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ABSTRACT

ATP provided by oxidative phosphorylation supports highly complex and energetically 

expensive cellular processes. Yet, in several pathological settings, mitochondria could

revert to ATP consumption, aggravating an existing cellular pathology. Here we review: 

i) the pathological conditions leading to ATP hydrolysis by the reverse operation of the 

mitochondrial FoF1-ATPase, ii) molecular and thermodynamic factors influencing the 

directionality of the FoF1-ATPase iii) the role of the adenine nucleotide translocase as the 

intermediary adenine nucleotide flux pathway between the cytosol and the mitochondrial 

matrix when mitochondria become ATP consumers, iv) the role of the permeability 

transition pore in bypassing the ANT, thereby allowing the flux of ATP directly to the 

hydrolyzing FoF1-ATPase v) the impact of the permeability transition pore on glycolytic 

ATP production, and vi) endo- and exogenous interventions for limiting ATP hydrolysis

by the mitochondrial FoF1-ATPase.
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INTRODUCTION

It is now a textbook fact that the most important and fundamental function of 

mitochondria is i) to provide ATP for cellular functions, ii) to participate in the Ca2+

homeostasis and iii) to generate and eliminate reactive oxygen species (ROS). In 

addition, mitochondria could integrate and release lethal signals leading to cell death. 

ATP provision and Ca2+ uptake/release are essential physiological functions in brain 

mitochondria. Compelling evidence have accumulated in the last two decades 

demonstrating that impaired mitochondrial function is involved in cellular deterioration 

associated with pathological settings such as ischemia/reperfusion [44], excitotoxicity 

[110], neurodegenerative diseases or trauma [49]. Since the key features of mitochondria 

are inherently connected, impaired mitochondrial function usually involves energy 

deficit, impaired Ca2+ homeostasis as well as oxidative stress [15]. The latter describes 

the imbalance of production/elimination of ROS leading to accumulation of these toxic 

species. In this review we are focusing on the energy deficit related to pathological 

settings, in which mitochondria not only fail to produce ATP but function as ATP 

consumers.

In intact mitochondria the electron flow through the respiratory chain generates the 

proton electrochemical gradient (or protonmotive force, pmf; in mV), whose major 

component is the membrane potential (ΔΨm) being in the range of 150-180 mV, inside 

negative. pmf drives the ATP hydrolyzing F0F1-ATPase to function as ATP synthase and 

promotes the phosphorylation of ADP to ATP. However in mitochondria having an 

impaired respiration or leaky inner membrane the F0F1-ATPase reverses and at the 

expense of ATP hydrolysis, contributes to the maintenance of ΔΨm at a suboptimal level
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by pumping protons out of the matrix. It is obvious that persistent operation of F0F1-

ATPase in reverse could consume the cellular ATP reserves driving the cell into an 

energy crises eventually leading to cell demise [96]. Likewise, when the condition 

involving reverse operation of F0F1-ATPase is further complicated by an increased ATP 

demand, the cellular deterioration is accelerated.

The contribution of mitochondria to cell death has been subject of an intense research for 

the past two decades. In response to a variety of stressful stimuli, a number of molecules 

have been identified to emanate from mitochondria, such as cytochrome c, Smac/Diablo, 

endonuclease G, AIF to name a few, promoting apoptotic cell death [36] [84] [130] [28]

[123]. The ability of mitochondria to harbor such an abundance of death-signaling 

molecules, led them to be likened to “Pandora’s box” [136].

However, although the list of mitochondrial intermembrane proteins triggering apoptosis 

when released into the cytosol is expanding [128] [123] [68], hard evidence of apoptotic 

cell death in vivo in the adult CNS under pathological conditions such as focal/global 

ischemia, neurodegeneration or trauma, are lacking [55] [92] [129] [85]. On the other 

hand, evidence that mitochondrial dysfunction is associated with necrotic cell death is 

ample [98] [23] [45] [122] [46] [127]. The concept of “energy availability” or even more 

naively “ATP availability” has been proposed to serve as the switch between apoptosis 

and necrosis  [134] [80]. Based on the property of dysfunctional mitochondria to release 

death-signaling molecules, as well as to be capable of mounting intense ATP hydrolysis, 

their pivotal role in dictating the type of cell death was quickly realized [102] [98].    

For intact mitochondrial functions the integrity of the mitochondrial membranes is

critical; mitochondria having leaky inner membrane reverses the F0F1-ATPase to 
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hydrolyze ATP and support ΔΨm. For reasons that are incompletely understood, 

mitochondria possess intrinsic mechanisms for disrupting membrane integrity by

recruiting specific proteins to form a pore across the two membranes. This pore, termed 

“permeability transition pore” (PTP) [60,65,66], is of a sufficient size (cut-off ~1,5 kDa) 

to allow the uncontrollable passage of solutes and water, that results in swelling and 

ultimately rupture of the outer membrane since the mitochondrial matrix is hyperosmolar 

to the cytosol. The identity of the proteins comprising the PTP is debated; the voltage-

dependent anion channel (VDAC), hexokinase (HK), creatine kinase (CK), the 

mitochondrial peripheral benzodiazepine receptor (mPBR), the adenine nucleotide 

translocase (ANT), the cyclophilin D (cypD) and more recently the phosphate carrier 

[81], have all been proposed to participate in the formation of the pore [48].

Cyclophilin D is a member of the cyclophilins family [135], that exhibit peptidyl-prolyl 

cis/trans isomerase activity (PPI) and as such it could mediate, in theory, the folding of 

proteins to the desired conformation in order for the pore to materialize [61].

Unequivocal evidence showing that cyclophilin D plays a major role in the manifestation 

of necrotic cell death was provided by genetically engineering cyclophilin D knock out 

mice (cypD KO) [3,8,91,119], which were more resistant to necrotic stimuli than the wild 

type (WT) littermates. From the studies using cypD KO mice, cyclophilin D emerged as 

an important drug target, something which is being currently exploited in several clinical 

trials due to the availability of high-affinity ligands [87]. A fairly obvious reason why 

maintenance of mitochondrial integrity (through inhibition of the cyclophilin D-

dependent PTP) is beneficial to the fate of cell is that mitochondria may not become

consumers of cytosolic ATP.
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ATP CONSUMPTION BY MITOCHONDRIA UNDER CONDITONS 

ASSOCIATED WITH NEURODEGENERATION 

The question arises: what are the conditions, which favor the ATP hydrolysis by 

mitochondria and are relevant to neurodegeneration. The exact molecular mechanism 

behind neurodegeneration and the sequence of events leading to cell death in the central 

nervous system are still unknown despite intensive research in the last decades. However 

compelling evidence support the role of mitochondria in the pathogenesis of a host of

neurodegenerative diseases [2] [27] [82] [9]. Oxidative stress and respiratory failure are 

common features in the pathology of these conditions (reviewed recently by [20]); 

shifting mitochondria towards consuming rather than synthesizing ATP.

Decreased activity of Complex I, the first complex in the mitochondrial respiratory chain, 

was found in autopsy samples of the substantia nigra [118] and frontal cortex [105] from 

patients who suffered from Parkinson’s disease (PD). The involvement of complex I 

deficiency in PD became evident with the discovery that systemic administration of 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces parkinsonian syndromes 

by selectively inhibiting complex I of the respiratory chain [79] [16] [47]. Parkinsonian 

phenotypes were also reproduced in laboratory animals with infusion of the well-known 

complex I inhibitor, rotenone [12]. When the respiratory chain is inhibited, ΔΨm would 

decrease and to prevent this, the F0F1-ATPase starts to function as a proton pump and 

hydrolyses ATP [121] [96]. Even with nearly complete inhibition of complex I by 

rotenone, ΔΨm is maintained [24] or only partially depolarized [121] in in situ

mitochondria of isolated nerve terminals (synaptosomes), but collapses in the presence of 
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oligomycin, inhibitor of the F0F1-ATPase, clearly demonstrating the role of F0F1-ATPase 

in the maintenance of ΔΨm [121] [24]. Glycolysis is the major source of ATP under this 

condition and as long as this is sufficient to maintain the ATP-dependent functions, 

primarily the Na+/K+-ATPase of the plasma membrane, and the ATP hydrolysis by the 

F0F1-ATPase, ΔΨm is not collapsed, the cellular ATP pool is not depleted and cells 

survive. Glycolytic ATP generation can be accelerated 10 fold in nerve terminals when 

oxidative phosphorylation is abolished (Kauppinen and Nicholls, 1986) and as a result, 

ATP/ADP ratio decreases by ~70 % but not collapses (Chinopoulos et al, 1999). Survival 

of cells with impaired respiratory chain in vivo likely depends on the glycolytic capacity; 

at least that is indicated by studies with cultured cells, where some cell types having high 

glycolytic capacity can be maintained for hours while others show severe energetic 

insufficiency in the presence of respiratory inhibitors (reviewed by Budd and Nicholls, 

2000).

Complex I was only partially inhibited in PD patients (~30%) but that degree of 

inhibition was sufficient to decrease the ATP level in nerve terminals [31] [32]

suggesting a high flux-control of the respiratory chain by complex I in nerve terminals. It 

has also been demonstrated that when complex I is inhibited by 25%, the F0F1-ATPase 

already reverses and supports the maintenance of ΔΨm in isolated nerve terminals [22].

Oxidative stress is another factor, which could contribute to the reversal of the F0F1-

ATPase under pathological conditions relevant to neurodegeneration. Several lines of 

evidence support the role of oxidative stress in the pathology of neurodegenerative

diseases, which have been reviewed recently by Lin and Beal [82] and Henchcliffe and 

Beal [63]. Oxidative damage is an early event in the pathology of Alzheimer’s disease 
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(AD) [100], which precedes amyloid-ß-peptide deposition in AD animal models [107].

Increased ROS levels were found in AD transgenic mice prior to the appearance of 

plaques [86]. Signs of oxidative damage were also found in autopsy brain samples from 

PD patients, such as lipid peroxidation, DNA and RNA damage [33] [137], and oxidative 

stress has been linked to Lewy body formation [69].

Wide range of effects of oxidative stress on mitochondria have been found in in vitro

experiments. Relevant to the topic of this review is the report that oxidative stress alone 

induced by H2O2 were without an effect on ΔΨm of in situ synaptic mitochondria, but 

greatly reduced ΔΨm in the presence of oligomycin clearly showing that under oxidative 

stress ΔΨm is maintained by the reverse operation of the F0F1-ATPase [24]. Various 

oxidants were also reported to enhance glutamate-induced mitochondrial depolarization 

[117]. ROS are unlikely to limit directly the mitochondrial respiration as individual 

components of the respiratory chain are relatively resistant to oxidants [67] [138], 

however they can limit NADH generation [125] due to inhibition of α-ketoglutarate 

dehydrogenase, a key Krebs cycle enzyme [125] [104]. It is of note that the activity of 

this enzyme was found to be greatly reduced in postmortem brain samples of patients 

who have suffered from AD [54] [17] or PD [89] [90]. In addition, the enzyme is 

sensitive to inhibition by ß-amyloid [19].

A further important aspect of oxidative stress, which is relevant to neurodegeneration, in 

particular to PD, is that ΔΨm collapses when the oxidative burden is combined with 

complex I inhibition, while either of these insults themselves influence ΔΨm [22]. The 

underlying mechanism is likely the inhibition of glyceraldehydes-3-phosphate 

dehydrogenase by ROS [83] [67] resulting in a limited ATP generation in glycolysis. 
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Consistent with this, H2O2 was found to decrease the ATP/ADP ratio in isolated nerve 

terminals even in the presence of an uncoupler [126], a condition when the accelerated 

glycolysis provides ATP for the ATP hydrolysis by the reversed  F0F1-ATPase [121] [1]. 

As emphasized above and reviewed elsewhere [96] glycolytic ATP generation becomes 

critical  when complex I is inhibited and ΔΨm is maintained by the reverse function of 

the F0F1-ATPase.

The repercussions of a bioenergetic insufficiency caused by mitochondrial ATP 

consumption have been examined in a variety of contexts using brain tissue and was 

reported to result in an enhanced Ca2+ entry via the plasma membrane [1] [97],  an 

increased  neurotoxic effect of glutamate [99] [64], a progressive deregulation of Ca2+

and Na+ homeostasis [25]. The role of the plasmalemmal Na+/K+ ATPase, as the major 

ATP-utilizing reaction in neurons [121], and that of the plasmalemmal and endoplasmic 

reticulum Ca2+-ATPase is evident in the loss of the Na+ and Ca2+ homeostasis.

Deregulation of Na+ and Ca2+ homeostasis is a key element in initiating/propagating

neuronal damage, which is best characterized for glutamate excitotoxicity [35] [30].

It is to note that an increased ATP demand in combination with conditions involving ATP 

consumption by mitochondria could be fatal for cells. Severe bioenergetic failure 

developed in glutathione-depleted cerebellar granule neurons when the oxidative burden 

was combined with an increased cytoplasmic ATP demand imposed either by sustained 

plasma membrane depolarization or by the excitotoxin kainate [131]. Similarly, oxidative 

stress combined with a cytoplasmic Na+ load resulted in ATP depletion, loss of ΔΨm and 

Na+ and Ca2+ deregulation in nerve terminals [25]. For glutamate excitotoxicity it has 

been documented by Nicholls and colleagues, using state-of-the-art in situ bioenergetic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Mitochondrial ATP Consumption

10

approaches that Na+ and Ca2+ load imposes such a large energetic demand on cells that 

the entire respiratory capacity of in situ mitochondria is used [95]. As a result, even a 

modest restriction in mitochondrial capacity due to a diminished complex I activity, such 

as that observed in models of Parkinson's disease, or preexisting oxidative stress 

implicated in a variety of neurodegenerative diseases, greatly potentiate glutamate 

excitotoxicity, and commit the cell to die [95] [112].

FACTORS DETERMINING THE ATP CONSUMPTION BY MITOCHONDRIA 

In isolation, the mitochondrial FoF1-ATPase vigorously hydrolyzes ATP [50]. This 

molecular rotor forms ATP only when there is sufficient pmf across the membrane in 

which it is embedded. Ultimately, this depends on the concentration of the reactants 

participating in the ATP formation/hydrolysis process, namely, free matrix [ADP], free

matrix [Pi], free matrix [ATP], matrix pH and intermembrane space pH, as well as the 

H+/ATP ratio (coupling ratio “n” [124] [29]). The rate as well as the directionality of the 

FoF1-ATPase operation is dictated by the magnitude of the pmf. However, the 

mechanisms by which the FoF1-ATPase operate and reverse are not fully understood. It is 

unclear whether the reverse operation of the ATPase is a mirror image of the forward 

mode, or it follows a different path [133] [50]. Whatever the exact mechanism of ATP 

synthesis/hydrolysis may be, a plethora of cytosolic and mitochondrial ATP consuming 

processes benefit from the high ATP provision by the synthesis operation of the FoF1-

ATPase, provided that pmf is of sufficient magnitude. At 37 oC, pmf=m-60pH, 

where pH is the pH gradient across the inner mitochondrial membrane, which could be 

in the range of 0.8-0 and is dependent on the concentration of matrix Pi [26] [75]. m 
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and pH are far from being static values, even during physiological conditions. At least 

for m, it has been shown that mitochondria in a cell exhibit significant fluctuations, 

some greater than 100 mV [37] [101] [53]. This phenomenon, termed “m flickering” 

is observed in mitochondria probed in isolation or in situ [101]. Quantitative 

measurements of m and/or pH during stressful stimuli in situ are scarce [94] [13], 

while some indirect indices of metabolic competence may be misleading [14]; for 

example, mitochondrial Ca2+ uptake is electrophoretic in nature, however, mitochondria 

could sequester Ca2+ even when they are depolarized to less than 10% of their full 

attainable m [26]. When mitochondria are dysfunctional, respiration is impaired or 

mitochondria are uncoupled, but the inner membrane permeability remains 

uncompromised, the extent of pmf, hence of m and pH, would dictate whether FoF1-

ATPase generates or consumes ATP. The way in which the participating reactants (see 

above) contribute to this, is yet to be determined. Recently, there is a flare in modeling 

approaches using the reactants as parameters in an attempt to predict mitochondrial 

bioenergetics [10] [11] [38] [4] [5]. Using such models, it would be one day possible to 

predict if FoF1-ATPase operates in the forward or reverse mode during predefined 

metabolic conditions.

What is the source of ATP for the FoF1-ATPase operating in reverse with uncompromised 

inner mitochondrial membrane? As discussed above glycolysis is thought to provide ATP 

for the FoF1-ATPase to hydrolyze and since hydrolysis takes place on the matrix side, 

both adenine nucleotide translocase (ANT) and FoF1-ATPase must operate in reverse 

when mitochondria consume  cytosolic ATP. However, the operation of ANT and of the 

FoF1-ATPase are not necessarily in directional synchrony; these molecular entities only 
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share matrix [ADP] and [ATP] as common reactants. Cytosolic [ADP] and [ATP] 

participate in the ANT operation, but not in the reaction catalyzed by the FoF1-ATPase. 

By the same token, while matrix [Pi], matrix pH and intermembrane space pH, as well as 

the H+/ATP ratio dictate the rate and directionality of the FoF1-ATPase, they are not 

involved directly in the ANT reaction. Therefore, fluctuation in the concentration of 

parameters that have no direct influence on the ANT or FoF1-ATPase may result in 

reversal of the one but not of the other. There are some reports in the literature that 

suggest a physical link of the FoF1-ATPase to the ANT, that together with the phosphate 

carrier would form a so-called ATP “synthasome”, (ATPase:Pi transporter:ANT in 1:1:1 

ratio) [76] [21] [106]. However, that is at odds with an estimated ratio of ANT/Pi-

transporter of ~4; for details on this matter, the reader is referred to a recent review by 

Martin Klingenberg [74].

From the above considerations, it is apparent that certain values of m and/or pH may 

allow only the ANT but not the FoF1-ATPase to reverse, and vice versa, i.e. the FoF1-

ATPase to reverse but not the ANT. Furthermore, the reverse operation of the FoF1-

ATPase is subject to regulation, at least in tissues expressing the endogenous IF-1 protein 

(see below), but for the ANT no ligand-mediated regulation has been described so far. It 

is therefore fair to assume that there is no directional synchrony in the operation of ANT 

and FoF1-ATPase. Therefore it is intriguing to consider that ATP generated by substrate-

level phosphorylation within the matrix might supply ATP to the FoF1-ATPase. Two

reactions are capable of substrate-level phosphorylation; the mitochondrial 

phosphoenolpyruvate carboxykinase (PEPCK), and the succinate-CoA ligase (SUCL or 

succinate thiokinase or succinyl-CoA synthetase). Mitochondrial PEPCK, by its reverse 
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reaction forming phosphoenolpyruvate and using GTP has been proposed to participate in 

the transfer of the phosphorylation potential from mitochondria to cytosol [78]. SUCL 

catalyses the reversible conversion of succinyl-CoA and ADP or GDP to CoASH, 

succinate and ATP or GTP [71]. The enzyme is a heterodimer, being composed of an 

invariant α subunit encoded by the gene SUCLG1, and a substrate-specific β subunit, 

encoded by either SUCLA2 or SUCLG2. This dimer combination results in either an 

ADP-forming SUCL (A-SUCL, EC 6.2.1.5) or a GDP-forming SUCL (G-SUCL, EC 

6.2.1.4). The β subunit thus determines the substrate specificity of the enzyme. Both β 

subunits are widely expressed, with SUCLG2 predominantly expressed in anabolic 

tissues such as liver, and SUCLA2 in catabolic tissues such as brain and skeletal muscle 

[71] [72] [78]. SUCLG1 is ubiquitously expressed [78]. Therefore, it is possible that the 

availability of succinyl-CoA for the succinyl-CoA ligase in ailing brain mitochondria 

would determine whether matrix substrate-level phosphorylation could provide ATP for

FoF1-ATPase working in reverse.  

THE ROLE OF ANT AS THE INTERMEDIARY ADENINE NUCLEOTIDE 

FLUX PATHWAY BETWEEN THE CYTOSOL AND THE MITOCHONDRIAL 

MATRIX

Theoretically, the rate of ATP provision to the FoF1-ATPase would be the sum of the rate 

of matrix substrate-level phosphorylation, and that by which ATP is supplied by the 

operation of the ANT. The rate and directionality of the reactions in the citric acid cycle 

would determine the rate of production of ATP by SUCL. Likewise, the rate of ATP 

influx into the matrix depends both on the rate of production in glycolysis as well as on
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the rate of transport by the ANT. The contribution of citric acid cycle to ATP production 

by SUCL and the regulation of the rate of ATP production by glycolysis is beyond the 

scope of this review. Assuming that glycolytic ATP production is unhindered and 

upregulated due to Pasteur effect, ANT becomes the intermediary entity between

cytosolic ATP provision and the consuming FoF1-ATPase. The maximum turnover 

number (defined as the maximum number of substrate molecules that an enzyme can 

convert to product per catalytic site per unit of time) of FoF1-ATPase is approximately 

50-100 s-1 [108] [50]. The maximum turnover number of ANT in the forward mode is in 

the range of 6- 99 s-1, depending on isoform distribution, among other conditions [26]. 

Regarding the reverse mode of the ANT, there are few reports in the literature [74], 

estimating turnover numbers in a relevant range, though mathematical modeling of the 

ANT in isolation predicts almost double rates [88]. Assuming that the rate of ATP influx 

by the ANT may be equal or slower than the rate of ATP hydrolysis by the FoF1-ATPase, 

the ANT may become limiting if the amount of ANTs present in mitochondria is equal or 

lower than that of the FoF1-ATPase. The possible limitation by ANT imposed on the

consuming FoF1-ATPase is not to be confused with the higher “flux control coefficient” 

of the ANT than that of the FoF1-ATPase; the flux control coefficient is defined (for 

infinitesimally small changes) as the percentage change in the steady state rate of the

pathway divided by the percentage change in the enzyme level causing the flux change.

ANT exhibits a large flux control coefficient [73], however, this has been defined for the

rate of oxygen consumption, not for ATP formation or hydrolysis by the FoF1-ATPase. 

Considering the above, we propose that in the absence of matrix substrate-level 

phosphorylation, ANT gains a critical role in conveying ATP into the matrix at a 
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sufficient rate for the FoF1-ATPase to hydrolyze. Since pertaining metabolic conditions as 

well as ANT isoform distribution play a major role in the turnover number of ANT [26], 

it follows that the very same conditions are able to affect the rate of ATP hydrolysis by 

the FoF1-ATPase.     

THE ROLE OF PTP IN MITOCHONDRIAL ATP CONSUMPTION

So far, we have considered factors, which are important for ATP consumption by  

mitochondria having impaired respiration but uncompromised inner membrane

permeability. Next, we address the role of PTP as i) a bypass of ANT, allowing the 

delivery of cytosolic ATP directly to the consuming FoF1-ATPase, and ii) an impediment 

to glycolytic ATP production.

As mentioned above, PTP is of a sufficient size (cut-off ~1,5 kDa) to allow the 

uncontrollable passage of solutes and water across the inner mitochondrial membrane, 

resulting in cell death as observed in neurodegeneration [49]. Equally fit, interactions of

Bax and tBid with VDAC [7] [6] or Bax alone [120] also lead to formation of pores with 

mega-conductances. Pore opening in mitochondria would obviously lead to a collapse of

m and pH, and to full reversal of the FoF1-ATPase, with a direct access to cytosolic 

ATP. This has the following two ramifications: i) ANT no longer controls ATP 

hydrolysis by the FoF1-ATPase, and ii) ADP and Pi, the hydrolysis products of the FoF1-

ATPase, are diluted in the cytosol-matrix continuum; therefore, the impediment of the 

reversal of FoF1-ATPase, which is otherwise exerted by ADP and Pi, is lost [57]. A 

secondary consequence of chaotropic ADP and Pi production in the cytosol-matrix 

continuum, may be that ADP is no longer available at sites where it could stimulate
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glycolysis. Although at present this statement is purely speculative, the apposition of 

mitochondria to other organelles for the sake of optimal operation is a well-established 

phenomenon [37] [111]. ADP is known to accumulate in the intermembrane space 

resulting in steep gradients across the outer mitochondrial membrane, playing a 

significant role in efficient oxidative phosphorylation [52] [51]. In addition, the “wiring” 

of mitochondrial ATP production to nuclear utilization has been also described [40] [39], 

involving the concerted action of adenylate kinase, nucleoside diphosphate kinase and 

creatine kinase. Finally, matrix adenine nucleotide microcompartmentation has been 

proposed [132] [58] [103], though never unequivocally proven [62] [59]. It is therefore 

highly probable, that compartmentalized provision of ADP to the cytosol may assist in 

the stimulation of glycolysis partially compensating for the impaired mitochondrial ATP 

generation in ATP-consuming mitochondria. Besides the above speculation, there are two 

phenomena that are highly likely to counteract the stimulation of glycolysis, when 

mitochondria experience PTP: i) the spill of citrate from mitochondria to the cytosol, 

which is well-known to play a major role in the regulation of glycolysis by inhibiting 

phosphofructkinase-1 and ii) the depletion of NAD+ [34], which is otherwise required for 

the glyceraldehyde-3-phosphate dehydrogenase reaction. Due to opening of PTP, NAD+

leaks from the matrix to the cytosol, where a mitochondria-associated NAD+-

glycohydrolase degrades it to as low as 92% of the original values [34]. The remaining 

8% [NAD+] is likely to be insufficient for glyceraldehyde-3-phosphate dehydrogenase

reaction. The additional contribution of the catabolic products of this NAD+-

glycohydrolase to cell demise has been reviewed elsewhere [23]. It is to note here that 

loss of pyridine nucleotides from mitochondria is also crucial in our recent finding 
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showing that in isolated mitochondria exhibiting PTP, the production of ROS is not 

increased, as expected, but rather decreased by Ca2+ [77]. Finally, it has also been 

proposed that a diminished provision of ATP for hexokinase may limit phosphorylation 

of glucose upon entry to the cytosol, thereby impeding glycolytic flux at its most 

proximal step [41]. Therefore, in the presence of PTP a diminished glucose 

phosphorylation, a decreased glyceraldehyde-3-phosphate dehydrogenase flux and an

impaired PFK-1 activation could collectively lead to a spiral towards decreased ATP 

production by the glycolysis.         

INTERVENTIONS FOR LIMITING MITOCHONDRIAL ATP HYDROLYSIS

With the exception of a recently discovered possible phosphorylation site [42], ANT does 

not appear to be subject to ligand- or allosteric- type of regulation. However, nature has 

developed at least one mechanism for preventing over-consumption of ATP by the FoF1-

ATPase, during extensive mitochondrial depolarization, substantiated by the IF-1 protein 

[109] [18]. IF-1 was discovered in 1963 by Pullman and Monroy as a soluble, heat-stable 

protein present in bovine heart mitochondria, that inhibited the ATP hydrolase activity of 

the FoF1-ATPase [109]. Several additional mechanisms of regulation of ATPase are 

known to exist [93] [43] [57], however, they are not as well characterized as IF-1 [57]. 

IF-1 exhibits strong tissue and species distribution, and also variable level of expression 

and affinity for the FoF1-ATPase [116] [115] [114]. The contribution of IF-1 in 

neurodegeneration has not been addressed, nonetheless, the possible benefit from the 

existence of this molecule is reflected in the fact that during myocardial ischemia, 90% of 

the total ATP content could be inefficiently hydrolyzed, which can be diminished to less 
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than  50% due to inhibition of the reverse operation of FoF1-ATPase by IF-1 [56] [70]

[113]. Furthermore, it was recently demonstrated that overexpression of IF-1 is protective 

against ischemic injury [18]. What is rather surprising, is that the inhibition of FoF1-

ATPase by IF-1 is incomplete [56], thereby mitochondrial and cytosolic ATP pools are 

not completely rescued. Mindful of this oddity, Grover and colleagues have generated a 

synthetic FoF1-ATPase inhibitor, called BMS-199264, that affects only the reverse 

operation [56] [57]. Accordingly, BMS-199264 was shown to be strongly 

cardioprotective in ischemia/reperfusion paradigms, without affecting ATP synthesis 

[57].

CONCLUSIONS

The multitude of cytosolic as well as matrix ATP consuming processes, all dependent on 

the provision of ATP by oxidative phosphorylation attest to the complexity of eukaryotic 

life. However, besides some important differences regarding the integrity of the inner 

mitochondrial membrane, it remained an inherent ability of mitochondria to consume 

cytosolic and/or mitochondrial ATP during cell stress. This is probably one of the best 

examples of familiar knowledge: what can make you, can also break you.
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