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A stable decomposition algorithm for dynamical

social network analysis

Romain Bourqui and Paolo Simonetto and Fabien Jourdan

Abstract Dynamic networks raise new knowledge discovery challenges. To handle

efficiently this kind of data, an analysis method has to both decompose the network

(modelled by a graph) into similar set of nodes and let the user detect structural

changes in the graph. In this article we present a graph decomposition algorithm

generating overlapping clusters. The complexity of this algorithm is O(|E| ·deg2
max +

|V | · log(|V |))). This algorithm is particularly efficient due to its ability to detect

major modifications along dynamic processes such as time related ones.

1 Introduction

Graph is a relevant data structure to organize large scale data; it is used in many

application fields such as biology, micro-electronic or social sciences. Graph are

particularly well suited in knowledge discovery since it exists a large range of al-

gorithms to mine their structure and thus understand the underlying properties of the

data (e.g. [Newman and Girvan(2004), Newman(2004), Palla et al(2007)Palla, Barabasi, and Vicsek,

Suderman and Hallett(2007)]). In particular an intensive work is dedicated to the

identification of clusters (communities) in these networks. For example, in social

sciences, these algorithms detect individuals having the same field of interests. In

biology, it helps in the identification of the proteins involved in same biological pro-
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cess (e.g. [Newman and Girvan(2004), Newman(2004), Palla et al(2007)Palla, Barabasi, and Vicsek,

Bader and Hogue(2003)]). First purpose of these methods is to identify communi-

ties (clusters) but it also allows building visual abstraction of large network (Auber

el al. [Auber et al(2003)Auber, Chiricota, Jourdan, and Melançon]).

Finding communities in a network is generally linked to a graph decomposition

problem. Decomposition algorithms look for set of elements (clusters) sharing one

or more properties. Generally, decomposition will be considered as a good one when

elements within the sets are closely related while elements in different sets have low

property coverage. In a more formal way: density within sets is larger than density

between sets.

Dynamical data, in our case dynamical networks, are more and more present

in datasets requiring knowledge discovery methods. In fact automatic data ex-

tractions are continuously improved (e.g. high throughput approaches in biology)

and databases are populated quickly in biology (e.g. quantitative data on a organ-

ism evaluating according to environmental changes) or in social sciences (e.g. co-

citation networks, movie actor networks). Consequently it is not only a question of

identifying communities in a single snapshot of the network but also understanding

the evolution of these communities along the different time frames. In other words

it is necessary to be able to identify structural changes through, for instance, the

spreading/collapsing of communities [Palla et al(2007)Palla, Barabasi, and Vicsek].

In this article we will apprehend the problem of dynamical network analysis by

the use of graph decomposition. Our method first consists in dividing the dynamical

process in a set of statistical snapshots of the network. Then, we apply a decompo-

sition algorithm producing overlapping clusters for each of these static views of the

network. Finally, in order to detect major changes during the dynamical process, we

compare the decompositions using a similarity measure.

This article is organised as followed: in section 2, we present the overall ap-

proach, in section 3 the decomposition algorithm is described and finally, in sec-

tion 4, we evaluate the stability of the decomposition on a social network.

2 Methodology

Figure 1 illustrates the method we propose in this article. The first step consists in

turning the dynamical network into a set of static graphs. If we consider a dynamical

graph G, defined on a time interval [0..T ], this transformation consists in building a

set of static graphs {G[0,ε [, ...,G[T−ε ,T ]}, where ε is called the discretisation factor

and G[t,t+ε ] is the static graph corresponding tot the time period [t,t+ ] (i.e. this graph

contains all the nodes and edges of the dynamic graph G being present during the

period [t, t + ε]).
The leading concept of our approach is that if the graph changes a little (assum-

ing that the discretisation factor is relevant) then two static graphs describing two

consecutive periods have similar topological structures. To compare graph topolo-

gies, we first use a decomposition algorithm then we apply a graph decomposition
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Fig. 1 Three main steps of our method.

similarity measure. This measure has to be low when comparing two graphs known

has having a similar topology.

In this article we choose an algorithm which has the particularity to be stable

when little topological changes appear between two networks. This algorithm is di-

vided into three steps: firstly the strength metric [Auber et al(2003)Auber, Chiricota, Jourdan, and Melançon]

is computed on edges and nodes, secondly we look for a maximal set of indepen-

dent nodes (i.e. nodes at least at distance 2 from each other) and thirdly we build

sets around these independent nodes.

3 Algorithm

3.1 Strength metric

To define Strength [Auber et al(2003)Auber, Chiricota, Jourdan, and Melançon, Chiricota et al(2003)Chiricota, Jourdan,

we have to introduce some notations. Let u and v two nodes of graph G, we note

Mu(v) = NG(v)\ (NG(u)∪{u}) the set of neighbours of v (excluding u) that are not

in the neighbourhood of u and we note Wuv = NG(u)∩NG(v) the set of nodes both

neighbors of v and u. Let A and B be two set of nodes, we note E(A,B) the set of

edges linking a node in A and a node in B. Finally, s(A,B) = |E(A,B)|/(|A| · |B|) is

the ratio between the number of edges linking A anb B and the maximum number of

edges that could be linking these two sets 1. Strength metric e = (u,v) of an edge

ws(e) is:

ws(e) =
γ3,4(e)

γmax(e)
(1)

Where:
γ3,4(e) = |Wuv|+ |E(Mv(u),Mu(v))|+ |E(Mv(u),Wuv)|

+ |E(Wuv,Mu(v))|+ |E(Wuv)|
(2)

1 When A = B, then s(A,A) = s(A) = 2 · |E(A)|/(|A| · (|A|−1))
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γmax(e) = |Mv(u)|+ |W (u,v)|+ |Mu(v)|+ |Mv(u)||Mu(v)|
+ |Mv(u)||Wuv|+ |Wuv||Mu(v)|+ |Wuv|(|Wuv|−1)/2

(3)

This metric thus count, for each edge, the number of length 3 and 4 cycles going

through this edge and then normalise this value regarding the maximum number of

such cycles that can go through this edge.

Finally, we can define the Strenght metric on a node as follows:

ws(u) =
∑e∈ad j(u) ws(e)

deg(u)

Where ad j(u) is the set of edges adjacent to u et deg(u) the degree of u. Thus

Strength metric quantifies the connectivity ratio of the neighbourhood of an edge or

a node. That is if a node or an edge is within a community its Strength value will be

high. The time complexity to compute this metric is O(|E| · deg2
max) where degmax

is the maximum degree of the graph.

3.2 Extracting a maximal independent set

Our aim in this step is to find community centres that will be used to identify clus-

ters. To do so we develop a method inspired of MISF (Maximal Independent Set

Filtering) of Gajer and Kobourov [Gajer and Kobourov(2000)]. This approach con-

sists in extracting a maximal set ν of nodes such that ∀u,v ∈ V , distG(u,v) ≥ 2.

Selecting nodes at distance 2 in the graph allows obtaining a relevant node sampling

of the network. Moreover the number of selected nodes also indicates the number

of sets in the network. Finally this technique guaranties unicity of each group found

by our algorithm (two sets can not contain exactly the same set of nodes).

Given that nodes in ν will be centres of the communities, these nodes cant be

considered as pivots in the network. In fact if we consider one of these pivots as

a centre to compute a cluster, this cluster may contain several communities (see

figure 2.(b)).

Strength metric computed on nodes allows identifying these pivots. In fact, nodes

located at the intersection of several communities have a relatively low Strength

value. Thus nodes with a strong Strength value have preferentially to be added to

the set ν (see figure 2.(c)). To select this set of nodes we developed the algorithm 1.

Sorting algorithm time complexity is O(|V | · log(|V |)) and in spaceO(|V |). Con-

cerning for loop we can easily prove that its time and space complexity is O(|V |+
|E|). The overall cost of set ν computation is in time O(|V | · log(|V |)+ |E|) and in

space O(|V |+ |E|).
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Fig. 2 (a) Subgraph of the “Hollywood graph” where vertices represent actors and two vertices

are linked if the corresponding actors were involved in a common movie. Color of each vertex

corresponds to its strength value, from the lowest in yellow to the highest in blue. (b) If the red

vertex is choosen as a community “centre”, we then could obtain one unique cluster containing the

whole network. (c) If the community “centres” have high strength values, then we obtain 3 clusters

corresponding to the 3 movies of that network.

Input: A graph G = (V,E)

Output: A maximal set ν of vertices at distance at least 2

vector¡node¿ sorted nodes;

sortNodeWithStrength(G, sorted nodes);

for unsigned int i from 0 to (number of vertices in G) do
node u = sorted nodes[i];
if u in G then

append(ν ,u);

foreach node v in neighborhood of u do
remove(G, v);

end

remove(G, u);
end

end

Algorithm 1: Extraction of the set ν . The sortNodeWithStrength(G,

sorted nodes) method sorts the vertices of G by decreasing Stength values and

store the result in sorted nodes.

3.3 Group detection

Alogrithm 2 then allows extracting clusters based on set ν . The idea of this algo-

rithm is to build spheres of radius 1 in the graph around nodes of ν . For each node

u in ν , if an edge (u,v) has a Strength value greater than a fixed threshold ε , then

this edge has to be within the community of u. To compute the threshold we make

the assumption that the less dense the network is, the less dense communities are.

Thus threshold ε is computed according to the number of edges of graph G = (V,E)
and to the maximum number of edges of the complete graph K|V | with |V | nodes. In

algorithm 2, the threshold ε was fixed empirically and can be modified in order to

build clusters more or less tolerant to noise.
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Input: A graph G = (V,E), the Strength of each edge, a maximal set ν
Output: A set D of groups of vertices

double ε = 2 · |E|/(|V | · (|V |−1));

foreach node u in ν do
Group curGroup = createNewGroup();

append(curGroup, u);

foreach edge e = (u,v) adjacent to u do

if Strength(e) > ε then
append(curGroup, v);

end

end

append(D, curGroup);

end

Algorithm 2: Building groups of vertices.

For each node u in ν , algorithm 2 goes through edges adjacent to u and thus runs

in a time complexity of O(deg(u)). The overall time complexity is O(∑
u∈ν degu).

Given that ∑u∈V deg(u) = 2 · |E| algorithm 2 has a time complexity of O(|E|) and

space complexity ofO(|V |+ |E|).
Finally we can conclude that the overall complexity of the decomposition algo-

rithm is in time O(|E| ·deg2
max + |V | · log(|V |)) and in space O(|V |+ |E|).

4 Algorithm application

4.1 Case study

We chose as a case study a sub-part of the data set used in InfoVis 2007 Con-

stest [InfoVis 2007 Contest(2007)]. This data set comes from a movie database

IMDb (Internet Movie Database). In order to do this case study we extracted a sub-

network containing 432 movies and 4025 actors. We then built a graph as follows:

a node in the graph is an actor and two nodes are connected by an edge if the cor-

responding actors were involved in at least one common movie. The resulting net-

work contains 4025 nodes and 41216 edges. This network is presented on figure 3.

This benchmark is particularly well suited for our study since it by essence contains

communities. In fact, movies are cliques connecting all the actors who played in this

movie, moreover cliques share nodes when an actor played in different movies.

In order to evaluate the quality of our decomposition algorithm, we use two crite-

ria. First one is the quality of the result of the algorithm, that is the quality of the de-

composition. To compute that quality, we use a generalisation of the measure MQ in-

troduced by Mancoridis et al. [Mancoridis et al(1998)Mancoridis, Mitchell, Rorres, Chen, and Gansner].

This generalisation takes into account the cases where nodes can belong to several

clusters. The second criteria measure the sensitivity of the algorithm to structural

changes of the network during the dynamical process. To do so, we compare the
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Fig. 3 Subgraph of the “Hollywood graph”. This subgraph corresponds to a set of 432 movies and

contains 4025 vertices (actors) and 41216 edges. Color of each vertex corresponds to its strength

value (from the lowest values in yellow to the highest in blue).

decomposition obtained on the original graph to a decomposition obtained after

several structural modifications of the network.

4.2 Decomposition quality

Criteria widely accepted to say that a set of clusters is a good graph decomposi-

tion is a high intra-cluster density and a low inter-cluster density. To compute that

quality, we use a generalisation of the measure MQ introduced by Mancoridis et

al. [Mancoridis et al(1998)Mancoridis, Mitchell, Rorres, Chen, and Gansner]. This

method had been introduced by Bourqui and Auber [Bourqui and Auber(2008)].

Considering a graph G = (V,E) and a decomposition C = {C1,C2, ...,Ck} of nodes

in G, MQOver is defined as follows:

MQOver = MQ+ −MQ−
Over (4)

Where

MQ+ =
1

k
∑

i

s(Ci,Ci) (5)

And

MQ−
Over =

1

k(k−1) ∑
i

∑
j 6=i

sOver(Ci,C j) (6)

Where sOver(Ci,C j) =
|E(Ci,C j\i)|
|Ci|·|C j\i| et C j\i =C j \(C j∩Ci). In that equation, MQ+ mod-

els the internal cohesion of clusters (intra-clusters) C1, ...,Ck while MQ−
Over models

the external cohesion of clusters (inter-clusters).

We applied our decomposition algorithm to the sub-network of the movie ac-

tor network (see Figure 3). Figure 4.(b) shows the result obtained on this graph.

In this Figure, each cluster found by our algorithm is surrounded by a purple con-
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Fig. 4 Optimal decomposition (a) and the result of our algorithm (b) of the graph from Figure 3.

Each group is surrounded by a purple convex hull.

vex hull. The value of MQOver is 0.95 showing that our algorithm gives excellent

results according to this measure. Figure 4.(a) shows the optimal decomposition

since it corresponds to the movies. We can first visually note the similarity of these

two decompositions. When investigating into details the to results it appears that our

algorithm finds 421 clusters among which 404 are perfectly fitting clusters of the op-

timal decomposition. Our algorithm thus found 93% of the optimal decomposition

(and 96% of the clusters found correspond to movies). Regarding the 17 clusters ob-

tained by our algorithm which are not fitting, each of this cluster is within a cluster

of the optimal decomposition.

4.3 Sensitivity to modifications

In order to evaluate the sensitivity of our algorithm to network structural changes,

we compare the reference decomposition (obtained on the original network) to the

decompositions obtained after a given number of adding/removing of edges. In this

section, we explain the similarity measure used to compare two decompositions.

Then we present the result obtained in our case study.

4.3.1 Similarity measure

To measure the similarity of two decompositions, we use a metric inspired of the one

proposed by Brohe and Van Helden [Brohée and van Helden(2006)]. This measure

is based on representativeness. Two decompositions are considered as similar if and

only if the first one is representative of the second and the opposite.

To define representativeness of two decompositions, we first have to define rep-

resentativeness of two clusters. Let ci and c j two clusters, we say that the cluster

ci is representative of cluster c j if and only if the cluster ci is majorly composed of

elements of cluster c j. We define directed cluster representativeness as follows:
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ρci→c j
=

ci ∩ c j

|c j|
ρc j→ci

=
ci ∩ c j

|ci|

We then define undirected cluster representativeness by:

ρcic j
=

√

ρci→c j
·ρc j→ci

It corresponds to the geometrical mean of directed representativeness of clusters ci

and c j.

We can, in a similar way, define the degree of representativeness of a decompo-

sition regarding another one. Lets consider two decompositions C and C′, we say

that C is representative of C′ if and only if for each cluster c′ of decomposition C′,
the decomposition C contains a representative cluster of c′. Given that clusters of

small size tends to bias this metric, we gives a higher representativeness to large

size clusters. We define the directed clustering representativeness as follows:

σC→C′ =

∑
ci∈C′

max
c j∈C

ρc jci
|ci|

∏
ci∈C′

|ci|

This formula corresponds to the normalised weighted average of best representa-

tiveness of each cluster in C′ by clusters in C.

We can then define the undirected clustering representativeness as follows:

σCC′ =
√

σC→C′ ·σC′→C

A possible modification of this metric could be obtained by using a simple prod-

uct instead of the geometrical mean during the computations of the undirected rep-

resentativeness. It allows distinguishing more easily similar decompositions from

different ones. In fact, bad associations are then more penalised. In the next section

we use this modified version of the similarity metric.

4.3.2 Experimental results

To measure the sensitivity of our decomposition algorithm, we first generate a

dataset from graph showed on figure 3. To do so, we use algorithm 3. This algo-

rithm allows to generate a collection of 100000 graphs.

We then compared the decomposition obtained on the original graph to those

obtained on graphs from the sample Collection generated by algorithm 3. Figure 5

shows the results obtained.

On Figure 5.(a), the blue line shows the average number of perfect cluster match-

ing according to the number of edges suppressed or added to the original network

and the standard deviation is depicted in red for each of these average values. We

can notice on this plot that up to 2000 operations, our algorithm allows finding in

average between 250 and 421 (i.e. number of clusters in the original decomposition)
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Input: subgraph G = (V,E) of the Hollywood graph

Output: A set Collection of graphs

for unsigned int i = 0 to i == NB T EST S do
Graph H = G;

for unsigned int j = 0 to j == MAX OPERAT IONS do
Operation op = getOperation();

if op == ’edge deletion’ then
node src = getRandomNode();

node tgt = getRandomNode();

edge e = edge(src, tgt);

while e is not element of H do
src = getRandomNode();

tgt = getRandomNode();

e = edge(src, tgt);

end

deleteEdge(H, e);

end

else /* op == ’edge addition’ */
node src = getRandomNode();

node tgt = getRandomNode();

edge e = edge(src, tgt);

while e is element of H do
src = getRandomNode();

tgt = getRandomNode();

e = edge(src, tgt);

end

addEdge(H, e);

append(Collection, H);

end

end

Algorithm 3: Generation of the dataset used to evaluate the stability of our

decomposition algorithm. The getOperation() function returns ’edge addition’

with a probability 0.5, ’edge deletion’ otherwise. The constants NB T EST S and

MAX OPERAT IONS were respectively set to 50 and 2000.

perfect matching between original decomposition and decompositions obtained on

sample graph collection. Moreover we can notice that the standard deviations are

relatively low, between 0.44 and 10.34. On Figure 5.(b), the blue line shows the

average value of the similarity metric according the number of edges removed or

added to the original network and in red the standard deviations. Average values of

the similarity metric stands between 0.9 and 1. This interval is very good in terms

of similarity same for the standard deviations for which values are between 0.0002

and 0.007.

Considering the nave sensitivity measure which consists in computing the per-

centage of perfect matching, our algorithm preserves 78% of the clusters. Moreover

average values of the similarity measure are also high showing the sensitivity of our

decomposition algorithm.
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Fig. 5 (a) Average number of perfect matching (in blue) according to the number of addition or

deletion operations previously done and the corresponding standard deviation (in red). (b) Average

value of the similarity metric (in blue) according the number of addition or deletion operations

previously done and the corresponding standard deviation (in red).

5 Conclusion

In this article, we present a new approach for the analysis of dynamic networks.

This method is based on the transformation of the dynamic graph into a set of static

graphs and on the graph decomposition in potentially overlapping clusters. Our main

assumption is that is if the structure of the network doesnt evolve that much along the

dynamical process, then decomposition obtained on two consecutive graphs should

contain a similar community structure.

In order to decompose the graph corresponding to each time frame, we present a

new graph decomposition algorithm of time complexity Given that in our approach

to similar graphs should have similar decomposition, we show that our algorithm

presents a low sensitivity to structural changes of the network.

Finally, we give a generalisation of [Brohée and van Helden(2006)] similarity

measures to overlapping decompositions. It allows us to compare decomposition

obtained of two graphs corresponding to two consecutive time frames and so to

detect eventual high impact structural changes in the network.
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