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Abstract  

Huntington's disease (HD) is an inherited progressive neurodegenerative disorder associated with 

involuntary abnormal movements (chorea), cognitive deficits and psychiatric disturbances. The 

disease is caused by an abnormal expansion of a CAG repeat located in exon 1 of the gene encoding 

the huntingtin protein (Htt) that confers a toxic function to the protein. The most striking 

neuropathological change in HD is the preferential loss of medium spiny GABAergic neurons in the 

striatum. The mechanisms underlying striatal vulnerability in HD are unknown, but compelling 

evidence suggests that mitochondrial defects may play a central role. Here we review recent 

findings supporting this hypothesis. Studies investigating the toxic effects of mutant Htt in cell 

culture or animal models reveal mitochondrial changes including reduction of Ca2+ buffering 

capacity, loss of membrane potential, and decreased expression of oxidative phosphorylation 

(OXPHOS) enzymes. Striatal neurons may be particularly vulnerable to these defects. One 

hypothesis is that neurotransmission systems such as dopamine and glutamate exacerbate 

mitochondrial defects in the striatum. In particular, mitochondrial dysfunction facilitates impaired 

Ca2+ homeostasis linked to the glutamate receptor-mediated excitotoxicity. Also dopamine 

receptors modulate mutant Htt toxicity, at least in part through regulation of the expression of 

mitochondrial complex II. All these observations support the hypothesis that mitochondria, acting 

as "sensors" of the neurochemical environment, play a central role in striatal degeneration in HD. 
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1. Introduction 

Basic research has demonstrated that mitochondria are key actors in cell survival by controlling 

energy metabolism, apoptosis pathways and Ca2+ homeostasis [1-4]. The hypothesis that 

mitochondria could play a role in neurodegenerative diseases arise from the observation that 

mitochondrial defects and oxidative stress can be detected in biological materials from patients with 

neurodegenerative conditions. In addition, a number of cell biology experiments demonstrated that 

mitochondria play an active role in the complex cascade of events leading to cell demise in various 

models of neurodegenerative disorders [5, 6].  However, the question as how mitochondrial defects 

could be involved in the region specific pattern of degeneration is unclear. It has been known for a 

long time that the striatum is extremely sensitive to impairment in energy metabolism. Acute 

poisoning with mitochondrial toxins (cyanide, sodium azide, 3-NP) are often associated with striatal 

degeneration in man and laboratory animals [7, 8]. Mitochondrial defects of genetic origins (e.g. 

mutation or deletion of mitochondrial DNA or nuclear DNA) can lead to striatal degeneration [7]. 

In Huntington's disease, recent studies have highlighted the particular mechanisms that directly link 

mitochondrial defects with the preferential vulnerability of the striatum, the brain region which 

displays the earliest and most striking neuropathological changes in patients.  

 

2. Huntington's disease 

2.1. Description 

Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder of 

midlife onset caused by an abnormal expansion of a CAG repeat located in the exon 1 of the gene 

encoding for the Huntingtin protein (Htt) [9]. HD is characterized by involuntary abnormal 

movements and postures (chorea, dyskinesia, dystonia) of the legs, trunk and face [10]. Speech 

disturbance (dysarthria) is often seen. Other highly alienating symptoms consist of mood, 

psychiatric disturbances and cognitive deficits characterized by a perseverative behaviour and 

impaired strategy and planification. With the progression of the disease, motor rigidity and 

dementia predominate. The disease is fatal within 15-20 years after onset. Although several cerebral 

regions show signs of neurodegeneration in HD, the most striking neuropathological hallmark of 

this disorder is the atrophy of the striatum as seen using post mortem histological evaluation [11] or 

non-invasive brain magnetic resonance imaging (MRI) [12-14]. Detection of pre-symptomatic 

patients (i.e. carrying the mutation but asymptomatic) demonstrated significant atrophy of the 

caudate and putamen [12-14]. This suggests that degenerative events (cell shrinkage or loss) begin 
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years before the occurrence of clinical symptoms. The disease preferentially affects the GABAergic 

medium size spiny neurons of the striatum that project to substantia nigra reticulata and pallidum. 

Intringuingly, large cholinergic interneurons and medium size aspiny interneurons are preserved in 

the HD striatum [15, 16]. Cortical atrophy and early degeneration of the hypothalamus are also 

important aspects of HD pathogenesis, and late stage HD patients show widespread brain 

degeneration [17]. However, the severity of striatal alterations is correlated with the degree of 

motor, cognitive and psychiatric perturbations [18], suggesting that striatal degeneration is an 

important aspect of HD physiopathology.  

Many genetic models of HD have been generated in mice [19, 20]. Transgenic mice express N-

terminal fragments of different sizes, the R6/2 mice which overexpress human exon 1 of the HD 

gene, have a very strong behavioural phenotype with short life span and has been the most studied 

model so far. Other transgenic models that express the entire mutant human gene show a milder and 

more progressive neurological phenotype (BACHD, YAC128Q). One transgenic rat model 

expressing two thirds of the gene shows relatively mild degeneration but develops motor and 

cognitive symptoms. The mouse models that are genetically the most relevant to HD are the knock-

in models where a CAG expansion is inserted in the mouse homologue HD gene (HDh111, 

HDh140, HDh150). Excellent reviews have been released for a comprehensive view of 

characteristics of the mouse models that have been generated and are still currently used for 

research [21-23]. The different types (summarized in table 1) of mitochondrial defects which have 

been observed in these animal models will be discussed below. 

2.2. Pathogenesis 

The mutation induces both a loss of function and a gain of function. Wild type Htt plays an 

important role in cell survival by controlling apoptosis pathways, regulating intracellular transport 

machinery, vesicle trafficking and secretion [24-26].  

The toxic functions acquired by mutant Htt may involve the full length Htt and the short N-terminus 

fragments produced by the cleavage performed by different proteases, all of which have not been 

identified yet. Cleavage by calpain [27-32] and caspases has been demonstrated [33-35]. 

Experimental approaches have shown that the N-terminus fragments of mutant Htt recapitulate 

several aspects of the full-length mutant protein’s toxicity. Of interest, reducing the caspase-6-

dependent cleavage of full length mutant Htt markedly slows down the progression of symptoms 

and neurodegeneration in a transgenic mouse model of Huntington's disease [34]. However, it 

cannot be totally ruled out that the C-terminal part of full length mutant Htt could trigger toxic 
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events. In a recently developed transgenic mouse model of HD (bacterial artificial chromosome HD 

– BACHD) expressing the full length human mutant gene, neuronal dysfunction starts early while 

the accumulation of N-terminal Htt fragment is minimal [36]. 

Abnormal transcription and transcription regulation have been demonstrated [37, 38]. Mutant Htt 

alters macromolecular complexes regulating transcription. The mutation produces changes in 

protein-protein interaction between Htt and transcription factors or co-factors such as CBP, TAF4, 

CA150, Sp1, and p53, that can produce deleterious downstream events. Mutant Htt could also lead 

to increased transglutaminase activity thus producing an abnormal covalent link between proteins 

[39].  

It has been shown that wild type Htt regulates the expression of BDNF by increasing REST/NRSF 

at the RE1/NRSE site located in the BDNF promoter [40]. BDNF is an important factor 

contributing to neuronal survival in the striatum. It is mainly synthesized in the cortical neurons and 

delivered to the striatum through vesicles using axonal transport [24]. Reduced BDNF levels in the 

striatum would render medium size spiny neurons highly vulnerable. 

Early axonal transport dysfunction and alteration of vesicle trafficking have been shown [41]. In 

particular impaired transport of vesicles containing BDNF along the axon would further reduce the 

delivery of BDNF to striatal cells [24]. Impaired axonal transport might also affect organelle, 

including mitochondria localization (see below). Protein misfolding, proteasome dysfunction [42, 

43], and reduction of autophagy [44], likely play important roles in HD. Abnormal entry of Ca2+ 

through NMDA receptors and excitotoxicity has been suggested [45, 46]. Defective cytosolic Ca²+ 

buffering by mitochondria and endoplasmic reticulum (ER) have been observed [47].  

In the present review, we aim to provide an overview of how mitochondrial dysfunction in HD 

could play a central role in cell degeneration in HD [48, 49]. How mitochondrial defects could 

contribute to striatal degeneration is however debated. One important point is that mutant Htt can 

interact with the outer mitochondrial membrane [50-53]. Besides the direct interaction, the 

transcriptional changes induced by mutant Htt and excitotoxicity could modify some mitochondrial 

functions. The eventual energy failure would render striatal cells more fragile, and eventually 

trigger the irreversible cascade of events leading to cell death.  
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3. Preferential vulnerability of the striatum in human mitochondrial disorders 

 

It has been known for a long time that the striatum is extremely vulnerable to the impairment in the 

OXPHOS system. Primary genetic mitochondrial defects can lead to striatal degeneration and 

associated motor and cognitive symptoms. For example deletions or mutations in several 

mitochondrial genes may lead to Leigh syndrome, characterized by various degrees of basal ganglia 

damage, and possibly striatal necrosis and, clinically, by choreoathetosis and dystonia. Point 

mutations in mitochondrial genes coding for several subunits of complex I (NADH: ubiquinone 

oxidoreductases) can lead to putaminal degeneration and dystonia, in association with other severe 

alterations such as epilepsy, stroke and optic nerve atrophy.  Mutations in mitochondrial DNA 

encoded ND1 [54] genes produce Leber hereditary optic neuropathy and spastic dystonia. 

Mutations in ND3 [55] can also produce Leigh syndrome.  

More rarely, nuclear genes encoding for mitochondrial proteins or assembly factors can lead to 

neurological abnormalities reminiscent of Leigh syndrome. Defects in succinate oxidation [56] were 

associated with bilateral striatal degeneration and dystonia. Loss of function in the gene coding one 

of the succinate dehydrogenase (SDHA) determines Leigh syndrome [57]. A recent work reported 

striatal atrophy resulting from homozygous point mutation in subunits VII of complex III, 

ubiquinol-cytochrome c reductase [58].  

Mutations in nuclear genes that encode for mitochondrial proteins that are indirectly associated with 

OXPHOS can also lead to basal ganglia dysfunction. For instance, mutation in the 

Myofibrillogenesis regulator-1 (MR-1) gene is the cause of the Paroxysmal non-kinesigenic 

dyskinesia (PNKD) a rare autosomal-dominant movement disorder characterized by paroxystic 

episodes of dystonia and chorea [59].  

 

4. General mitochondrial and OXPHOS defects in HD patients and HD models 

4.1. Mitochondrial enzymes 

Defects in the respiratory chain in HD have been observed in early biochemical studies. Severe 

reduction in the activity of complex II/III and milder reduction of complex IV were found in post 

mortem samples of the caudate/putamen in HD patients.[60-64]. No changes were observed in pre-

symptomatic patients [65]. The cerebral cortex showed minor changes in respiratory chain enzymes 

[61, 63, 66]. No change was observed in blood cells. Reduced activity of other enzymes of 

oxidative metabolism in the striatum was also reported. In particular massive loss of aconitase 
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activity has been found in the caudate (~90%), and putamen (~70%)  [66, 67]. Loss of the pyruvate 

dehydrogenase complex was also shown [62, 68]. Those defects were observed in symptomatic 

patients with caudate/putamen atrophy. Thus, whether they are a consequence of striatal 

degeneration, or they play a pivotal role in it, remains to be determined.  

In a transgenic mouse model of HD (R6/2) with limited cell loss, aconitase and pyruvate 

dehydrogenase have been found to be decreased to various extents [69]. It seems that in addition to 

presenting reduced levels, many proteins are modified by oxidative stress in these transgenic 

models [70]. Thus abnormalities in mitochondrial proteins related to energy metabolism might not 

simply result from the loss of mitochondria due to the neuronal loss. Experiments using the 

mitochondrial toxin 3-NP and recent studies on mitochondrial complex II support the hypothesis 

that complex II dysfunction (alteration), in conjunction with oxidative damage to mitochondrial 

proteins might be causal in HD-linked striatal cell death (see below). 

 

4.2 Brain examination using non invasive methods 

Other indications for energy metabolism problems in HD patients were reported. In particular, early 

striatal hypometabolism was detected in vivo using positron emission tomography and [18F]fluoro-

deoxyglucose [7, 71]. Increased lactate concentrations were found in the cortex of symptomatic HD 

patients using proton NMR spectroscopy [72, 73]. Lactate/pyruvate ratio was elevated in the CSF of 

HD patients [74]. In one NMR study, half of the pre-symptomatic HD patients examined showed 

increased lactate concentration in the striatum [73]. In muscle, phosphorus NMR spectroscopy 

showed reduced ATP production [75].  

 

4.3. Mitochondrial membrane potential 

Mitochondria isolated from cells expressing mutant Htt show decreased membrane potential.  As 

first reported by Sawa and collaborators, lympoblasts derived from lymphocytes from HD patients 

showed increased stress-induced apoptotic cell death [76]. When subjected to apoptotic stress, 

lymphoblasts from patients displayed increased mitochondrial membrane depolarisation as 

compared to control lymphocytes. This aggravated loss of potential was correlated with CAG repeat 

expansion. Other studies also suggest abnormal mitochondrial membrane potential in cell 

expressing mutant Htt. Others have reported similar observations in lymphocytes/lymphoblasts 
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[53]. In neural cells, particularly in studies performed on clonal cells derived from knock-in mice 

harbouring a pathologically expanded CAG repeat tract (STHdhQ111/Q111), showed high 

sensitivity to Ca2+ induced permeability transition [50]. This sensibility was confirmed in many 

recent studies, specifically when using mitochondria isolated from HD transgenic rats [77].  

STHdhQ111/Q111 cells also show higher vulnerability to permeability transition when treated with 

the 3-NP, an effect that could be prevented by cyclosporine-A [78]. It has also been demonstrated 

that recombinant mutant Htt (short N-terminal fragment) could directly trigger loss of membrane 

potential and permeability transition, likely through an interaction with the outer mitochondrial 

membrane [50, 79]. In situ studies using fluorescent dyes (JC-1, MitoTracker Red) that accumulate 

in the mitochondria as a function of the membrane potential confirmed that neuronal cells 

expressing mutant Htt could display reduced mitochondrial membrane potential at rest [80, 81].  

4.4. Mitochondrial Ca2+ buffering capacity  

Increased cytoplasmic Ca2+ levels are toxic to neurons [82]. Impaired Ca2+ homeostasis in HD 

might have different causes. Although it may originate from various extra-mitochondrial origins 

(see below), mechanisms related to mitochondrial dysfunction have received the closest attention. 

The Ca2+ buffering capacity of cells expressing mutant Htt can be reduced. This was first shown by 

Panov and collaborators in lymphoblasts derived from lymphocytes of HD patients [53]. Similarly, 

reduced Ca2+ loading capacity was found in the brains of YAC72Q mice [53]. Compared to 

mitochondria from control cells (STHdhQ7/Q7), the mitochondria from clonal striatal cells with 

mutant Htt (STHdhQ111/Q111) undergo permeability transition at a lower Ca2+ concentration when 

treated with increasing Ca2+ loads and have a reduced capacity to take up Ca2+ [83]. Isolated 

mitochondria from transgenic rats expressing mutant Htt, show reduced rates of Ca2+ accumulation 

compared to control rats [77]. However, not all HD models show reduced brain mitochondrial Ca2+ 

loading capacity. The latter was found increased in 12 week old R6/2 mice and 12 month old 

YAC128Q while no changes were found in knock-in 150Q mice [84] One possibility is that 

changes in mitochondrial Ca2+ loading capacity are transient in HD mice. Aging processes and cell 

substitution may occur in later stages thus hiding the original defect.  

 

5. Complex II defects in Huntington’s disease 

5.1. 3-nitropropionic acid, a complex II inhibitor replicating many aspects of Huntington's disease 
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In man the ingestion of the mitochondrial toxin 3-nitropropionic acid (3NP) produces putaminal 

necrosis and delayed dyskinesias and dystonia [85, 86]. Systemic administration of 3NP produces in 

rats [87, 88] and in non-human primates [89] preferential degeneration in the striatum, abnormal 

movements and frontal type cognitive deficits that are highly reminiscent of HD [8, 48]. The 3NP 

models strongly suggest that complex II defects detected in the striatum of HD patients may 

participate to cell demise. Alongside the similar phenotype, studies on 3NP toxicity also showed 

that mitochondrial defects and mutant Htt toxicity share common pathogenic pathways, such as 

impaired Ca2+ homeostasis, calpain and caspase activation, and JNK activation [48]. However, 3NP 

does not produce transcriptional changes that are comparable to those found in transgenic and 

knock-in mice expressing mutant Htt [90, 91]. The 3NP model should be considered as an excellent 

model to study the consequences of chronic mitochondrial impairment and oxidative stress in vivo. 

As a model of HD, it presents several limitations compared to transgenic animals [48].   

5.2. The SDH-Complex II molecular evidence in HD 

The main component of complex II is the enzyme succinate dehydrogenase (SDH) [92].  Complex 

II/SDH is composed of four nuclear-encoded subunits:  the 70 kDa Fp subunit that catalyses the 

oxidation of succinate, the 30 kDa Ip subunit which transfers electrons to the ubiquinone via its iron 

centers, and two small subunits (SDH-D and SDH-C) that anchor the complex to the internal 

mitochondrial membrane. Thus, complex II/SDH plays a central role in the respiratory chain, in the 

tricarboxylic acid cycle and probably in the control of free radical production [92, 93]. 

The expression of the 30 kDa iron-sulfur (Ip) subunit and of the 70 kDa FAD (Fp) subunit was 

preferentially decreased in the striatum of HD patients, compared with controls [81]. Other 

mitochondrial proteins were examined including subunit IV of complex IV, alpha subunit of the F1-

ATPase, BclXL, a protein of the mitochondrial outer membrane, and cytochrome c. None showed 

significant changes in the striatum of HD patients, suggesting that the defective expression of 

complex II is not only the consequence of mitochondrial loss, secondary to neuronal death. In the 

cortex and cerebellum there was no decrease in SDH subunits [81].   

Despite these observations, the possible role of complex II in HD is questioned by the fact that 

many attempts to detect significant reduced enzymatic activity have failed in transgenic mouse 

models of HD [71]. We also initially failed to find reduced activity or expression of complex II 

when studying R6/2 and N171-82Q mice at relatively advanced symptomatic stages (Brouillet, 

Benchoua, personnel communication). The reason for this is not totally understood but recent 

findings strongly suggest that transient changes in SDH expression might occur in transgenic HD 
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mouse models. Careful longitudinal analysis of R6/2 mice using well-controlled proteomics 

methods showed expression changes of the Ip subunit [94]. A significant 34% decrease was seen in 

the 2 week old R6/2 mice. In the same model, a 50% increase was observed in 4 week old animals, 

before gross brain atrophy and severe symptoms. Increased activity of many glycolysis and 

OXPHOS enzymes was also observed in R6/2 mice at 4 weeks. At 6 weeks no changes were 

observed in the Ip subunit. At 8 weeks, in contrast, Ip was again reduced by 37%. We also found 

reduced levels of SDH Ip and Fp subunits in the striatum of R6/1 mice at 16 weeks of age while at 

32 weeks, changes were less pronounced [95]. Cortex showed no change at either ages. The 

apparent "wavy" changes in Ip expression in R6/2 mice [94] may result from changes in cellular 

composition of the brain tissue (i.e. neurons and astrocytes) especially considering that reactive 

gliosis is a physiological phenomenon that follows neuronal loss. 

SDH activity was also reduced in the striatum of rats injected with lentiviral vectors coding the 171 

N-terminal part of Htt with 82 glutamines (Htt171-82Q) [95, 96]. This was observed along with 

reduced regional glucose consumption as assessed using quantitative 14C-2-deoxyglucose 

autoradiograph [95, 96]. Depletion of activity was in the 50% range at 8 weeks post infection in the 

region expressing mutant, but not wild type Htt fragment. Blocking mutant Htt using siRNA 

strategy prevented the SDH and regional glucose consumption reduction [95, 96].  

Only few studies report complex II changes in cells expressing mutant Htt in culture. Complex II 

activity was found reduced in Neuro2A and HeLa cells expressing Htt exon 1 [97]. Interestingly, in 

yeast, mutant Htt can be cytotoxic through alteration of OXPHOS, in particular reduced function 

and amount of mitochondrial respiratory chain complex II+III [98]. The potential role of SDH 

/complex II in HD has been examined in striatal neurons in primary culture using infection with 

lentiviral vectors coding for the N-terminus part of huntingtin (Htt) with either a pathological 

(Htt171-82Q) or physiological (Htt171-19Q) polyglutamine tract [81]. A longitudinal biochemical 

analysis after infection showed that, compared with Htt171-19Q, expression of Htt171-82Q 

decreased the levels of Ip followed by Fp subunits and reduction of the dehydrogenase activity of 

the complex. Other mitochondrial proteins remained unchanged. Of interest, the Htt171-82Q-

induced loss of complex II did not result from a decrease in mRNA levels. Thus reduction of SDH 

subunits may be the result of a post-transcriptional problem. Overexpression of Ip or Fp subunit 

restored complex II levels, blocked mitochondrial dysfunction and prevented striatal cell death 

induced by Htt171-82Q in primary neurons [81]. These results provide evidence that complex 

II/SDH subunits are critical for the execution of mutant Htt-induced cell death. 
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6. Possible mechanisms of mitochondrial dysfunction in HD 

As discussed above, mutant Htt (N-terminal small fragments) can possibly directly interact with the 

outer mitochondrial membrane. This may destabilize mitochondrial membrane, increase the 

sensitivity of the mitochondrial permeability transition pore (mPTP) to Ca2+ or other apoptotic 

stimuli. Mitochondrial changes that have been hypothesised to play a role in other 

neurodegenerative diseases could also be involved in HD. In particular a shift in the fusion/fission 

equilibrium might occur [99]. Reduced mitochondrial mobility could reduce the incorporation of 

certain proteins leading to mitochondrial dysfunction [100]. An elegant study using live cell video 

microscocopy showed that aggregates impair mitochondrial movements along neuronal processes. 

Mitochondria may remain embedded in the aggregate formations in the somato-dendritic 

compartment [101]. A very interesting observation in this study is that full length mutant Htt, more 

than the short N-terminal fragments, impairs mitochondrial mobility. Radical oxygen species 

(ROS), which production is thought to be increased in HD patients and HD mouse models [67, 71, 

102, 103] could also lead to mitochondrial impairment, particularly by increasing the vulnerability 

of the mPTP in presence of Ca2+. 

A cellular function that is severely altered in HD and could lead to mitochondrial dysfunction is 

transcription. The vulnerability of mitochondria to Ca2+ loads and induction of permeability 

transition have been recently studied by Oliveira and co-workers [104, 105]. In this accurate study, 

the authors show that mitochondria of STHdh111Q/111Q cells derived from knock-in HD mice, as 

well as primary striatal neurons from YAC128 mice, have reduced Ca2+ handling capacity, when 

compared to control cells. These changes were prevented by applying HDAC inhibitors [104]. This 

suggests that, at least in part, mitochondrial defects are secondary to impaired nuclear transcription. 

Indeed mitochondrial biogenesis, and import of matrix and membrane proteins, are under the 

control of several nuclear transcription factors and co-activators [106]. Reduced CREB–dependent 

transcription in HD could have specific consequences on mitochondrial physiology. For example, 

CREB regulates respiratory chain proteins (e.g. COX-IV and cytochrome c) [107]. Recently, Ryu 

and collaborators demonstrated that CREB could directly bind mtDNA on CRE binding sites, a 

process that is stimulated by mitochondrial PKA [108]. Interestingly, the regulation of CREB 

phosphorylation in mitochondria may involve Ca2+-dependent phosphatase in neurons [109]. Thus, 

transcriptional problems produced by mutant Htt could lead to disruption of Ca2+ homeostasis, 

which in mitochondria may further reduce CREB–dependent expression of OXPHOS proteins, and 

result in energy failure and apoptotic cell death.  
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It has been demonstrated that the accumulation of p53 plays a role in mitochondrial dysfunction and 

HD-linked degeneration [80]. The strong interaction between p53 and mutant Htt causes p53 

accumulation in the nucleus thus inducing p53 dependent transcription. Reducing p53 activity using 

siRNA or gene deletion is neuroprotective against mutant Htt. Knocking down p53 rescues striatal 

cells from mutant Htt-induced mitochondrial dysfunction (loss of mitochondrial membrane 

potential and COX activity) [80]. It is currently unknown whether the transcriptional effect of p53 

plays a direct or indirect role on cytosolic proteins that can regulate apoptosis such as Puma. 

Another very interesting mechanism that has recently been proposed to be involved in HD-linked 

striatal degeneration is the PGC-1alpha pathway. Reduced expression of PGC-1alpha has been 

reported in HD models [110, 111]. PGC-1alpha is a nuclear co-activator that plays a major role in 

mitochondrial biogenesis [110, 111]. Mice that are nullizygous for PGC-1alpha display 

abnormalities related to energy metabolism and strikingly develop striatal lesions [112]. Increasing 

PGC-1alpha expression is neuroprotective against mutant Htt toxicity and, on the contrary, when 

PGC1-alpha is knocked down, neurons are highly vulnerable to mutant Htt toxicity in cell culture 

and in vivo [111]. Other family members (PGC1beta and PGC-1 Related co-activator –PRC), also 

known to regulate important aspects of mitochondrial biogenesis and of respiratory enzymes, could 

be also involved [113]. In line with this, it cannot be excluded that downstream of PGC-1alpha, the 

nuclear respiratory factors, NRF-1 and NRF-2 [114] could also participate in HD-linked 

mitochondrial dysfunction. The possible mechanisms through which mutant Htt could impair 

mitochondrial function is likely multifactorial and highly complex.  

How could mutant Htt produce the loss of complex II/SDH activity? The loss of SDH subunits may 

not directly be produced by transcription regulation. The Fp SDH subunit possesses a CRE 

consensus sequence in its promoter [115]. However it is unknown whether this site is active or not. 

The mRNA expression for SDH-A and SDH-B is not markedly reduced in the brain of HD patients 

[116],  while there is dramatic loss of the proteins as assessed using western blots [81] and activity 

assay [61, 63]. Using cultured striatal neurons, we showed that expression levels of mRNA coding 

for SDH subunits were not modified by mutant Htt while protein expression and activity was 

reduced [81, 117].  Mutant Htt could decrease the import of the Ip subunit into mitochondria, 

increase its degradation, or disturb its assembly into a functional complex. Mutant Htt can bind to 

the outer mitochondrial membrane [50, 53]. This could modify the molecular machinery for the 

SDH import. It is also possible that loss of membrane potential could reduce or alter the 

incorporation of the FAD prosthetic group to the Fp subunit and eventually induce complex II 

disassembly.  Another interesting possibility is related to the Ip protein mRNA structure [81] which 
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presents an un-translated region (UTR) named IRE (Iron Responsive Element). Oxidative stress or 

imbalance in iron metabolism could modify Ip expression through the binding of IRP-1 and IRP-2 

[118].  

 

7. Environmental factors underlying striatal vulnerability through mitochondrial mechanisms 

Obviously, reduced energy production, anomalies in the control of apoptosis and reduced cytosolic 

Ca2+ handling capacity can affect cell survival. Why is the striatum particularly vulnerable to 

mitochondrial dysfunction in HD? The general hypothesis is that striatal vulnerability to impairment 

in energy metabolism is caused by many factors. In particular, neurotransmission systems which 

modulate activity of striatal medium sized spiny neurons could play a role. 

 

7.1 Glutamate, excitotoxicity and mitochondria 

Whereas purely mitochondrial changes (protein expression, mitochondrial membrane potential, 

Ca2+ loading capacity) are not always consistently observed in all experimental models (cell types, 

mouse lines), one consistent observation is that in neurons, mitochondrial Ca2+ handling is reduced, 

upon stimulation of glutamate receptors in situ. The cause of this defect is not totally understood but 

elegant studies try to explain how HD-induced mitochondrial dysfunction could transform a 

physiological effect into an excitotoxic one. 

There are mainly two studied mechanisms able to lead to impaired Ca2+ homeostasis within striatal 

neurons: 1) increase in Ca2+ entry, and 2 ) impaired Ca2+ sequestration/release into/from 

intracellular stores. In fact the two mechanisms could co-exist and synergistically exacerbate Ca2+ 

deregulation thus triggering cell death.  

In addition, abnormal release of Ca2+ from ER likely exists in neurons expressing mutant Htt. 

Mutant Htt facilitates activity of type 1 inositol 1,4,5-trisphosphate receptors (InsP(3)R1) [119]. 

This is an important aspect since, in presence of impaired mitochondrial Ca2+ handling, and upon 

the pathologic stimulation of NMDA receptors, the increased Ca2+  release from the ER could 

further increase cytosolic Ca2+ up to excitotoxic levels and thus cause neuronal apoptosis.  

Compelling evidence shows that abnormal activation of NMDA receptors likely plays a role in HD 

pathogenesis [45, 46, 120, 121]. Pioneering studies show that intrastriatal injection of NMDA 
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receptor agonists, including NMDA and quinolinate in laboratory animals produces axon-sparing 

lesions which are reminiscent of HD [8]. In particular, while medium-sized spiny neurons 

preferentially degenerate, interneurons (large cholinergic interneurons and medium size aspiny 

GABAergic neurons expressing nNOS, somatostatin and neuropeptide Y) are spared [122, 123]. 

More recently, several approaches have shown that mutant Htt can directly modify NMDA-receptor 

function through its interaction with PSD95 [124, 125]. In particular, mutant Htt increases the 

sensibility of neurons to excitotoxicity associated to stimulation of NMDA receptors harbouring the 

NR2B subunits [126, 127]. Degeneration is exacerbated in mice with CAG expansion in the Htt 

homologue gene (knock-in Hdh150Q) and overexpressing NR2B [128]. NMDA currents are 

increased in the striatum of transgenic mice overexpressing full length Htt [124, 127, 129]. 

Decortication, which removes glutamate afferents in the striatum, protects against striatal 

degeneration in R6/2 mice [130].  Many electrophysiological data support the view that abnormal 

glutamatergic transmission in the cortico-striatal pathway is a prominent aspect of striatal 

degeneration (reviewed in [131]).  

However, increased activation of NMDA receptors might not be a pre-requisite for excitotoxicity. 

Indeed, extracellular normal glutamate concentrations can trigger excitotoxic cell death in neurons 

with impaired energy metabolism [132]. In cell culture, pre-treatment with 3-NP exacerbates the 

toxicity of low NMDA or glutamate concentrations [133-135]. Three studies have demonstrated 

that this synergy also operates in vivo by providing evidence that the size of striatal lesions 

produced by NMDA is significantly increased by injecting malonate, a reversible complex II 

inhibitor,  into the striatum [136] or by systemic administration of 3-NP [137, 138]. Potentiation of 

QA toxicity by inhibiting SDH/Complex II with 3-NP (in the 45% range) is observed at non toxic 

doses 3-NP. This effect is likely associated with increased cytosolic Ca2+ concentrations in vivo. 

Intracellular Ca2+ imaging studies [132, 137, 139] showed that NMDA receptors activation leads to 

higher cytoplasmic Ca2+ concentrations in 3NP-treated cultured neurons and brain slices, as 

compared with untreated preparations. However, results obtained from 45Ca2+ experiments 

demonstrated that, during NMDA receptor stimulation by an agonist, Ca2+entry into primary striatal 

neurons is similar with or without 3-NP [137]. Thus the increased vulnerability of neurons to 

excitotoxicity when complex II is deficient is likely due to reduced mitochondrial capacity to uptake 

cytosolic Ca2+ upon NMDA receptor stimulation [132, 137, 139]. A similar process may occur in 

neurons expressing mutant Htt and subjected to NMDA receptor stimulation, despite the fact that 

reduction in complex II is likely not a prerequisite. Complex II would further aggravate the 

vulnerability of mitochondria to Ca2+ transients. Consistent with this view, a study performed in the 

YAC128 mouse model indicated that during the initial phase of NMDA toxicity, NMDA receptor 
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current and cytosolic Ca2+ loading are similar to those observed in wild-type striatal neurons [140]. 

However, NMDA receptor-mediated Ca2+ load triggered a more profound loss of mitochondrial 

membrane potential in YAC128 neurons than in wild type cells. After removal of NMDA, YAC128 

cells displayed a longer time to recover normal Ca2+ concentrations. This was attributed to higher 

sensitivity of YAC128 striatal cells to Ca2+ induced mitochondrial permeability transition [140]. 

Oliveira and collaborators studied Ca2+ transients after NMDA receptor stimulation in YAC128 

striatal neurons in relation to the modification of mitochondrial membrane potential assessed using 

the fluorescent TMRM+ probe [104, 105]. They characterized the patterns of Ca2+ recovery after 

NMDA receptor stimulation in wild type cells and YAC128 striatal cells in culture. The proportion 

of neurons with delayed recovery (i.e. initial cytosolic Ca2+ peak progressively return to normal 

after MK801 application) was significantly higher in YAC128 neurons. Striatal neurons prepared 

from heterozygous Hdh150Q knock-in mouse embryos were more vulnerable to Ca2+ deregulation 

than wild type neurons [104, 105].  

7.2. Dopamine and mitochondria 

In addition to glutamate, other neurotransmission systems likely play a role in HD pathogenesis [48, 

141, 142]. In particular dopamine, which is at high concentrations in the striatum compared to other 

brain areas, might play an important role in the preferential vulnerability of the striatum in HD 

[143], possibly through a functional interaction with mitochondria.  

A number of in vivo and in vitro experiments showed that dopamine contributes to striatal lesions 

produced by the mitochondrial toxin 3-NP (see for review [48]), suggesting that dopamine could 

have an impact on mitochondrial function. Dopamine may act as a co-factor in mutant Htt-induced 

death in vitro, possibly through stimulation of autophagy [144]. However, autophagy is rather 

considered as neuroprotective in HD pathogenesis [145]. Increased autophagy might lead to 

enhanced mitochondria clearance in HD cells, and prevent the cells from entering the apoptotic 

cascade. The production of free radicals following dopamine oxidation [146]  may also increase Htt 

toxicity [147].  

However, direct support for the role for DA in HD comes from the recent demonstration that the 

toxicity of the N-terminal fragments of mutant Htt is potentiated by dopamine. Dopamine modifies 

the formation of Htt-containing aggregates in primary striatal neurons transfected with exon 1 of Htt 

gene and exacerbates mutant Htt-induced cell death [147]. Of interest, this effect involves D2 

receptor signalling, since dopamine had this detrimental effect when neurons were prepared from 

D2 receptor null mice [147]. In addition D2 antagonists significantly reduce the effects of 
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dopamine. In vivo experiments also support a role for dopamine and its receptors in HD 

pathogenesis: DAT (dopamine transporter) knock-out (KO) mice crossed with a knock-in 

transgenic mouse model of HD showed enhanced motor symptoms and striatal degeneration 

induced by mutant Htt [148]. In YAC128 HD mice, L-dopa treatment (which elevates dopamine 

concentrations) accelerates striatal degeneration, whereas the neuroleptic tetrabenazine, which 

reduces dopamine release, was neuroprotective [149]. Chronic treatment with the D2 antagonist 

haloperidol significantly reduces the striatal toxicity of Htt171-82Q in vivo [150]. Stack and 

collaborators [130] showed that 6OHDA-induced degeneration of the nigro-striatal dopaminergic 

pathway prevents striatal degeneration in R6/2 HD mice.  

We found that one of the underlying mechanisms of this "protoxic" effect of dopamine in mutant 

Htt toxicity directly involves mitochondria. Primary striatal neurons expressing Htt171-82Q were 

highly vulnerable to dopamine when compared to normal neurons or neurons expressing the wild 

type fragments [117]. This was correlated with the level of reduction of complex II/SDH activity. 

Indeed, incubation of striatal neurons with dopamine alone produced a significant loss of SDH 

activity and reduced expression of the subunits of the complex. This was related to a transient 

reduction of Ip and Fp complex II subunit mRNAs. This dopamine-induced loss of complex II was 

mediated by D2 receptors. D2 receptor antagonists blocked the effect of dopamine and D2 agonist 

replicated the effect of dopamine. The combined down regulation of SDH/complex II by dopamine 

and mutant Htt leads to cell death that can be blocked by overexpression of the Ip protein using 

lentiviral vector-mediated gene transfer methods [117]. How this novel mechanism could play a 

role in vivo in the striatum is not yet elucidated. However it could explain why the striatum is 

preferentially vulnerable to the complex II inhibitor 3NP and mutant Htt toxicity.  

 

8. Therapeutic strategies from theory to proof of concept 

Theoretically, if mitochondrial defects found in HD patients and HD models play a role in neuronal 

dysfunction and eventually death, correcting these defects may provide beneficial effects. Recent 

findings support this hypothesis. 

Whereas gene transfer-based experiments recently led to the discovery of potential therapeutic 

targets that could improve mitochondria in HD (such as PGC-1alpha or the mitochondrial complex 

II), preclinical studies are yet required to precisely determine whether it is possible to modulate 

these systems in vivo. From a practical perspective, the targeting of these complex systems will 
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require important and long-term developments. However, a few strategies which were suggested 

many years ago have shown great promise in preclinical and even clinical studies. Examples are 

given below.    

In cells expressing mutant Htt, accumulation of p53 has been showed to induce neuronal death. 

Reducing accumulation of p53 using RNA interference and the p53 inhibitor pifithrin-α suppress 

mutant Htt-induced mitochondrial depolarization.  Intraperitoneal injection of pifithrin-α in 171-

82Q HD transgenic mice restore levels complex IV activity to normal levels [80]. It can be 

speculated that pifithrin-like drugs could be neuroprotective in patients. 

The loss of mitochondrial Ca2+ handling observed in cell lines derived from knockin mouse model 

can be corrected by treatment with the HDAC inhibitors trichostatin A or sodium butyrate, 

suggesting that acting on transcription defects could correct some of mitochondrial defects 

produced by mutant Htt [104]. Treatment with HDAC inhibitors in mouse models of HD reduces 

striatal atrophy and motor deficits [151, 152]. These beneficial effects in mice could at least in part 

involve amelioration of mitochondrial physiology. 

Another approach consists in brain fuel supplementation. The most promising compound that could 

be efficacious in increasing brain energy metabolism is creatine, a compound produced 

endogenously and acquired exogenously through diet [153].  Diet supplementation with creatine (in 

the range of 600 mg/kg) in mice expressing the N-terminal part of mutant huntingtin is 

neuroprotective. It extends life-span in transgenic mice, and reduces motor dysfunction and striatal 

atrophy [154-156]. Creatine is well tolerated in patients [157]. It seems that creatine produces an 

actual biological effect in HD patients since blood levels of 8-hydroxy-2'-deoxyguanosine 

(8OH2'dG), a biomarker of oxidative stress that are elevated in untreated HD patients are near 

control levels in patients with creatine treatment. Ongoing clinical trials may determine within few 

years whether creatine treatment can slow the progression of the disease.  

Production of ROS is likely increased in HD patients and HD mouse models [67, 71, 102, 103]. 

Reducing ROS production using compounds with anti-oxidant properties have been tested in HD 

models [23]. For example, ascorbate treatment in R6/2 mice ameliorates behavioural deterioration 

[158].  The newly developed antioxidant BN82451 protects and extends survival in R6/2 mice 

[159]. The most debated but still very promising compound is coenzyme Q10, which has 

antioxidant properties and plays an important role in the transfer of electrons in the respiratory 

chain [160].  Transgenic R6/2 mice treated with coenzyme Q10 alone or in association with the 

NMDA receptor antagonist remacemide show increased survival, attenuated weight loss, improved 
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motor performances, and reduced striatal atrophy when compared with untreated transgenic mice 

[161, 162]. Clinical trials with relatively low dose showed no major protective effects, suggesting 

that higher doses may be necessary.    

 

9. Conclusion 

Mitochondria likely play a key role in HD, although the exact mechanisms involved are still under 

debate. Of interest, the striatum might be particularly vulnerable to mitochondrial defects through 

multiple mechanisms involving molecular factors which are selectively present in this brain region. 

Amongst these factors, dopamine and D2 receptors, which are present in high concentrations in the 

striatum likely play a role in the selective degeneration of striatal neurons expressing mutant Htt. 

Many other factors possibly determine striatal vulnerability and may directly regulate mitochondrial 

homeostasis. Beyond a better understanding of these mechanisms, there is really an urgent need to 

find an efficacious therapeutic strategy to slow disease progression. Many therapeutic strategies are 

studied at a preclinical level and several clinical trials have been carried out in HD patients. None 

have provided major beneficial effects. Continuing to precisely decipher the various ways by which 

mitochondria are involved in HD pathogenesis will certainly help to disclose new therapeutic 

strategies.  
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Figure 1: Hypothetical mechanisms involving mitochondria in Huntington's disease 

pathogenesis. 

Mutant huntingtin (m-Htt) produces mitochondrial impairment through different mechanisms. 

Mitochondria from HD patients and genetic models of HD show reduced membrane potential 

(ΔΨ), decreased Ca2+ buffering capacity, enhanced sensitivity to Ca2+ -induced permeability 

transition, and triggering of caspase-mediated apoptotic pathways involving caspases.  In addition, 

m-Htt can produce preferential reduction of respiratory chain enzymes, in particular complex II 

(SDH/II) and to a lesser extend cytochrome c oxido-reductase (IV).  

These mitochondrial defects may result from a direct interaction of m-Htt with the outer membrane 

and/or indirect modification of protein(s) expression linked to m-Htt-induced transcriptional 

changes. One important effect of m-Htt-induced mitochondrial defects includes deregulation of 

cytosolic Ca2+ concentrations. In striatal cells, this could act in synergy with other m-Htt-induced 

modification of Ca2+ homeostasis: m-Htt increases the activation of the InsP3 receptor (IP3R) 

triggering Ca2+ release from the endoplasmic reticulum (ER) and enhances Ca2+ entry through 

NMDA receptors. In this scenario, glutamate is a primary cause of Ca2+ transients during synaptic 

transmission, leading to Ca2+ deregulation and cell death (excitotoxicity) in cells expressing m-Htt. 

In addition, the presence of dopamine could also render striatal cells more vulnerable to m-Htt 

toxicity. D1 receptors can exacerbate glutamate toxicity and D2 receptors might down regulate 

expression of mitochondrial complex II. Mitochondrial defects can indirectly increase the activity 

of proteases that cleaves Htt, leading to enhanced production of N-terminal Htt fragments. This 

would further exacerbate transcriptional defects which, through a vicious cycle, would further 

accentuate mitochondrial impairment. 

Table I : Main mitochondrial defects observed in genetic models of Huntington's disease 
The left column indicates the mitochondrial targets/functions found defective in HD models 
(indicated in the second column). The table is not exhaustive. It lists main findings in genetic 
models and corresponding references for further reading. 
 

Mitochondrial 
target/function 

Organism/model 
 

Change 
(mutant/wt) 

Ref. 

Mitochondria membrane 
potential 

Primary culture of striatal neurons 
expressing N-terminal Htt fragments  

Decreased [80, 81] 

Sensitivity of permeability 
transition pore to Ca2+ 

STHdhQ111/Q111 striatal cell line Increased [78, 104] 

Induction of permeability 
transition 

Recombinant N-terminal Htt fragments in 
vitro 

Increased [50, 79] 

Mitochondrial preparation from YAC72Q tg 
mouse brains 

Decreased [53] 

STHdhQ111/Q111 striatal cell line Decreased [83] 
Mitochondrial preparation from tg HD rat 
brains 

Decreased [77] 

Ca2+ buffering 
capacity/handling 

Cultured cortical cells from YAC128Q tg 
mice 

Decreased [104] 
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Cultured cortical cells from HD150Q knock-
in mice 

Decreased [104] 

Mitochondrial preparation from R6/2 tg 
mouse brains 

Increased [84] 

Mitochondrial preparation from YAC128Q 
tg mouse brains 

Increased [84] 

Mitochondrial preparation from HD150Q 
knock-in mouse brains 

~ 
 

[84] 

Aconitase R6/2 brains Decreased [70] 
Pyruvate dehydrogenase R6/2 brains Decreased [70] 

Rat HD models using lentiviral vectors Decreased [95] 
Primary culture of striatal neurons 
expressing N-terminal Htt fragments 

Decreased [81, 117] 

Neuro2A cells expressing Htt exon I Decreased [97] 
HeLa cells expressing Htt exon 1 Decreased [97] 

Complex II/SDH activity 

Yeast expressing full length Htt Decreased [98] 
R6/1 tg mice Decreased [95] 
R6/2 tg mice (depending on age) Decreased, 

increased, ~ 
[94] 

Expression of complex II 
subunits 

Primary culture of striatal neurons 
expressing N-terminal Htt fragment 

Decreased [81, 117] 

Complex IV (COX) activity N171-82Q tg mice Decreased [80] 
Mitochondrial movement Cortical primary neurons expressing a N-

terminal fragment and full length Htt 
Decreased [100] 

Mitochondria transport 
machinery 

Cortical primary neurons Decreased [101] 
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