported by
Cplex, N.A. is noted in the table. As with the randomly generated instances,
the number of non-redundant variables and the reductions obtained are also
provided.

5 Computational Results

This section presents the computational results obtained for all the instances
considered in our study. Both the solutions generated with the Cplex solver
and our GRASP implementations are included. All our implementations of

14

N° Initial problem Best || Reduced problem
ng | || |J] Density | LP || known || |I| | Reduction

1 16 56 200 | 5.70% 12.81 9* 26 53.6%

2 16 88 316 | 5.50% 16.00 16* 64 27.3%

3 16 | 104 391 | 5.00% 16.00 16* 73 29.8%

4 18 93 361 | 4.40% 16.53 12* 40 57.0%

5 20 112 116 | 4.20% 20.00 20* 20 82.1%

6 24 | 124 428 | 3.30% 22.57 20%* 80 35.5%

7 50 | 281 732 | 1.70% 49.50 48* 164 41.6%

8 90 | 465 3,025 | 0.85% 81.04 45* 304 34.6%

9 || 120 | 620 4,080 | 0.64% | 108.04 60* 409 34.0%

10 || 240 | 1,240 8,300 | 0.32% | 216.04 120%* 829 33.1%
11 || 240 | 1,240 | 17,573 | 0.32% N.A. 94* | 1,099 11.4%
12 || 360 | 1,860 | 19,278 | 0.21% | 313.57 150 || 1,482 20.3%
13 || 360 | 1,860 | 39,101 | 0.22% N.A. 75 || 1,592 14.4%
14 || 380 | 1,620 | 33,664 | 0.21% N.A. 87 || 1,356 16.3%
15 || 720 | 3,720 | 54,053 | 0.11% N.A. 280 || 3,339 10.2%
16 || 720 | 3,720 | 158,156 | 0.11% | 590.60 93 || 3,307 11.1%

Table 2

Characteristics of the railway instances

GRASP were performed with Ada (Gnat 3.13). The results were obtained
on a UltraSPARC-II at 296 MHz for the Cplex, and on a Pentium III at
800 MHz for the GRASP. This difference in equipment prevents comparisons,
particularly time comparisons ; however, such comparisons are not within the
scope of this paper.

We used the MIP-Solver of Cplex 6.0 to solve our instances exactly when-
ever it was possible. When Cplex could not find the optimal solution within
a reasonable time period, we considered the best solution obtained within
that framework. We stopped the Cplex after 50,000 seconds for the random
instances and after 200,000 seconds for the railway instances. According to
Gondran and Minoux [1], determining clique cuts is generally efficient for
solving the SPP problems. In this way, despite the length of time needed to
obtain the cliques, the use of clique cuts is more efficient than the use of Cplex
with default parameters (particulary given the poor quality of the LP relax-
ation). In this study, most of the best results for the biggest instances (more
than 100 variables) were also obtained when these cuts were set. Moreover,

15

the best bounds were obtained using these cuts. The reduction test algorithm
(Algorithm 8) was used prior to the Cplex when the results (or the bounds)
obtained could be improved.

We considered the following components in our GRASP implementations :

e The greedy methods described in section 3.2.2 and 3.2.3. Preliminary prac-
tical tests convinced us that the greedy algorithm described in section 3.2.1
would require too much computational time to be used effectively here.

e The two choices of a proposed in section 3.3 with
- alphaSet = {0.0,0.15,0.30, 0.45, 0.50, 0.60, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0}
- |Pooly| = 5,Va € alphaSet (only for reactive GRASP)

- probaUpdate condition : the probabilities are updated every 52 GRASP
iterations (only for reactive GRASP)
- 6 =5 (only for reactive GRASP)

e The local search phase described in section 3.4

e The intensification phase described in section 3.5 with
- |Pool| =5
- A different Pool for each o value since some preliminary tests with only

one Pool for all a values provided inferior results. This concurs with com-
ments made by Glover and Laguna [24] on the use of path relinking as an
intensification phase.

e The stopping criterion : 260 GRASP iterations or 18,000 seconds.

Several independant runs of GRASP have been done. Only the best solution
for each run is considered. All the results reported for GRASP are the average
of these best solutions.

The instances Rail 1 to 7 are small (less than 300 variables and 1,000 con-
straints), and so Cplex could solve them exactly without any problem. Our
experiments shows that the GRASP procedures also provide the optimal solu-
tion regardless of the version used. Given that for these instances both Cplex
and our experimental method can resolve the problem exactly and without
difficulty, we have eliminated further discussion of Rail 1-7 in this paper.

5.1 Resolution with Cplezx and bounds

First, we examined both the resolution of our instances with the Cplex solver,
and the quality of the lower and upper bounds obtained. These results are
presented in figure 1. All the values are indicated in comparison with the best
known value of each instance (i.e. the best known value is equal to 100 %
in the figure). The results indicated for Cplex are the best we could obtain.
The lower bounds come from a pure greedy algorithm (based on our greedy2
algorithm with a = 1), and the upper bounds are the best provided by Cplex.

16

Cplex was not able to provide even one bound for some of the biggest railway
instances, due to an internal error. In these cases, we considered /3 (see section
4.2) as our upper bound.

Percentage
of the best

500 %] 1 T 1 T 1 I 1] 1 T 1 T 1 I 1] 1 T 1 T 1 I]

Tplex %
| Greedy - Upper bound —H |

400 % [~ -

250% [~ -

known selution

[v) I | I— —" — — | IR | N N—— —

150 % = -

X %

0% 1 I)ll\ll 1 1

Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rail Rail Rail Rail Rail Rail Rail Rail Ral
1 2 3 4 5 6 7 8 2 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16

Instances

Fig. 1. Resolution with Cplex and bounds

We can distinguish three main cases :

Strongly constrained instances, i.e. with a high density and many constraints
as compared to the number of variables (Rnd 1, 2, 9 and 10) :

For strongly constrained instances, Cplex can provide optimal solutions due
to the high quality of the upper bound. The greedy procedure is more irreg-
ular, sometimes giving results which are sometimes good, sometimes bad,
though it does seem to perform better on the larger instances.

Weakly constrained instances, i.e. with a low density and few constraints as
compared to the number of variables (Rnd 7, 8, 15 and 16, Rail 10, 12 and
15) :

For weakly constrained instances, Cplex can provide optimal or at least very
good solutions. The greedy results are also good with a good upper bound.
However, the gap between the upper and lower bounds seems to increase
for the larger instances, which tends to reduce the quality of Cplex results.
Intermediate instances (Rnd 3 to 6 and 11 to 14, Rail 8, 9, 11, 13, 14 and
16) :

For intermediate instances, the Cplex results are far from the best known
solutions with the exception of the smaller instances (Rail 8 and 9). In-
stance Rnd 11 is another exception, only solvable by Cplex using reduction

17

tests. This is natural, given the poor quality of the greedy solutions and the
very poor quality of the upper bounds, which are even worse for the larger
instances. It would appear that these instances can not be solved efficiently
with the Cplex and thus an exact resolution seems to be compromised.

These results indicate that a heuristic method would be very useful to solve
some instances, notably the intermediate instances.

5.2 Impact of each strategy considered for GRASP

In this section, we evaluate the impact of the use of the different strategies
proposed. All the results presented in Figure 2 have been given in comparison
with a version of a GRASP based on the greedy2 algorithm where a was ran-
domly selected from the set alphaSet for each GRASP iteration. This version,
labeled GRASP-Ref, corresponds to a value of 100 % in the figure. Three other
different versions are presented :

e a version with the greedy3 algorithm, where a was randomly selected from
the set alphaSet for each GRASP iteration, designed to measure the impact
of the learning process alone

e a version with the greedy2 algorithm and the reactive GRASP, designed to
measure the impact of reactive GRASP alone

e a version with the greedy3 algorithm and the reactive GRASP, designed to
measure the impact of both used together.

All the versions presented also contain a local search phase and an intensifi-
cation phase with path relinking.

The evaluation of the impact of each strategy shows that the learning strategies
are efficient for many instances and almost never have a negative impact.
On the other hand, reactive GRASP alone provides disappointing results. Its
impact is less significant, sinking into the negative for some instances. Except
the instance Rnd2, the average impact of reactive GRASP is nearly null.

The combination of both provides the best average results, even though the
combination reflects some of the negative results of reactive GRASP (instance
Rnd 11). It is interesting to note that the combination of both strategies can
both underperform (instances Rnd 3 and 5) and overperform (instances Rnd
1, 4 and 12) the results of the two strategies taken individually. Actually, it
would appear that the learning process can change the significance of some «
values during the process, which means that reactive GRASP can not stabilize
the a values’ probability. Avoiding this phenomenon (e.g. by waiting for the
probabilities to stabilize before using the learning process) would certainly
lead to even better results.

18

114 % R R T L S (. L L L T . . T S S . S S R TC .

Learning
112%
Reactive —

Learning + Reactive s
110 % e -

108 %
106 %

104 %

average solution

Percentagpe
of the GRASP-Ref

102 %

100 %

Bnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd RAnd Rnd Rnd Rail Rail Rail Rail Rail Raill Rail Rail Rail
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 8 89 10 11 12 13 14 15 16

Fig. 2. Impact of each strategy considered for GRASP
5.8 Impact of each phase of GRASP

In this section, the impact of each phase of GRASP (greedy randomized con-
struction, local search, intensification with path relinking) is examined with re-
gard to the best version of our GRASP implementations (i.e. reactive GRASP
with the greedy3 and the path relinking algorithms). Figure 3 presents the
average solutions obtained after each phase of our GRASP algorithm in com-
parison with the best known solution (which is equal to 100 % in the figure).
Such a comparison permits us to evaluate the importance of each phase in the
overall quality of the solutions generated. The time ratio used for each phase
is indicated in Figure 4.

The solutions obtained after the greedy randomized phase can be very good
(even optimal for two instances), but are often far from the best known so-
lutions (8.9% on average and up to 20% less than the best known solution).
The local search phase improves these results significantly (+5.9% in average).
The instances with poor results following the greedy phase often show an im-
proved, though still poor, result following the local search phase (e.g. instance
Rnd 6). The path relinking phase permits an additional improvement, over
that of the local search phase (+1.5% on average).

These improvements have a cost : together, the local search phase and the path
relinking phase use the greater part of the CPU time (respectively 27.5% and

19

Time rafio

Percentage
of the best

100 %

95% [~ - — - - - - - ~
5
5 90% |~ -1
a
=
g
E 4
85% a il N . . =
BO% - —| — -] - - = - — — -] —| - - [
Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rail Rail Rail Rail Rail Rail Rail Rail Rail
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 186
Instances
[Path reiinking [N Local search [Greedy |
Fig. 3. Impact of each phase of our GRASP procedure
100 %
80% - -
s B B e EEE - - - - - -+
40% [~ .
20% [K - - - - - - - N -
0% o e
And Rnd And And Rnd Rnd And Rnd Rnd And Rnd Rnd And Rnd Rnd RAnd Rail Rail Rail Rail Rail Rail Rail Rail Ral
1 2 3 4 5 6 7 B8 & 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16
Instances
I Path relinking - Local search - Greedy I

Fig. 4. Time ratio of each phase of our GRASP procedure

20

65%). The greedy phase uses more time for the strongly constrained instances
(Rnd 1, 2, 9 and 10), due to the time needed to evaluate the variables, and
does not ensure better results.

5.4 Solution spectrum of our complete GRASP procedure

Figure 5 plots the min / max range and the average value observed at the end
of each run for all solutions provided, using the best version of our GRASP
algorithm. Given that, to our knowledge, there is no other metaheuristic for the
SPP available to compare with our GRASP algorithm, we can only compare
our results with the best known results.

100% —¥—1—1 T.;.xx% x%i()l(*)f*x%ii{.

X

90% - —
5
885
fLf o
:ww
855
asg
"3

85% - —

80% - —

Min - Avg - Max -

1
Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rnd Rail Rail Rail Rail Rail Rail Rail Rail Rail
1 2 3 4 5 & 7 & 9 10 11 12 13 14 15 16 8 9§ 10 11 12 13 14 15 16

Instances

Fig. 5. Computational results of our complete GRASP procedure

Our GRASP procedure provides good results for each type of instance (strongly
constrained, weakly constrained or intermediate). The average results obtained
are only 2.2% less than the optimal solutions (when they are known) and only
2.2% less than the best known solutions. Except for one instance (Rnd 2), they
are, at worst, 6.7% less than the best known solution. For 88% of the consid-
ered instances, they are, at worst, 4.0% less than the best known solution.
These values indicate a regular solution quality. This is both remarkable and
important for the future practical use of the algorithm as solver for railway
planning problems.

21

6 Conclusion and Perspectives

In this paper, we have considered a difficult classic combinatorial optimization
problem, the SPP, and presented several heuristic algorithms issued from the
GRASP metaheuristic and its extensions to solve such problems. The com-
putational results observed show that our GRASP implementation is efficient
for solving a large range of SPP. These results seem particularly interesting
in terms of the intermediate instances, where exact resolution is not possible
within reasonable time constraints, if the well-known commercial software,
Cplex, is used.

However, we must admit that even GRASP needs quite a lot of time. In order
to improve GRASP performances on SPP problems, we have considered two
different possibilities. One possibility would be to reconsider the local search
and path relinking algorithms which represent the major part of the compu-
tational time. For the local search algorithm, either reducing the research area
for 1 — 2 and for 2 — 1 exchanges or using a different local search algorithm
(tabu search, for example) could improve performances. Stopping the process
before the end of the path, as indicated by Resende and Ribeiro [16], might
improve the performances of the path relinking algorithm. A second possibility
would be to study a node packing problem formulation, though the increase
in the size of the problem could cause problems. In addition, modifications
could be made to improve our reactive GRASP procedure and to use the
learning process and reactive GRASP together more efficiently. Moreover, we
could study the impact of some other preprocessing phases to reduce the size
of the problem and to improve our upper bounds : reduction tests like those
used by Zwaneveld et al. [11] and valid inequalities as defined by Padberg (8]
constitute two likely directions for research.

Acknowledgements

The authors wish to thank the anonymous referees whose comments on an
earlier version of the paper were very helpful.

References

[1] M. Gondran, M. Minoux, Graphes et algorithmes, Eyrolles, 1995, in french.

[2] G. L. Nemhauser, L. A. Wolsey, Integer and combinatorial optimization, Willey-
Interscience, 1999.

22

[3] X. Delorme, X. Gandibleux, J. Rodriguez, Application de la métaheuristique
GRASP i la résolution d'un probléme de capacité d’infrastructure ferroviaire,
FRANCORO III, International conference, May, 9-12 2001, Québec (Canada).

[4] X. Delorme, J. Rodriguez, X. Gandibleux, Heuristics for railway infrastructure
saturation, in: ATMOS 2001 (satellite workshops of the 28th international
colloquium on automata, languages, and programming, ICALP) proceedings.
Electronic Notes in Theoretical Computer Science, Vol. 50, Elsevier Science,
pp. 41-55, URL: http://www.elsevier.nl/locate/entcs/volume50.html.

[5] Using the CPLEX callable library (user’s guide), version 4.0, CPLEX
optimization, 1995.

[6] T. A. Féo, M. G. Resende, A probabilistic heuristic for a computationally
difficult set covering problem, Operations Research Letters 8 (1989) 67-71.

[7] M. R. Garey, D. S. Johnson, Computers and intractability : a guide to the
theory of NP-Completeness, V.H. Freeman and Company, 1979.

[8] M. W. Padberg, On the facial structure of set packing polyhedra, Mathematical
Programming 5 (1973) 199-215, North-Holland Publishing Company.

[9] I. Osman, G. Laporte, Metaheuristics : a bibliography, Annals of Operations
Research 63 (1996) 513-623.

[10] M. Ronngvist, A method for the cutting stock problem with different qualities,
European Journal of Operational Research 83 (1995) 57-68.

[11] P. J. Zwaneveld, L. G. Kroon, H. E. Romeijn, M. Salomon, S. Dauzére-Péres,
S. P. Van Hoesel, H. W. Ambergen, Routing trains through railway stations :
Model formulation and algorithms, Transportation Science 30 (3) (1996) 181-
194.

[12] S.-H. Kim, K.-K. Lee, An optimization-based decision support system for ship
scheduling, Computers and Industrial Engineering 33 (1997) 689-692.

[13] A. Mingozzi, V. Maniezzo, S. Ricciardelli, L. Bianco, An exact algorithm for
the project scheduling with ressource constraints based on a new mathematical
formulation, Management Science 44 (5) (1998) 714-729.

[14] F. Rossi, S. Smriglio, A set packing model for the ground holding problem
in congested networks, European Journal of Operational Research 131 (2001)
400-416.

[15] L. S. Pitsoulis, M. G. Resende, Greedy randomized adaptive search procedures,
in: P. Pardalos, M. Resende (Eds.), Handbook of Applied Optimization, Oxford
University Press, 2002, pp. 168-183.

[16] M. G. Resende, C. C. Ribeiro, Greedy randomized adaptive search procedures,
in: F. Glover, G. Kochenberger (Eds.), State-of-the-Art Handbook in
Metaheuristics, Kluwer academic publishers, 2002, to appear.

23

[17] P. Festa, M. G. Resende, GRASP : an annotated bibliography, in: C. C. Ribeiro,
P. Hansen (Eds.), Essays and surveys on metaheuristics, Kluwer academic
publishers, 2001, pp. 325-367.

[18] X. Delorme, Optimisation combinatoire et problémes de capacité
d’infrastructure ferroviaire, Mémoire de DEA, Université de Valenciennes et
du Hainaut Cambrésis, Valenciennes, France, in french (2000).

[19] T. A. Féo, M. G. Resende, Greedy randomized adaptative search procedures,
Journal of Global Optimization 6 (1995) 109-133.

[20] X. Gandibleux, D. Vancoppenolle, D. Tuyttens, A first making use of GRASP
for solving MOCO problems, 14th International Conference in Multiple Criteria
Decision-Making, June, 8-12 1998, Charlottesville, USA.

[21] D. Vancoppenolle, Résolution par GRASP de problemes d’optimisation
combinatoire, Mémoire de 2éme licence en informatique, Université de Mons-

Hainaut, Mons, Belgique, in french (1998).

[22] T. A. Féo, M. G. Resende, S. H. Smith, A greedy randomized adaptative search
procedure for maximum independant set, Operations Research 42 (1994) 860-
878.

[23] M. Prais, C. C. Ribeiro, Reactive GRASP : An application to a matrix
decomposition problem in TDMA traffic assignment, INFORMS Journal on
Computing 12 (2000) 164-176.

[24] F. Glover, M. Laguna, Tabu Search, Kluwer academic publishers, 1997.

[25] M. Laguna, R. Marti, Grasp and path relinking for 2-layer straight line crossing
minimization, INFORMS Journal on Computing 11 (1999) 44-52.

[26] M. G. Resende, C. C. Ribeiro, A GRASP with path relinking for permanent
virtual circuit routing, Tech. rep., AT&T Labs Research (2001).

24

