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RANDOM SEQUENCES AND POINTWISE CONVERGENCE OF

MULTIPLE ERGODIC AVERAGES

N. FRANTZIKINAKIS, E. LESIGNE, AND M. WIERDL

Abstract. We prove pointwise convergence, as N → ∞, for the multiple ergodic av-

erages 1
N

∑N

n=1 f(T
nx) · g(Sanx), where T and S are commuting measure preserving

transformations, and an is a random version of the sequence [nc] for some appropri-
ate c > 1. We also prove similar mean convergence results for averages of the form
1
N

∑N

n=1 f(T
anx) ·g(Sanx), as well as pointwise results when T and S are powers of the

same transformation. The deterministic versions of these results, where one replaces
an with [nc], remain open, and we hope that our method will indicate a fruitful way to
approach these problems as well.

1. Introduction

1.1. Background and new results. Recent advances in ergodic theory have sparked
an outburst of activity in the study of the limiting behavior of multiple ergodic averages.
Despite the various successes in proving mean convergence results, progress towards the
corresponding pointwise convergence problems has been very scarce. For instance, we
still do not know whether the averages

(1)
1

N

N
∑

n=1

f(T nx) · g(Snx)

converge pointwise when T and S are two commuting measure preserving transformations
acting on the same probability space and f and g are bounded measurable functions.
Mean convergence for such averages was shown in [8] and was recently generalized to an
arbitrary number of commuting transformations in [19]. On the other hand, pointwise
convergence is only known when T and S are powers of the same transformation [5], a
result that has not been improved for twenty years.
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More generally, one would like to know whether we have pointwise convergence for the
averages

(2)
1

N

N
∑

n=1

f(T [nα]x) · g(S [nβ]x)

for all α, β ∈ [1,+∞). Again, mean convergence for these and related averages has been
extensively studied, partly because of various links to questions in combinatorics. In
particular, mean convergence is known when T = S and α, β are positive integers ([13],
[17]), or positive non-integers [10]. Furthermore, for general commuting transformations
T and S, mean convergence is known when α, β are different positive integers [7]. On
the other hand, pointwise convergence for the averages (2) is only known when one of
the transformations is the identity ([4] for integers α, and [20] or [3] for non-integers α),
and no pointwise convergence result is known for general commuting transformations,
not even when T = S and α 6= β.
The purpose of this article is to make some progress related to the problem of pointwise

convergence of the averages (2) by considering randomized versions of fractional powers
of n, in place of the deterministic ones, for various suitable exponents α and β. In our first
result, we study a version of the averages (2), where the iterates of T are deterministic
and the iterates of S are random. More precisely, we let an be a random version of the
sequence [nβ] where β ∈ (1, 14/13) is arbitrary. We prove that almost surely (the set of
probability 1 is universal) the averages

(3)
1

N

N
∑

n=1

f(T nx) · g(Sanx)

converge pointwise, and we determine the limit explicitly. To the best of our knowledge,
this is the first pointwise convergence result of multiple ergodic averages involving gen-
eral commuting transformations. In fact, even for mean convergence the result is new,
and this is the first instance where convergence of multiple ergodic averages involving
sparse iterates is obtained without the use of rather deep ergodic structure theorems and
equidistribution results on nilmanifolds.
Let us also remark that although convergence of the averages (1) for not necessarily

commuting transformations is known to fail in general,1 it is unclear to us if this is the
case for the averages (2) when a 6= β, or the averages (3).
In our second result, we study a randomized version of the averages (2) when α = β. In

this case, we let an be a random version of the sequence [nα] where α ∈ (1, 2) is arbitrary,
and prove that almost surely (the set of probability 1 is universal) the averages

(4)
1

N

N
∑

n=1

f(T anx) · g(Sanx)

1See [1], or let T, S : T → T, given‘ by Tx = 2x, Sx = 2x+α, and f(x) = e−2πix, g(x) = e2πix, where

α ∈ [0, 1] is chosen so that the averages 1
N

∑N

n=1 e
2πi·2nα diverge.
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converge in the mean, and conditionally to the pointwise convergence of the averages (1)
(which is known only when T and S are powers of the same transformation), they also
converge pointwise. Even for mean convergence, this gives the first examples of sparse
sequences an for which the averages (4) converge for general commuting transformations.
Because our convergence results come with explicit limit formulas, we can easily de-

duce some related multiple recurrence results. Using the correspondence principle of
Furstenberg, these results translate to statements in combinatorics about configurations
that can be found in every subset of the integers, or the integer lattice, with positive
upper density.
We state the exact results in the next section, where we also give precise definitions

of the concepts used throughout the paper.

1.2. Precise statements of new results.

1.2.1. Our setup. We work with random sequences of integers that are constructed by
selecting a positive integer n to be a member of our sequence with probability σn ∈ [0, 1].
More precisely, let (Ω,F ,P) be a probability space, and let (Xn)n∈N be a sequence of
independent random variables with

P(Xn = 1) = σn and P(Xn = 0) = 1− σn.

In the present article we always assume that σn = n−a for some a ∈ (0, 1). The random
sequence (an(ω))n∈N is constructed by taking the positive integers n for which Xn(ω) = 1
in increasing order. This sequence is what we called random version of the sequence
n1/(1−a) in the previous subsection. Indeed, using a variation of the strong law of large
numbers (see Lemma 4.6), we have that almost surely 1

∑N
n=1 σn

∑N
n=1Xn converges to 1,

and using equation (8) below, we deduce that almost surely an(ω)n
−1/(1−a) converges to

a non-zero constant.
We say that a certain property holds almost surely for the sequences (an(ω))n∈N, if

there exists a universal set Ω0 ∈ F , such that P(Ω0) = 1, and for every ω ∈ Ω0 the
sequence (an(ω))n∈N satisfies the given property.

1.2.2. Different iterates. In our first result we study a randomized version of the averages
(2) when α = 1.

Theorem 1.1. With the notation of Section 1.2.1, let σn = n−a for some a ∈ (0, 1/14).
Then almost surely the following holds: For every probability space (X,X , µ), commuting
measure preserving transformations T, S : X → X, and functions f, g ∈ L∞(µ), for
almost every x ∈ X we have

(5) lim
N→∞

1

N

N
∑

n=1

f(T nx) · g(San(ω)x) = f̃(x) · g̃(x)
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where f̃ := limN→∞
1
N

∑N
n=1 T

nf = E(f |I(T )), g̃ := limN→∞
1
N

∑N
n=1 S

ng = E(g|I(S)).2

We remark that the conclusion of Theorem 1.1 can be easily extended to all functions
f ∈ Lp, g ∈ Lq, where p ∈ [1,+∞] and q ∈ (1,+∞] satisfy 1/p+ 1/q ≤ 1.3

Combining the limit formula of Theorem 1.1 with the estimate (see Lemma 1.6 in [6])
∫

f · E(f |X1) · E(f |X2) dµ ≥
(

∫

f dµ
)3

,

that holds for every non-negative function f ∈ L∞(µ) and sub-σ-algebras X1 and X2 of
X , we deduce the following:

Corollary 1.2. With the assumptions of Theorem 1.1, we get almost surely, that for
every A ∈ X we have

lim
N→∞

1

N

N
∑

n=1

µ(A ∩ T−nA ∩ S−an(ω)A) ≥ µ(A)3.

The upper density d̄(E) of a set E ⊂ Z
2 is defined by d̄(E) = lim supN→∞

|E∩[−N,N ]2|
|[−N,N ]2|

.

Combining the previous multiple recurrence result with a multidimensional version of
Furstenberg’s correspondence principle [12], we deduce the following:

Corollary 1.3. With the notation of Section 1.2.1, let σn = n−a for some a ∈ (0, 1/14).
Then almost surely, for every v1, v2 ∈ Z

2 and E ⊂ Z
2 we have

lim
N→∞

1

N

N
∑

n=1

d̄
(

E ∩ (E − nv1) ∩ (E − an(ω)v2)
)

≥ (d̄(E))3.

1.2.3. Same iterates. In our next result we study a randomized version of the aver-
ages (1).

Theorem 1.4. Suppose that σn = n−a for some a ∈ (0, 1/2). Then almost surely the
following holds: For every probability space (X,X , µ), commuting measure preserving
transformations T, S : X → X, and functions f, g ∈ L∞(µ), the averages

(6)
1

N

N
∑

n=1

T an(ω)f · San(ω)g

converge in L2(µ) and their limit equals the L2-limit of the averages 1
N

∑N
n=1 T

nf · Sng
(this exists by [8]). Furthermore, if T and S are powers of the same transformation, then
the averages (6) converge pointwise.

2If (X,X , µ) is a probability space, f ∈ L∞(µ), and Y a sub-σ-algebra of X , we denote by E(f |Y) the
conditional expectation of f given Y. If T : X → X is a measure preserving transformation, by I(T ) we
denote the sub-σ-algebra of sets that are left invariant by T .

3To see this, one uses a standard approximation argument and the fact that the averages 1
N

∑N

n=1 T
nf

converge pointwise for f ∈ Lp when p ∈ [1,+∞], and the same holds for the averages 1
N

∑N

n=1 S
an(ω)f

for f ∈ Lq when q ∈ (1,+∞] (see for example exercise 3 on page 78 of [18]).
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We remark that our argument also gives pointwise convergence of the averages (6),
conditionally to the pointwise convergence of the averages (1). Furthermore, using our
method, one can also get similar convergence results for other random multiple ergodic
averages. For instance, our method can be modified and combined with the results
from [19] and [7] to show that if σn = n−a and a is small enough, then almost surely

the averages 1
N

∑N
n=1 T

an(ω)
1 f1 · · ·T an(ω)

ℓ fℓ and
1
N

∑N
n=1 T

an(ω)
1 f1 · T (an(ω))2

2 f2 · · ·T (an(ω))ℓ

ℓ fℓ
converge in the mean.
Combining Theorem 1.4 with the multiple recurrence result of Furstenberg and Katznel-

son [12], we deduce the following:

Corollary 1.5. With the assumptions of Theorem 1.4, we get almost surely, that if
A ∈ X has positive measure, then there exists n ∈ N such that

µ(A ∩ T−an(ω)A ∩ S−an(ω)A) > 0.

Combining the previous multiple recurrence result with the correspondence principle
of Furstenberg [11], we deduce the following:

Corollary 1.6. With the notation of Section 1.2.1, let σn = n−a for some a ∈ (0, 1/14).
Then almost surely, for every v1, v2 ∈ Z

2, and every E ⊂ Z
2 with d̄(E) > 0, we have

m, m+ an(ω)v1, m+ an(ω)v2 ∈ E

for some m ∈ Z
2 and some n ∈ N.

1.3. Further directions. The restrictions on the range of the eligible parameter a in
Theorem 1.1, Theorem 1.4, and the related corollaries, is far from best possible.4 In fact,
any a < 1 is expected to work, but it seems that new techniques are needed to prove
this. This larger range of parameters is known to work for pointwise convergence of the
averages 1

N

∑N
n=1 f(T

an(ω)x) (see [2] for mean convergence, [4] for pointwise, and [18] for
a survey of related results). Furthermore, when σn = σ ∈ (0, 1) for every n ∈ N, it is not
clear whether the conclusion of Theorem 1.1 holds (see Theorem 4 in [16] for a related
negative pointwise convergence result).
Regarding Theorem 1.1, it seems very likely that similar convergence results hold when

the iterates of the transformation T are given by other “good” deterministic sequences,
like polynomial sequences. Our argument does not give such an extension because it relies
crucially on the linearity of the iterates of T . Furthermore, it seems likely that similar
convergence results hold when the iterates of T and S are both given by random versions
of different fractional powers, chosen independently. Again our present argument does
not seem to apply to this case.
Lastly, as we mentioned in the introduction, it may be the case that the conclusion

of Theorem 1.1 holds for general measure preserving transformations T and S (without

4Any improvement in the range of the eligible parameter a in the statement of Proposition 2.1 or
Proposition 3.1, would give corresponding improvements in the statement of Theorem 1.1 and Theo-
rem 1.4 and the related corollaries.
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imposing any commutativity assumption). Showing this for a single instance of a positive
parameter α, or showing that no such parameter exists, would be very interesting.

1.4. General conventions and notation. We use the symbol≪ when some expression
is majorized by a constant multiple of some other expression. If this constant depends
on the variables k1, . . . , kℓ, we write ≪k1,...,kℓ . We say that an ∼ bn if an/bn converges to a
non-zero constant. We denote by oN(1) a quantity that converges to zero when N → ∞
and all other parameters are fixed. We say that two sequences are asymptotically equal
whenever convergence of one implies convergence of the other and both limits coincide. If
(Ω,F ,P) is a probability space, and X is a random variable, we set Eω(X) =

∫

X dP. We
say that a property holds almost surely if it holds outside of a set with probability zero.
We often suppress writing the variable x when we refer to functions and the variable ω
when we refer to random variables or random sequences. Lastly, the following notation
will be used throughout the article: N = {1, 2, . . .}, T = R/Z, Tf = f ◦ T , e(t) = e2πit.

2. Proof of the main result with different iterates

2.1. Strategy of the proof. Roughly speaking, in order to prove Theorem 1.1 we go
through the following successive comparisons:

1

N

N
∑

n=1

f(T nx) · g(San(ω)x) ≈ 1

WN

N
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx)

≈ 1

WN

N
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) · g(Snx)

≈ 1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x) · g(Snx)

≈ g̃(x) · 1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x)

≈ g̃(x) · 1

N

N
∑

n=1

f(T nx)

≈ f̃(x) · g̃(x),

where AN (ω, x) ≈ BN(ω, x) means that almost surely (the set of probability 1 is uni-
versal), the expression AN(ω, x) is asymptotically equal to BN (ω, x) for almost every
x ∈ X . The second comparison is the most crucial one; essentially one has to get good
estimates for the L2 norm of the averages 1

WN

∑N
n=1(Xn(ω)−σn) ·TX1(ω)+···+Xn(ω)f ·Sng.

We do this in two steps. First we use an elementary estimate of van der Corput twice
to get a bound that depends only on the random variables Yn, and then estimate the
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resulting expressions using the independence of the variables Yn. Let us also mention
that the fifth comparison follows immediately by applying the first three for g = 1.

2.2. A reduction. We keep the notation of Section 1.2.1 and let

Yn := Xn − σn, WN :=

N
∑

n=1

σn.

We remark that if σn = n−a for some a ∈ (0, 1), then WN ∼ N1−a.
Our first goal it to reduce Theorem 1.1 to proving the following result:

Proposition 2.1. Suppose that σn = n−a for some a ∈ (0, 1/14) and let γ > 1 be a real
number. Then almost surely the following holds: For every probability space (X,X , µ),
commuting measure preserving transformations T, S : X → X, and functions f, g ∈
L∞(µ), we have

(7)
∞
∑

k=1

∥

∥

∥

∥

∥

∥

1

W[γk]

[γk]
∑

n=1

Yn(ω) · TX1(ω)+···+Xn(ω)f · Sng

∥

∥

∥

∥

∥

∥

L2(µ)

< +∞.

We are going to establish this reduction in the next subsections.

2.2.1. First step. We assume, as we may, that both functions |f | and |g| are pointwise
bounded by 1 for all points in X . A moment of reflection shows that for every ω we have

(8) X1(ω) + · · ·+Xan(ω)(ω) = n,

in fact an(ω) is the smallest k ∈ N such that X1(ω) + · · ·+Xk(ω) = n. It follows that
for every ω ∈ Ω and x ∈ X we have

1

N

N
∑

n=1

f(T nx) · g(San(ω)x) =
1

N

N
∑

n=1

f(TX1(ω)+···+Xan(ω)(ω)x) · g(San(ω)x).

Another moment of reflection shows that for every bounded sequence (bn)n∈N, for every
ω ∈ Ω, the averages

1

N

N
∑

n=1

ban(ω)

and the averages

1

WN(ω)

N
∑

n=1

Xn(ω) · bn,

where WN(ω) := X1(ω) + · · · + XN(ω), are asymptotically equal as N → ∞. More-
over, Lemma 4.6 in the Appendix gives that almost surely limN→∞WN(ω)/WN = 1.
Therefore, the last averages are asymptotically equal to the averages

1

WN

N
∑

n=1

Xn(ω) · bn.
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Putting these observations together, we see that the averages in (5) and the averages

(9)
1

WN

N
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx)

are asymptotically equal for almost every ω ∈ Ω and every x ∈ X .

2.2.2. Second step. Next, we study the limiting behavior of the averages (9) when the
random variables Xn are replaced by their mean. Namely, we study the averages

(10)
1

WN

N
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) · g(Snx).

By Lemma 4.3 in the Appendix, for every ω ∈ Ω and x ∈ X they are asymptotically
equal to the averages

(11)
1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x) · g(Snx).

Lemma 2.2. Suppose that σn = n−a for some a ∈ (0, 1). Then almost surely the fol-
lowing holds: For every probability space (X,X , µ), measure preserving transformations
T, S : X → X, and functions f, g ∈ L∞(µ), we have

lim
N→∞

( 1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x)·g(Snx)− 1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x)·E(g|I(S))(x)
)

= 0

for almost every x ∈ X.

Proof. It suffices to show that almost surely, if E(g|I(S)) = 0, then limN→∞AN(f, g, ω, x) =
0 for almost every x ∈ X , where

AN (f, g, ω, x) :=
1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x) · g(Snx).

First we consider functions g of the form h − Sh where h ∈ L∞(µ). Assuming, as
we may, that both |f | and |h| are pointwise bounded by 1 for all points in X , partial
summation gives that

AN(f, h−Sh, ω, x) =
1

N

N
∑

n=1

(

f(TX1(ω)+···+Xn(ω)x)−f(TX1(ω)+···+Xn−1(ω)x)
)

·h(Snx)+oN (1).

The complex norm of the last expression is bounded by a constant times the average

1

N

N
∑

n=1

1En
(ω)

where En := {ω : Xn(ω) = 1}. Since P(En) = n−a, combining our assumption with
Lemma 4.5 in the Appendix, we get that the last average converges almost surely to 0



RANDOM SEQUENCES AND POINTWISE CONVERGENCE OF MULTIPLE ERGODIC AVERAGES 9

as N → ∞. Therefore, on a set Ω0 of probability 1, that depends only on the random
variables Xn, we have

(12) lim
N→∞

AN (f, h− Sh, ω, x) = 0

for almost every x ∈ X .
Furthermore, using the trivial estimate

|AN(f, g, ω, x)| ≤
1

N

N
∑

n=1

|g|(Snx),

and then applying the pointwise ergodic theorem for the transformation S and the
Cauchy-Schwarz inequality, we get for every ω ∈ Ω that

(13)

∫

lim sup
N→∞

|AN(f, g, ω, ·)| dµ ≤ ‖g‖L2(µ) .

Since every function g ∈ L∞(µ) that satisfies E(g|I(S)) = 0 can be approximated in
L2(µ) arbitrarily well by functions of the form h− Sh with h ∈ L∞(µ), combining (12)
and (13), we get for every ω ∈ Ω0, that if E(g|I(S)) = 0, then limN→∞AN(f, g, ω, x) = 0
for almost every x ∈ X . This completes the proof. �

2.2.3. Third step. We next turn our attention to the study of the limiting behavior of
the averages

(14)
1

N

N
∑

n=1

f(TX1(ω)+···+Xn(ω)x).

Lemma 2.3. Let σn = n−a for some a ∈ (0, 1/14). Then almost surely the following
holds: For every probability space (X,X , µ), measure preserving transformation T : X →
X, and function f ∈ L∞(µ), the averages in (14) converge to E(f |I(T ))(x) for almost
every x ∈ X.

Remark. Improving the range of the parameter a would not lead to corresponding im-
provements in our main results. On the other hand, the restricted range we used enables
us to give a succinct proof using Proposition 2.1.

Proof. We assume, as we may, that the function |f | is pointwise bounded by 1 for all
points in X . First notice that by Lemma 4.3 in the Appendix, for every ω ∈ Ω and
x ∈ X , the averages in (14) are asymptotically equal to the averages

1

WN

N
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x)

where WN :=
∑N

n=1 n
−a ∼ N1−a. Combining this observation with Corollary 4.2 on

the Appendix, we deduce that it suffices to show that almost surely the following holds:
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For every probability space (X,X , µ), measure preserving transformation T : X → X ,
function f ∈ L∞(µ), and γ ∈ {1 + 1/k, k ∈ N}, we have

(15) lim
N→∞

1

W[γN ]

[γN ]
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) = E(f |I(T ))(x)

for almost every x ∈ X .
Using Proposition 2.1 for g = 1, we get that almost surely (the set of probability 1

depends only on the random variables Xn), for every γ ∈ {1+ 1/k, k ∈ N}, the averages
in (15) are asymptotically equal to the averages

1

W[γN ]

[γN ]
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x)

for almost every x ∈ X . Hence, it suffices to study the limiting behavior of the averages

1

WN

N
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x).

Repeating the argument used in Section 2.2.1 (with g = 1), we deduce that for every
ω ∈ Ω and x ∈ X , they are asymptotically equal to the averages

1

N

N
∑

n=1

f(TX1(ω)+···+Xan(ω)(ω)x).

Using (8) we see that these averages are equal to

1

N

N
∑

n=1

f(T nx).

Finally, using the pointwise ergodic theorem we get that the last averages converge to
E(f |I(T ))(x) for almost every x ∈ X . This completes the proof. �

2.2.4. Last step. We prove Theorem 1.1 by combining Proposition 2.1 with the arguments
in the previous three steps. We start with Proposition 2.1. It gives that there exists a
set Ω0 ∈ F of probability 1 such that for every ω ∈ Ω0 the following holds: For every
probability space (X,X , µ), commuting measure preserving transformations T, S : X →
X , functions f, g ∈ L∞(µ), and γ ∈ {1 + 1/k, k ∈ N}, we have

(16)

∞
∑

N=1

∥

∥S[γN ](ω, ·)
∥

∥

L2(µ)
< +∞

where

SN(ω, x) :=
1

WN

N
∑

n=1

Yn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx).
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In the remaining argument ω is assumed to belong to the aforementioned set Ω0. Notice
that (16) implies that

lim
N→∞

S[γN ](ω, x) = 0 for almost every x ∈ X.

We conclude that for almost every x ∈ X , for every γ ∈ {1+1/k, k ∈ N}, the difference

1

W[γN ]

[γN ]
∑

n=1

Xn(ω)·f(TX1(ω)+···+Xn(ω)x)·g(Snx)− 1

W[γN ]

[γN ]
∑

n=1

σn ·f(TX1(ω)+···+Xn(ω)x)·g(Snx)

converges to 0 as N → ∞. In Sections 2.2.2 and 2.2.3 we proved that for almost every
x ∈ X we have

lim
N→∞

1

WN

N
∑

n=1

σn · f(TX1(ω)+···+Xn(ω)x) · g(Snx) = f̃(x) · g̃(x),

where f̃ := E(f |I(T )), and g̃ := E(g|I(S)). We deduce from the above that for almost
every x ∈ X , for every γ ∈ {1 + 1/k, k ∈ N}, we have that

lim
N→∞

1

W[γN ]

[γN ]
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx) = f̃(x) · g̃(x).

Since the sequence WN satisfies the assumptions of Corollary 4.2 in the Appendix, we
conclude that for non-negative functions f, g ∈ L∞(µ), for almost every x ∈ X , we have

(17) lim
N→∞

1

WN

N
∑

n=1

Xn(ω) · f(TX1(ω)+···+Xn(ω)x) · g(Snx) = f̃(x) · g̃(x).

Splitting the real and imaginary part of the function f as a difference of two non-negative
functions, doing the same for the function g, and using the linearity of the operator
f → f̃ , we deduce that (17) holds for arbitrary f, g ∈ L∞(µ).
Lastly, combining the previous identity and the argument used in Section 2.2.1, we

deduce that for almost every x ∈ X we have

lim
N→∞

1

N

N
∑

n=1

f(T nx) · g(San(ω)x) = f̃(x) · g̃(x).

We have therefore established:

Proposition 2.4. If Proposition 2.1 holds, then Theorem 1.1 holds.

In the next subsection we prove Proposition 2.1.
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2.3. Proof of Proposition 2.1. The proof of Proposition 2.1 splits in two parts. First
we estimate the L2 norm of the averages 1

WN

∑N
n=1 Yn ·TX1+···+Xnf ·Sng by an expression

that is independent of the transformations T, S and the functions f, g. This step is rela-
tively straightforward; the main idea is to use van der Corput’s Lemma (see Lemma 4.4
in the Appendix) enough times to get the desired cancelation. Then using moment
estimates, we show that the resulting expression is almost surely summable along expo-
nentially growing sequences of integers.
Before delving into the details we make some preparatory remarks that will help us

ease our notation. We assume that both functions f, g are bounded by 1. We remind
the reader that

σn = n−a, WN ∼ N1−a

for some a ∈ (0, 1). We are going to use parameters M and R that satisfy

M := N b, R := N c

for some b, c ∈ (0, 1) at our disposal. We impose more restrictions on a, b, c as we move
on.

2.3.1. Eliminating the dependence on the transformations and the functions. To simplify

our notation, in this subsection, when we write
∑Nα

n=1 we mean
∑[Nα]

n=1 .
Using Lemma 4.4 in the Appendix with M = [N b] and vn = Yn · TX1+···+Xnf · Sng, we

get that

(18) AN :=

∥

∥

∥

∥

∥

N−1+a
N
∑

n=1

Yn · TX1+···+Xnf · Sng

∥

∥

∥

∥

∥

2

L2(µ)

≪ A1,N + A2,N ,

where

A1,N := N−1+2a−b ·
N
∑

n=1

∥

∥Yn · TX1+···+Xnf · Sng
∥

∥

2

L2(µ)

and

A2,N := N−1+2a−b ·
Nb
∑

m=1

∣

∣

∣

N−m
∑

n=1

∫

Yn+m ·Yn ·TX1+···+Xn+mf ·Sn+mg ·TX1+···+Xn f̄ ·Snḡ dµ
∣

∣

∣
.

We estimate A1,N . Since E(Y 2
n ) = σn − σ2

n ∼ n−a, Lemma 4.6 in the Appendix gives

for every a ∈ (0, 1) that
∑N

n=1 Y
2
n ∼

∑N
n=1 E(Y

2
N) ∼ N1−a. Therefore, almost surely we

have

A1,N ≪ N−1+2a−b
N
∑

n=1

Y 2
n ≪ω N−1+2a−b ·N1−a = Na−b.

It follows that A1,N is bounded by a negative power of N as long as

b > a.
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We estimate A2,N . We compose with S−n and use the Cauchy-Schwarz inequality. We
get

A2,N ≪ N−1+2a−b ·
Nb
∑

m=1

∥

∥

∥

∥

∥

N−m
∑

n=1

Yn+m · Yn · S−nTX1+···+Xn+mf · S−nTX1+···+Xn f̄

∥

∥

∥

∥

∥

L2(µ)

.

Furthermore, since

N−1+2a−b
Nb
∑

m=1

m ≪ N−1+2a+b,

we get the estimate

A2,N ≪ N−d1 +N−1+2a−b ·
Nb
∑

m=1

∥

∥

∥

∥

∥

N
∑

n=1

Yn+m · Yn · S−nTX1+···+Xn+mf · S−nTX1+···+Xn f̄

∥

∥

∥

∥

∥

L2(µ)

where d1 := 1− 2a− b is positive as long as

2a + b < 1.

Using the Cauchy-Schwarz inequality we get

A2
2,N ≪ N−2d1+N−2+4a−b·

Nb
∑

m=1

∥

∥

∥

∥

∥

N
∑

n=1

Yn+m · Yn · S−nTX1+···+Xn+mf · S−nTX1+···+Xn f̄

∥

∥

∥

∥

∥

2

L2(µ)

.

Next we use Lemma 4.4 in the Appendix with R = [N c] and the obvious choice of
functions vn, in order to estimate the square of the L2 norm above. We get the estimate

A2
2,N ≪ N−2d1 + A3,N + A4,N ,

where A3,N , A4,N , can be computed as before. Using Lemma 4.7 in the Appendix, and
the estimate E(Y 2

n ) ∼ n−a, we deduce that almost surely, for every a ∈ (0, 1/6) we have

A3,N ≪ N−1+4a−b−c

Nb
∑

m=1

N
∑

n=1

Y 2
n+mY

2
n ≪ω N2a−c = N−d2

where d2 > 0 as long as

2a < c.

Composing with T−(X1+···+Xn)Sn, using that T and S commute, and the Cauchy-Schwarz
inequality, we see that

A4,N ≪ N−1+4a−b−c ·
Nb
∑

m=1

Nc
∑

r=1

∥

∥

∥

N−r
∑

n=1

Yn+m+r · Yn+r · Yn+m · Yn·

TXn+1+···+Xn+m+rS−rf · TXn+1+···+Xn+rS−rf̄ · TXn+1+···+Xn+m f̄
∥

∥

∥

L2(µ)
.
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Since for every k ∈ N we have Xn+1 + · · ·+Xn+k ∈ {0, . . . , k}, it follows that

(19) A4,N ≪ A5,N := N−1+4a−b−c ·
Nb
∑

m=1

Nc
∑

r=1

m+r
∑

k1=0

r
∑

k2=0

m
∑

k3=0

∣

∣

∣

N−r
∑

n=1

Yn+m+r · Yn+r · Yn+m · Yn·

1∑m+r
i=1 Xn+i=k1

(n) · 1∑r
i=1 Xn+i=k2(n) · 1∑m

i=1 Xn+i=k3(n)
∣

∣

∣
.

Summarizing, we have just shown that as long as

(20) a < b, 2a+ b < 1, 2a < c, a ∈ (0, 1/6), b, c ∈ (0, 1),

almost surely the following holds: For every probability space (X,X , µ), commuting
measure preserving transformations T, S : X → X , and functions f, g ∈ L∞(µ) with
‖f‖L∞(µ) ≤ 1 and ‖g‖L∞(µ) ≤ 1, we have

(21) AN ≪ω N−d3 + A5,N

for some d3 > 0, where A5,N is defined in (19). Notice that the expression A5,N depends
only on the random variables Xn. Therefore, in order to complete the proof of Propo-
sition 2.1, it suffices to show that almost surely A5,N is summable along exponentially
growing sequences of integers.

2.3.2. End of proof of Proposition 2.1. Assuming that

(22) b < c,

equation (19) gives that

(23) Eω(A5,N ) ≤ N−1+4a−b−c

Nb
∑

m=1

Nc
∑

r=1

2Nc
∑

k1=0

Nc
∑

k2=0

Nb
∑

k3=0

Eω

∣

∣

∣

∣

∣

N−r
∑

n=1

Yn · Zn,m,r,k1,k2,k3

∣

∣

∣

∣

∣

where

Zn,m,r,k1,k2,k3 := Yn+m+r ·Yn+r ·Yn+m·1∑m+r
k=1 Xn+k=k1

(n)·1∑r
k=1 Xn+k=k2(n)·1∑m

k=1 Xn+k=k3(n).

Using the Cauchy-Schwarz inequality we get

(24) Eω

∣

∣

∣

∣

∣

N−r
∑

n=1

Yn · Zn,m,r,k1,k2,k3

∣

∣

∣

∣

∣

≤



Eω

∣

∣

∣

∣

∣

N−r
∑

n=1

Yn · Zn,m,r,k1,k2,k3

∣

∣

∣

∣

∣

2




1/2

.

We expand the square in order to compute its expectation. It is equal to
∑

1≤n1,n2≤N−r

Eω(Yn1 · Zn1,m,r,k1,k2,k3 · Yn2 · Zn2,m,r,k1,k2,k3).

Notice that if n1 < n2, then for every m, r ∈ N, and non-negative integers k1, k2, k3, the
random variable Yn1 is independent of the variables Yn2, Zn1,m,r,k1,k2,k3, and Zn2,m,r,k1,k2,k3.
Since Yn has zero mean, it follows that if n1 6= n2, then

Eω(Yn1 · Zn1,m,r,k1,k2,k3 · Yn2 · Zn2,m,r,k1,k2,k3) = 0.
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Therefore, the right hand side of equation (24) is equal to
(

N−r
∑

n=1

Eω(Y
2
n ) · Eω(Z

2
n,m,r,k1,k2,k3

)

)1/2

≤
(

N−r
∑

n=1

Eω(Y
2
n ) · Eω(Y

2
n+m · Y 2

n+r · Y 2
n+m+r)

)1/2

.

If r,m, n are fixed and r 6= m, then the variables Y 2
n+m, Y

2
n+r, Y

2
n+m+r are independent,

and as a consequence the right hand side is almost surely bounded by
(

N
∑

n=1

σ4
n

)1/2

≪ N1/2−2a.

On the other hand, if r,m, n are fixed and r = m, then the random variables Y 4
n+r, Y

2
n+2r

are independent, and as a consequence the right hand side is almost surely bounded by
(

N
∑

n=1

σ3
n

)1/2

≪ N1/2−3a/2.

Combining these two estimates with (23), we deduce that

Eω(A5,N) ≪ N−1+4a−b−c(N1/2−2a+2b+3c+N1/2−3a/2+2b+2c) = N−1/2+2a+b+2c+N−1/2+5a/2+b+c.

For fixed ε > 0, letting a ∈ (0, 1/6), b be greater and very close to a, and c be greater
and very close to 2a, we get that the conditions (20) and (22) are satisfied, and

(25) Eω(A5,N) ≪ N (−1+14a)/2+ε +N (−1+11a)/2+ε = N−d4

for some d4 that satisfies

(26) d4 > (1− 14a)/2− ε.

Therefore, for every a ∈ (0, 1/14), if ε is small enough, then the estimates (21) and (25)
hold for some d3, d4 > 0.
Equation (25) gives that for every γ > 1 we have

∞
∑

N=1

Eω(A5,[γN ]) < +∞.

As a consequence, for every γ > 1 we have almost surely that

(27)

∞
∑

N=1

A5,[γN ](ω) < +∞.

Recalling the definition of AN in (18), and combining (21) and (27), we get that for
every a ∈ (0, 1/14) and γ > 1, almost surely the following holds: For every probability
space (X,X , µ), commuting measure preserving transformations T, S : X → X , and
f, g ∈ L∞(µ), we have

∞
∑

N=1

∥

∥S[γN ](ω, ·)
∥

∥

L2(µ)
< +∞
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where

SN (ω, ·) := N−1+a

N
∑

n=1

Yn(ω) · TX1+···+Xnf · Sng.

This finishes the proof of Proposition 2.1.

3. Proof of results with the same iterates

3.1. Strategy of the proof. In order to prove Theorem 1.4 we go through the following
successive comparisons:

1

N

N
∑

n=1

f(T an(ω)x) · g(San(ω)x) ≈ 1

WN

N
∑

n=1

Xn(ω) · f(T nx) · g(Snx)

≈ 1

WN

N
∑

n=1

σn · f(T nx) · g(Snx)

≈ 1

N

N
∑

n=1

f(T nx) · g(Snx),

where our notation was explained in Section 2.1. The key comparison is the second. One
needs to get good estimates for the L2 norm of the averages 1

WN

∑N
n=1 Yn(ω) · T nf · Sng,

where Yn := Xn − σn. We do this in two steps. First we use van der Corput’s estimate
and Herglotz’s theorem to get a bound that depends only on the random variables Yn.
The resulting expressions turn out to be random trigonometric polynomials that can be
estimated using classical techniques.5

3.2. A reduction. We use the notation introduced in Section 2.2. Arguing as in Sec-
tion 2.2 (in fact the argument is much simpler in the current case) we reduce Theorem 1.4
to proving the following result:

Proposition 3.1. Suppose that σn = n−a for some a ∈ (0, 1/2) and let γ > 1 be a real
number. Then almost surely the following holds: For every probability space (X,X , µ),
commuting measure preserving transformations T, S : X → X, and functions f, g ∈
L∞(µ), we have

(28)
∞
∑

k=1

∥

∥

∥

∥

∥

∥

1

W[γk]

[γk]
∑

n=1

Yn(ω) · T nf · Sng

∥

∥

∥

∥

∥

∥

L2(µ)

< +∞

where WN :=
∑N

n=1 σn.

We prove this result in the next subsection.

5A faster way to get such an estimate is to apply van der Corput’s Lemma twice. The drawback of
this method is that the resulting expressions converge to zero only when σn = n−a for some a ∈ (0, 1/4).
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3.3. Proof of Proposition 3.1. As was the case with the proof of Proposition 2.1 the
proof splits in two parts.

3.3.1. Eliminating the dependence on the transformations and the functions. We assume
that both functions f, g are bounded by 1. We start by using Lemma 4.4 for M = N
and vn := Yn · T nf · Sng. We get that

(29) AN :=

∥

∥

∥

∥

∥

N−1+a

N
∑

n=1

Yn · T nf · Sng

∥

∥

∥

∥

∥

2

L2(µ)

≪ A1,N + A2,N

where

A1,N := N−2+2a ·
N
∑

n=1

‖Yn · T nf · Sng‖2L2(µ)

and

A2,N := N−2+2a ·
N
∑

m=1

∣

∣

∣

∣

∣

N−m
∑

n=1

∫

Yn+m · Yn · T n+mf · Sn+mg · T nf̄ · Snḡ dµ

∣

∣

∣

∣

∣

.

We estimate A1,N . Since Eω(Y
2
n ) ∼ n−a, Lemma 4.6 gives

∑N
n=1 Y

2
n ≪ω N1−a. It

follows that almost surely we have

(30) A1,N ≪ N−2+2a
N
∑

n=1

Y 2
n ≪ω N−2+2a ·N1−a = Na−1.

Therefore, A1,N is bounded by a negative power of N for every a ∈ (0, 1).
We estimate A2,N . Composing with S−n and using the Cauchy-Schwarz inequality we

get

A2,N ≪ N−2+2a ·
N
∑

m=1

∥

∥

∥

∥

∥

N−m
∑

n=1

Yn+m · Yn · S−nT n+mf · S−nT nf̄

∥

∥

∥

∥

∥

L2(µ)

.

Using that T and S commute and letting R = TS−1 and fm = Tmf · f̄ , we rewrite the
previous estimate as

N−2+2a ·
N
∑

m=1

∥

∥

∥

∥

∥

N−m
∑

n=1

Yn+m · Yn · Rnfm

∥

∥

∥

∥

∥

L2(µ)

.

Using Herglotz theorem on positive definite sequences, and the fact that the functions
fm are uniformly bounded, we get that the right hand side is bounded by a constant
multiple of

A3,N := N−1+2a · max
1≤m≤N

max
t∈[0,1]

∣

∣

∣

N−m
∑

n=1

Yn+m · Yn · e(nt)
∣

∣

∣
.

Summarizing, we have shown that

AN ≪ Na−1 + A3,N .
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Therefore, in order to prove Proposition 3.1 it remains to show that almost surely
A3,N ≪ω N−d for some d > 0. We do this in the next subsection.

3.3.2. Estimating A3,N . The goal of this section is to prove the following result:

Proposition 3.2. Suppose that σn ∼ n−a for some a ∈ (0, 1/2). Then almost surely we
have

max
1≤m≤N

max
t∈[0,1]

∣

∣

∣

N−m
∑

n=1

Yn+m · Yn · e(nt)
∣

∣

∣
≪ω N1/2−a

√

logN,

Notice that by combining this estimate with the argument given in Section 3.3.1 we
get a proof of Proposition 3.1, and as a consequence a proof of Theorem 1.4.
The key ingredient in the proof of Proposition 3.2 is a strengthening of an estimate

of Bourgain [4] regarding random trigonometric polynomials. To prove it we are going
to use a variant of a classical argument of Salem and Zygmund (see Section 6.2 of [14]).
We were motivated to use this argument (over the one given by Bourgain in [4]) after
reading a paper of Fan and Schneider (in particular the proof of Theorem 6.4 in [9]).

Lemma 3.3. For m,N ∈ N let Λm,N be (deterministic) subsets of the intervals [1, N ].
Furthermore, let (Xm,n)m,n∈N be a family of random variables with values 0 or 1, and let

ρn := supm∈N P(Xm,n = 1) and WN :=
∑N

n=1 ρn. Suppose that

• for every fixed m ∈ N the random variables Xm,1, Xm,2, . . . are independent;
• limN→∞

WN

logN
= +∞.

Then almost surely we have

max
1≤m≤N

max
t∈[0,1]

∣

∣

∣

∣

∣

∣

∑

n∈Λm,N

(Xm,n − Eω(Xm,n)) · e(nt)

∣

∣

∣

∣

∣

∣

≪ω

√

logN ·WN .

Proof. It suffices to get the announced estimate for

MN := max
1≤m≤N

max
t∈[0,1]

|Pm,N(t)|

where
Pm,N(t) :=

∑

n∈Λm,N

Ym,n · cos(2πnt)

and
Ym,n := Xm,n − Eω(Xm,n).

In a similar way we get an estimate with sin(2πnt) in place of cos(2πnt).
Let

ρm,n := Eω(Xm,n).

Since 1 + x ≤ ex for every x ∈ R, and ex ≤ 1 + x + (e/2)x2 for every x ∈ (−∞, 1], for
fixed m ∈ [1, N ] and λ ∈ [−1, 1], we have

Eω(e
λYm,n) = e−λρm,n(1 + ρm,n(e

λ − 1)) ≤ eρm,n(eλ−1−λ) ≤ eAρm,nλ2 ≤ eAρnλ2
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where A := e/2. Therefore, for every λ ∈ [−1, 1] and t ∈ [0, 1] we get that

(31) Eω(e
λPm,N (t)) =

∏

n∈Λm,N

Eω(e
λYm,n cos(2πnt)) ≤

∏

n∈Λm,N

eAρn(λ cos(2πnt))2 ≤ eAWNλ2

.

Next notice that for λ ∈ [0, 1] we have
(32)

Eω(e
λMN ) = Eω

(

max
1≤m≤N

eλmaxt |Pm,N (t)|
)

≤ Eω

(

N
∑

m=1

eλmaxt |Pm,N (t)|
)

≤ N max
1≤m≤N

Eω(e
λMm,N )

where
Mm,N := max

t∈[0,1]
|Pm,N(t)|.

As is well known, maxt∈[0,1] |P ′
m,N(t)| ≤ N2Mm,N . Therefore, there exist random in-

tervals Im,N of length |Im,N | ≥ N−2 such that |Pm,N(t)| ≥ Mm,N/2 for every t ∈ Im,N .
Using this, we get that

Eω(e
λNMm,N/2) ≪ N2 · Eω

(

∫

Im,N

(eλNPm,N (t) + e−λNPm,N (t)) dt
)

≤

N2 · Eω

(

∫

[0,1]

(eλNPm,N (t) + e−λNPm,N (t)) dt
)

where λN ∈ [0, 1] are numbers at our disposal. Using (31) we get that

Eω

(

∫

[0,1]

(eλNPm,N (t)+e−λNPm,N (t)) dt
)

=

∫

[0,1]

Eω

(

eλNPm,N (t)+e−λNPm,N (t)
)

dt ≤ 2eAWNλ2
N .

Therefore,

Eω(e
λNMm,N/2) ≪ N2 · eAWNλ2

N .

Combining this estimate with (32), we get

Eω(e
λNMN/2) ≪ N3 · eAWNλ2

N .

Therefore, there exists a universal constant C such that

Eω

(

exp
(

λN/2(MN − 2AWNλN − 2 log(CN5)λ−1
N )
)

)

≤ 1

N2
.

As a consequence,

(33) P
(

MN ≥ 2AWNλN + 2 log(CN5)λ−1
N

)

≤ 1

N2
.

For α, β positive, the function f(λ) = αλ+βλ−1 achieves a minimum
√
αβ for λ =

√

β/α.

So letting λN =
√

log(CN5)/(AWN) (by assumption this converges to 0, so for large N
it is less than 1) in (33) gives

P

(

MN ≥
√

4AWN log(CN5)
)

≤ 1

N2
.
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By the Borel-Cantelli Lemma, we get almost surely that

MN ≪ω

√

WN logN.

This completes the proof. �

Finally we use Lemma 3.3 to prove Proposition 3.2.

Proof of Proposition 3.2. Our goal is to apply Lemma 3.3 for the random variables Yn+m ·
Yn where Yn = Xn−σn. In order to do this we have to take care of some technical issues
first.
To get random variables with values 0 or 1 notice that the identity

Yn+m · Yn = (Xn+mXn − σn+mσn)− σn(Xn+m − σn+m)− σn+m(Xn − σn)

expresses each Yn+m·Yn as a linear combination of random variables of the form Z−Eω(Z)
where Z is 0− 1 valued.
To get independence we divide the positive integers into two classes:

Λ1,m := {n : 2km ≤ n < (2k + 1)m for some k ∈ N or k = 0}
and

Λ2,m := {n : (2k + 1)m ≤ n < (2k + 2)m for some k ∈ N}.
Then for fixed m ∈ N, the random variables Xn+mXn, n ∈ Λ1,m, are independent, and
the same holds for the random variables Xn+mXn, n ∈ Λ2,m.
Summarizing, the sum

N−m
∑

n=1

Yn+m · Yn · e(nt)

splits into four pieces each of which can be estimated by using Lemma 3.3. We only
explain how to estimate

MN := max
1≤m≤N

max
t∈[0,1]

∣

∣

∣

∑

n∈Λ1,m∩[1,N−m]

(Xn+mXn − σn+mσn) · e(nt)
∣

∣

∣
,

the other three pieces can be estimated in a similar fashion. We set Xm,n := Xn+mXn

and Λm,N := Λ1,m ∩ [1, N − m]. Notice that Eω(Xm,n) = σn+mσn ≤ σ2
n ∼ n−2a and

∑N
n=1 n

−2a ≪ N1−2a. Lemma 3.3 gives that almost surely we have

MN ≪ω N1/2−a
√

logN.

This completes the proof. �

4. Appendix

We prove some results that were used in the main part of the article.



RANDOM SEQUENCES AND POINTWISE CONVERGENCE OF MULTIPLE ERGODIC AVERAGES 21

4.1. Lacunary subsequence trick. We are going to give some variations of a trick
that is often used to prove convergence results for averages (see [18] for several such
instances).

Lemma 4.1. Let (an)n∈N be a sequence of non-negative real numbers, and (Wn)n∈N be
an increasing sequence of positive real numbers that satisfies

lim
γ→1+

lim sup
n→∞

W[γn]

Wn
= 1.

For N ∈ R let

AN :=
1

WN

N
∑

n=1

an.

Suppose that there exists L ∈ R ∪ {+∞}, and a sequence of real numbers γk ∈ (1,+∞),
with γk → 1, and such that for every k ∈ N we have

lim
N→∞

A[γN
k
] = L.

Then

lim
N→∞

AN = L.

Proof. Fix k ∈ N and for N ∈ N let M = M(k,N) ∈ N be such that

γM
k ≤ N ≤ γM+1

k .

Since an ≥ 0 for every n ∈ N and Wn is increasing, we have

AN =
1

WN

N
∑

n=1

an ≤ 1

WγM
k

γM+1
k
∑

n=1

an ≤ ck,MA[γM+1
k

] where ck,M := W[γM+1
k

]/WγM
k
.

Similarly we have

AN ≥ c−1
k,MA[γM

k
].

Putting the previous estimates together we get

(34) c−1
k,MA[γM

k
] ≤ AN ≤ ck,MA[γM+1

k
].

Notice that our assumptions give that

(35) lim
k→∞

lim sup
M→∞

ck,M = 1.

Since M = M(k,N) → ∞ as N → ∞ and k is fixed, letting N → ∞ and then k → ∞ in
(34), and combining equation (35) with our assumption limN→∞A[γN

k
] = L, we deduce

that

lim inf
N→∞

AN = lim sup
N→∞

AN = L.

This completes the proof. �
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Corollary 4.2. Let (X,X , µ) be a probability space, fn : X → R, n ∈ N, be non-negative
measurable functions, (Wn)n∈N be as in the previous lemma, and for N ∈ N let

AN(x) :=
1

WN

N
∑

n=1

fn(x).

Suppose that there exists a function f and a sequence of real numbers γk ∈ (1,∞), with
γk → 1, and such that for every k ∈ N we have for almost every x ∈ X that

(36) lim
N→∞

A[γN
k
](x) = f(x).

Then

lim
N→∞

AN (x) = f(x) for almost every x ∈ X.

Proof. It suffices to notice that for almost every x ∈ X equation (36) is satisfied for every
k ∈ N, and then apply Lemma 4.1. �

4.2. Weighted averages. The following lemma is classical and can be proved using
summation by parts.

Lemma 4.3. Let (vn)n∈N be a bounded sequence of vectors in a normed space, let wn ∼
n−a for some a ∈ (0, 1), and let Wn := w1+ · · ·+wn. Then the averages 1

N

∑N
n=1 vn and

the averages 1
WN

∑N
n=1wnvn are asymptotically equal.

4.3. Van der Corput’s lemma. We state a variation of a classical elementary estimate
of van der Corput.

Lemma 4.4. Let V be an inner product space, N ∈ N, and v1, . . . , vN ∈ V . Then for
every integer M between 1 and N we have

∥

∥

∥

∥

∥

N
∑

n=1

vn

∥

∥

∥

∥

∥

2

≤ 2M−1N ·
N
∑

n=1

‖vn‖2 + 4M−1N

M
∑

m=1

∣

∣

∣

N−m
∑

n=1

< vn+m, vn >
∣

∣

∣
.

In the case where V = R and ‖·‖ = | · |, the proof can be found, for example, in [15].
The proof in the general case is essentially identical.

4.4. Borel-Cantelli in density. We are going to use the following Borel-Cantelli type
lemma:

Lemma 4.5. Let En, n ∈ N, be events on a probability space (Ω,F ,P) that satisfy
P(En) ≪ (logn)−1−ε for some ε > 0. Then almost surely the set {n ∈ N : ω ∈ En} has
zero density.6

6On the other hand, it is not hard to construct a probability space (Ω,F ,P) and events En, n ∈ N,
such that P(En) ≤ (log n)−1, and almost surely the set {n ∈ N : ω ∈ En} has positive upper density.
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Proof. Let

AN(ω) :=
1

N

N
∑

n=1

1En
(ω).

Our assumption gives

Eω(AN(ω)) ≪ (logN)−1−ε.

Therefore, for every γ > 1, almost surely, we have that
∞
∑

N=1

A[γN ](ω) < +∞.

This implies that for every γ > 1

lim
N→∞

A[γN ](ω) = 0 almost surely.

Since γ > 1 is arbitrary we conclude by Corollary 4.2 that

lim
N→∞

AN(ω) = 0 almost surely.

This proves the advertised claim. �

4.5. Estimates for sums of random variables. We use some straightforward moment
estimates to get two bounds for sums of independent random variables that were used
in the proofs.

Lemma 4.6. Let Xn be non-negative, uniformly bounded independent random variables,
with Eω(Xn) ∼ n−a for some a ∈ (0, 1). Suppose that the random variables Xn−Eω(Xn)
are orthogonal. Then almost surely we have

lim
N→∞

1

WN

N
∑

n=1

Xn = 1,

where, as usual, WN :=
∑N

n=1 Eω(Xn).

Proof. We can assume that Xn(ω) ≤ 1 for every ω ∈ Ω and n ∈ N. We let

AN :=
1

WN

N
∑

n=1

Yn

where

Yn := Xn − Eω(Xn).

Since Yn are zero mean orthogonal random variables and Eω(Y
2
n ) ≤ Eω(Xn), we have

Eω(A
2
N ) =

1

W 2
N

N
∑

n=1

Eω(Y
2
n ) ≪

1

WN

.
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Combining this estimate with the fact WN ∼ N1−a, we conclude that for every γ > 1 we
have

∞
∑

N=1

Eω(A
2
[γN ]) < +∞.

Therefore, for every γ > 1 we have

lim
N→∞

A[γN ] = 0 almost surely,

or equivalently, that

lim
N→∞

1

W[γN ]

[γN ]
∑

n=1

Xn = 1 almost surely.

Since the sequence (Wn)n∈N satisfies the assumptions of Corollary 4.2, and Xn is non-
negative, we conclude that

lim
N→∞

1

WN

N
∑

n=1

Xn = 1 almost surely.

This completes the proof. �

Lemma 4.7. Let Xn be uniformly bounded random variables with Eω(Xn) ∼ n−a for
some a ∈ (0, 1/6), and let b be any positive real number. Then almost surely we have

∣

∣

∣

Nb
∑

m=1

N
∑

n=1

Xn+mXn

∣

∣

∣
≪ω N b+1−2a.

We remark that using a subsequence trick, similar to the one used in the proof of
Lemma 4.6, one shows that the conclusion actually holds for every a ∈ (0, 1/4).

Proof. Let

SN :=
Nb
∑

m=1

N
∑

n=1

(Xn+mXn − Eω(Xn+m) · Eω(Xn))

and
AN := N−cSN where c := b+ 1− 2a,

Since

N−c

Nb
∑

m=1

N
∑

n=1

Eω(Xn+m) · Eω(Xn) ≪ 1,

it suffices to show that almost surely we have limN→∞AN = 0.
Expanding S2

N and using the independence of the random variables Xn, we see that

Eω(S
2
N) ≪ |{(m,m′, n, n′) ∈ [1, N b]2×[1, N ]2 : n, n′, n+m,n′+m′ are not distinct }| ≪ N1+2b.

Therefore,
Eω(A

2
N ) ≪ N−(1−4a).
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It follows that if k ∈ N satisfies k(1− 4a) > 1, then
∞
∑

N=1

Eω(A
2
Nk) < +∞.

As a consequence,

lim
N→∞

ANk = 0 for every k ∈ N satisfying k(1− 4a) > 1.

For any fixed k ∈ N that satisfies k(1−4a) > 1, and for N ∈ N, let M ∈ N be an integer
such that Mk ≤ N ≤ (M + 1)k. Then

|AN −AMk | ≤ |(N−cMkc − 1)AMk|+N−c
∑

Mk<n≤(M+1)k

|Yn|

≪ |(N−cMkc − 1)AMk |+N−cMk−1.

The first term converges almost surely to zero as N → ∞, since this is the case for AMk

and N−1Mk ≤ 1. The second term converges to zero if kc > k − 1, or equivalently, if
k(2a− b) < 1.
Combining the above estimates, we get almost surely that limN→∞AN = 0, provided

that there exists k ∈ N such that k(2a − b) < 1 < k(1 − 4a). If a < 1/6, then k = 3 is
such a value. This completes the proof. �
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