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Abstract

In this article we focus on the problem of minimization of the fuel consumption for
the coplanar orbit transfer problem. This problem is usually solved numerically by
a shooting method, based on the application of the Pontryagin Maximum Principle,
however the shooting method is known to be hard to initialize and the convergence
is difficult to obtain due to discontinuities of the optimal control. Several methods
are known in order to overcome that problem, however in this article we introduce a
new approach based on the following preliminary remark. When considering a 2D flat
Earth model with constant gravity, the optimal control problem of passing from an
initial configuration to some final configuration by minimizing the fuel consumption
can be very efficiently solved, and the solution leads to a very efficient algorithm.
Based on that, we propose a continuous deformation from this flat Earth model to a
modified flat Earth model that is diffeomorphic to the usual round Earth model. The
resulting numerical continuation process thus provides a new way to solve the problem
of minimization of the fuel consumption for the coplanar orbit transfer problem.

Keywords: orbit transfer problem; optimal control; Pontryagin Maximum Principle;
shooting method; continuation.

1 Introduction

The fuel efficient orbit transfer of a satellite is a widely studied problem (see [15, 7]). We
can distinguish mainly between two formulations of this problem. The first one considers
that the vehicle produces instantaneous change of velocity and is referred to as the impulse
orbit transfer (see [16, 17, 22]). The second formulation takes into account the fact that
all engines have a limited thrust and that the vehicle’s dynamics has to be continuous
in the position and velocity coordinates (see [14]). In this continuous approach, we also
separate the high-thrust and the low-thrust transfer, depending on the magnitude of the
available acceleration.
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In this paper, we focus on the high-thrust orbit transfer that we furthermore restrict to
be coplanar. This problem can be naturally written as an optimal control problem. There
exist various numerical methods to solve such a problem, and we usually separate them in
two classes: direct and indirect methods. Direct methods (e.g. surveyed in [4]) consist in
discretizing the optimal control problem in order to rewrite it as a parametric optimization
problem. Then a nonlinear large scale optimization solver is applied. The advantage of
this approach is that it is straightforward and is usually quite robust. The main drawback
is that, because of the discretization step, those methods are computationally demanding
and that they are not very accurate in general when compared to the indirect approach
(see [4]). Indirect methods are based on the Pontryagin Maximum Principle (PMP, see
[19]) that is a set of necessary conditions for a candidate trajectory and control strategy
to be optimal. The idea is to use those necessary conditions to reduce the search of a
solution to the search of the zero of the so-called shooting function (indirect methods are
also called shooting methods in this context). The advantage is that shooting methods
are very fast when they converge and that they produce high accuracy solutions. Their
main drawback is that they typically use a Newton-like algorithm to look for the zero of
the shooting function and thus, they may be hard to successfully initialize. We can also
mention mixed methods that use a discretization of the PMP necessary conditions and
then apply a large-scale optimization solver (see e.g. [5]).

Because of its fast convergence and high accuracy, we will turn to a shooting method to
solve the coplanar orbit transfer problem with minimal fuel consumption. There already
exist some methods to cope with the initialization drawback of this method. In [3], the
authors use the impulse transfer solution to provide a good initial guess to the shooting
algorithm. This method is based on the fact that limited thrust orbit transfer try to mimic
impulse transfer, as outlined in [11, 17]. However this approach is only valid for nearly
circular initial and final orbits. In [18], a multiple shooting method parameterized by the
number of thrust arcs is used to solve an Earth-Mars transfer, and the solving of an orbit
transfer with n thrust arcs is based on the solution of the transfer with n− 1 thrust arcs;
however no specific method to initialize this iterative process is discussed. In [12, 13],
differential or simplicial continuation methods linking the minimization of the L2-norm of
the control to the minimization of the fuel consumption is used to solve the low-thrust
orbit transfer around the Earth. However this approach is not adapted for high-thrust
transfer. In [21], simplified formulas are established by interpolating many numerical
experiments, which permit to initialize successfully the shooting method for the minimal
time orbit transfer problem, in a certain range of values and for nearly circular initial and
final orbits. Based on that initial guess and on averaging techniques, the authors of [9]
implement in the software T3D continuation and smoothing processes in order to solve
minimal time or minimal fuel consumption orbit transfer problems.

In this article we propose a novel way to initialize a shooting method for high-thrust
coplanar orbit transfer with fixed final time. It is based on a continuation method starting
with the solving of a simplified transfer on a flat Earth model and then continuously adding
curvature to end up with the model we want to solve. Note that we restrict ourselves to
fixed final time problems since it has already been numerically shown that the continuous
transfer with maximization of the final mass does not have any solution (see [18, 11]).
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This paper is organized as follows. First, we state the optimal control problem we
want to solve, along with the necessary conditions given by the PMP. Then we introduce
the simplified flat Earth model and modify it so as to introduce curvature and make it
diffeomorphic to the round Earth model. The next section presents the continuation pro-
cedure and explains how to pass from the simplified model to the targeted optimal control
problem. A refined analysis is then carried out to provide a robust and efficient algorithm
to solve the simplified flat Earth model, which consists in simplifying and specializing
the application of the shooting method, due to the particular structure of the problem.
Finally, we give a numerical example in which we solve an orbit transfer from an unstable
(on a collision course) Sun Synchronous Orbit (SSO) to a nearly circular final orbit. Since
our approach involves diffeomorphic changes of coordinates, we explain in the Appendix
the impact of a change of coordinates onto the set of adjoint vectors of the PMP.

1.1 The round Earth model and the optimal control problem

The model that we use for the coplanar orbit transfer problem is the following. As-
sume that the Earth is spherical with center O and consider an inertial geocentric frame
(O,~i,~j,~k). Since we consider the coplanar orbit transfer problem, we assume that the
whole trajectory lies in the plane O + R~i + R~j. The satellite is modeled as a mass point
M(t), with

−−→
OM(t) = r(t)~er, where (~er, ~eϕ) denotes the usual Frénet frame defined by

~er = sinϕ~i+ cosϕ~j, ~eϕ = cosϕ~i− sinϕ~j.

It is subject to the central gravitational field g(r) = µ
r2

, where µ is the Earth gravitational
parameter, and to the thrust

−→
T (t) ∈ R2. The mass of the satellite is denoted by m(t).

The vehicle follows the two-dimensional controlled Kepler equation

d2−−→OM
dt

(t) = −g(r(t))~er +
−→
T (t)
m(t)

, ṁ(t) = −β‖−→T (t)‖, (1)

where β > 0 is the inverse of the thruster exhaust velocity. Moreover, the control
−→
T (·)

must satisfy the constraint
‖−→T (·)‖ 6 Tmax, (2)

where Tmax is the maximal allowed thrust, and ‖ ‖ denotes the usual Euclidean norm.
Note that we do not consider any constraint on the direction of the thrust. However, such
a constraint can be verified a posteriori and the numerical results show that the thrust
direction mainly lies in two narrow cones (one per thrust arc). This can lead to indications
on how to design the vehicle so as to place the thrusters efficiently.

Instead of Cartesian coordinates, we next use polar coordinates whose definition is
recalled. Recall that r(t) = ‖−−→OM(t)‖, and set

v(t) =

∥∥∥∥∥d
−−→
OM

dt
(t)

∥∥∥∥∥ =
√
ṙ(t)2 + r(t)2ϕ̇(t)2.
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Define the flight path angle γ(t) by

d
−−→
OM

dt
(t) = v(t)(sin γ(t)~er + cos γ(t)~eϕ).

Define the coordinates q = (r, ϕ, v, γ,m), with (r, ϕ) the polar coordinates of the satellite,
v its speed and γ the slope of the velocity vector. Then, the control system (1) is written
in cylindrical coordinates as

ṙ(t) = v(t) sin γ(t)

ϕ̇(t) =
v(t)
r(t)

cos γ(t)

v̇(t) = −g(r(t)) sin γ(t) +
Tmax

m(t)
u1(t)

γ̇(t) =
(
v(t)
r(t)
− g(r(t))

v(t)

)
cos γ(t) +

Tmax

m(t)v(t)
u2(t)

ṁ(t) = −βTmax‖u(t)‖

(3)

where the normalized control u(t) = (u1(t), u2(t)) satisfies T (t) = u(t)Tmax and the con-
straint

‖u(t)‖ =
√
u1(t)2 + u2(t)2 6 1, (4)

for almost every t. The optimal control problem under consideration then consists in
steering the control system (3) from an initial configuration

r(0) = r0, ϕ(0) = ϕ0, v(0) = v0, γ(0) = γ0, m(0) = m0, (5)

to some final configuration that is either of the form

r(tf ) = rf , v(tf ) = vf , γ(tf ) = γf , (6)

or of the form

ξKf =
v(tf )2

2
− µ

r(tf )
−Kf = 0,

ξef = sin2 γ +
(

1− r(tf )v(tf )2

µ

)2

cos2 γ − e2f = 0.

(7)

The conditions (6) mean that the satellite has to enter a specified orbit at a given point
of it. The conditions (7) mean that the satellite must be steered to a final elliptic orbit of
energy Kf < 0 and eccentricity ef , without fixing the entry point on that orbit (see [24]
for the definition of Kf and ef and their expression in Cartesian coordinates). Note that
for both final conditions the orientation of the final orbit is not prescribed (ϕ(tf ) is free).
The criterion to consider is the maximization of the final mass m(tf ). As mentioned in
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[11, 18], this problem does not have a solution for free final time1, and therefore we assume
the final time tf to be fixed. In what follows, this optimal control problem is referred to
as (OCP).

According to the Pontryagin Maximum Principle, every optimal trajectory q(·) of
(OCP), associated with a control u(·) on [0, tf ], is the projection of an extremal

(q(·), p(·), p0, u(·)),

where p(·) : [0, tf ]→ R5 is an absolutely continuous mapping called adjoint vector, p0 is a
non-positive real number, with (p(·), p0) 6= (0, 0), and there holds

q̇(t) =
∂H

∂p
(q(t), p(t), p0, u(t)), ṗ(t) = −∂H

∂q
(q(t), p(t), p0, u(t)), (8)

for almost every t ∈ [0, tf ], where the Hamiltonian is defined by

H(q, p, p0, u) = prv sin γ + pϕ
v

r
cos γ + pv

(
−g(r) sin γ +

Tmax

m
u1

)
+ pγ

((
v

r
− g(r)

v

)
cos γ +

Tmax

mv
u2

)
− pmβTmax‖u‖,

with p = (pr, pϕ, pv, pγ , pm). This yields the adjoint equations

ṗr = pϕ
v

r2
cos γ − 2

r
pvg(r) sin γ +

1
r
pγ

(
v

r
− 2

g(r)
v

)
cos γ

ṗϕ = 0

ṗv = −pr sin γ − 1
r
pϕ cos γ − pv

(
1
r

+
g(r)
v2

)
cos γ + pγ

Tmax

mv2
u2

ṗγ = −prv cos γ + pϕ
v

r
sin γ + pvg(r) cos γ + pγ

(
v

r
− g(r)

v

)
sin γ

ṗm =
Tmax

m2

(
pvu1 +

pγ
v
u2

)
(9)

Moreover, the maximization condition

H(q(t), p(t), p0, u(t)) = max
‖w‖61

H(q(t), p(t), p0, w) (10)

holds almost everywhere on [0, tf ], and this quantity is constant since the dynamics are
autonomous. Furthermore, one has the transversality conditions, that depend on the
chosen final configuration. For (6) we simply have

pϕ(tf ) = 0, pm(tf ) = −p0. (11)

1Indeed, it has been observed in those references that it is always possible to save some fuel by allowing
a larger final time and more revolutions around the Earth. In other words, denoting by m(tf ) the maximal
possible value of the final mass, for the problem with a fixed final time tf , the function tf 7→ m(tf ) is
increasing.

5



For (7), the conditions (11) hold as well, and additionally the vector (pr(tf ), pv(tf ), pγ(tf ))
is a linear combination of the gradients (with respect to (r, v, γ)) of the two relations (7).
This can be written as

∂rξKf (pγ∂vξef − pv∂γξef ) + ∂vξKf (pr∂γξef − pγ∂rξef ) = 0, (12)

where the expression has to be evaluated at the final time tf .
The extremal (x(·), p(·), p0, u(·)) is said normal whenever p0 6= 0, and in that case it

is usual to normalize the adjoint vector so that p0 = −1; otherwise it is said abnormal.
A direct application of the maximization condition (10) leads to the definition of the

so-called switching function Φ(·) along a given extremal by

Φ(t) =
1

m(t)

√
pv(t)2 +

pγ(t)2

v(t)2
− βpm(t),

for every t ∈ [0, tf ]. This function is such that u(t) = (u1(t), u2(t)) = (0, 0) whenever
Φ(t) < 0, and

u1(t) =
pv(t)√

pv(t)2 + pγ(t)2

v(t)2

, u2(t) =
pγ(t)

v(t)
√
pv(t)2 + pγ(t)2

v(t)2

,

whenever Φ(t) > 0. Note that these formulas are well defined since the functions pv(·) and
pγ(·) do not vanish simultaneously identically on any subinterval2. Note that the extremal
control cannot be determined from the maximization condition in the case the switching
function Φ(·) vanishes on a subinterval of [0, tf ]. The non-occurrence of this singular
case can be checked from the numerical simulations, however note that the controllability
aspects of the orbit transfer problem have been studied in [6, 7, 8, 12], and it has been
proved in these references that the singular case cannot occur in our problem.

Note that, if p0 = 0, then, using the facts that ṗm = Tmax
m2

√
p2
v + p2γ

v2
and that pm(tf ) =

0, it follows that pm(·) 6 0 and thus Φ(·) > 0 on [0, tf ], which means that there is no
ballistic arc along the flight (actually such an extremal coincides with a minimal-time
extremal). In practice, almost all initial and final configurations considered impose that
the optimal trajectory should involve (at least) one ballistic arc, and therefore, the case
p0 = 0 does not occur (this can be checked further in the numerical simulations). Hence,
from now on we assume that p0 = −1.

Based on these necessary conditions, recall that the (single) shooting method consists
in finding a zero of the shooting function S defined as follows. Given tf > 0 and p0 ∈ R5,
denote by (q(t, p0), p(t, p0)) the extremal solution of (8), starting from the initial condition

2Indeed otherwise, it would follow from (9) combined with (11) that pr(·) and pϕ(·) vanish identically
as well on the same subinterval. Then, by Cauchy uniqueness, it would follow that pr(·), pϕ(·), pv(·) and
pγ(·) are identically equal to 0 on [0, tf ], and that pm(·) is constant, equal to −p0. Then, necessarily there
must hold p0 6= 0, and we can take p0 = −1. Therefore the Hamiltonian reduces to H = −βTmax‖u‖ along
such an extremal, and the maximization condition implies that u = 0 on [0, tf ]. This raises a contradiction.
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q(0) given by (5) and from p(0) = p0. Then, the shooting function is defined by

S(tf , p0) =


r(tf , p0)− rf
v(tf , p0)− vf
γ(tf , p0)− γf
pϕ(tf , p0)

pm(tf , p0)− 1

 or


ξKf (p0)
ξef (p0)

Eq. (12)
pϕ(tf , p0)

pm(tf , p0)− 1

 , (13)

depending on the chosen final conditions. The (single) shooting method thus consists of
combining any numerical method for integrating a differential equation with a Newton-like
method in order to determine a zero of the shooting function S.

As mentioned formerly, it is difficult to obtain convergence of this method, due to a
difficulty of initialization and to the discontinuities of the control. However, we observe
that, when assuming that the Earth is flat and the gravity is constant, the corresponding
optimal control problem can be easily solved, in a very explicit way. We next introduce
this very simplified model and explain our idea of passing continuously to the round Earth
model.

1.2 Simplified flat Earth model

The motion of a vehicle in a flat Earth model with constant gravity is governed by the
control system

ẋ(t) = vx(t)

ḣ(t) = vh(t)

v̇x(t) =
Tmax

m(t)
ux(t)

v̇h(t) =
Tmax

m(t)
uh(t)− g0

ṁ(t) = −βTmax

√
ux(t)2 + uh(t)2

(14)

where x(t) denotes the downrange (or in-track), h(t) is the altitude, vx(t) is the horizontal
component of the speed, vh(t) is the vertical component of the speed, and the control
(ux(·), uh(·)) satisfies the constraint

ux(·)2 + uh(·)2 6 1. (15)

The constant g0 stands for the gravity g0 = µ
r2T

at zero altitude, with rT the Earth radius.
We denote by (OCP)flat the optimal control problem of maximizing the final mass m(tf )
for the control system (14), with the initial and final conditions

x(0) = x0, h(0) = h0, vx(0) = vx0, vh(0) = vh0, m(0) = m0, (16)

h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0. (17)
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If we had to make a connection to the round Earth model, these final conditions would
correspond to (6) (and not (7)). Furthermore, contrarily to the round Earth model, here
it is not needed to assume a fixed final time tf . Therefore, in (OCP)flat the final time tf
is free.

It happens that (OCP)flat can be explicitly and nearly analytically solved by applying
the PMP. This is the object of Section 3 further, and this resolution leads to an very
efficient algorithm based on a shooting method whose initialization is obvious. Based on
that observation, it is tempting to try to use this efficient resolution in order to guess
a good initialization for the shooting method applied to (OCP). To this aim, the idea
is to use a continuation process by introducing parameters such that, when one makes
these parameters evolve continuously, one passes from the flat Earth model to the initial
round Earth model. Since the coordinates of the flat Earth model are Cartesian, and the
coordinates of the round Earth model are polar, this will of course require, at the end of
the process, a change of coordinates.

Before going into more details we can make one preliminary remark. In the contin-
uation process, the gravity constant g0 must be obviously deformed in order to end up
with the gravity model g(r). However there is a serious difference between the flat Earth
model (with constant or variable gravity) and the round Earth model: indeed, in the round
Earth model, periodic trajectories with no thrust (u = 0) do exist, namely Keplerian or-
bits; whereas in the flat Earth model there do not exist any “horizontal trajectories” (that
is, trajectories with a zero control having a constant altitude h), due to the presence of the
gravity term. This obvious but important remark leads to the idea of deforming the flat
Earth model by introducing some new terms into the dynamics, so that there may exist
such horizontal trajectories with null thrust (zero control). Moreover, we would like this
modified model to be equivalent, up to some change of coordinates, to the round Earth
model.

This modified flat Earth model is derived in the next subsection, by defining a change
of coordinates that is flattening circular orbits into horizontal trajectories, and then com-
puting the control system from this change of coordinates.

1.3 Modified flat Earth model

Starting from the polar coordinates (r, ϕ, v, γ) of the round Earth model, let us define
some Cartesian coordinates (x, h, vx, vh). The idea of mapping circular orbits to horizontal
trajectories leads to define x = rϕ. Then, x(t) represents the curvilinear abscissa of the
point M(t). The altitude is logically defined by h = r − rT , where rT denotes the radius
of the Earth. Using the geometric definition of the angle γ, finally, one is led to define
vx = v cos γ and vy = v sin γ. Summing up, we consider the change of coordinates

x = rϕ
h = r − rT
vx = v cos γ
vh = v sin γ

⇐⇒


r = rT + h
ϕ = x

rT+h

v =
√
v2
x + v2

h

γ = arctan vh
vx

(18)
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vx0

xf

vh0

h0

hf

rT ϕf

γ0

vf

γf

hf

h0

(vxf , vhf) (rT + hf )ϕf ↔ xf

v0

Figure 1: Correspondence between flat and round Earth coordinates.

and denote by F the corresponding diffeomorphism, such that F (x, h, vx, vh) = (r, ϕ, v, γ).
For the control, the transformation from cylindrical to Cartesian coordinates is(

ux
uh

)
=
(

cos γ − sin γ
sin γ cos γ

)(
u1

u2

)
. (19)

Applying this change of coordinates to the control system (3) now leads, after easy
computations, to the control system

ṙ(t) = v(t) sin γ(t)
ϕ̇(t) = v(t)

r(t) cos γ(t)
v̇(t) = −g(r(t)) sin γ(t) + Tmax

m(t) u1(t)

γ̇(t) =
(
v(t)
r(t) −

g(r(t))
v(t)

)
cos γ(t)

+ Tmax
m(t)v(t)u2(t)

ṁ(t) = −βTmax‖u(t)‖

⇐⇒



ẋ(t) = vx(t) + vh(t) x(t)
rT+h(t)

ḣ(t) = vh(t)
v̇x(t) = Tmax

m(t) ux(t)− vx(t)vh(t)
rT+h(t)

v̇h(t) = Tmax
m(t) uh(t)− g(rT + h(t))

+ vx(t)2

rT+h(t)

ṁ(t) = −βTmax‖u(t)‖
(20)

This modified formulation (20) in Cartesian coordinates is equivalent (up to change of
coordinates) to the initial formulation (3) in cylindrical coordinates. Therefore it still
represents the true round Earth transfer problem. In particular, it admits the (null thrust)
Keplerian orbits. Comparing this modified formulation with the simplified flat Earth
formulation (14) (with constant gravity), we have two differences: the first one is of course
the gravity term, which is constant in the simplified model (14); the second difference is
the presence of new terms in the dynamics of x, vx and vh, in the right-hand side of (20).
These new terms can be seen as corrective terms in the flat Earth model, which make
possible in particular the existence of horizontal trajectories with no thrust.
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2 The continuation procedure

To pass from the simplified flat Earth model (14) to the modified flat Earth model (20),
we introduce two parameters. One of them permits to pass continuously from the con-
stant gravity term to the variable gravity term, and the other introduces continuously the
corrective terms. In brief, we consider the family of control systems

ẋ(t) = vx(t) + λ2vh(t)
x(t)

rT + h(t)

ḣ(t) = vh(t)

v̇x(t) =
Tmax

m(t)
ux(t)− λ2

vx(t)vh(t)
rT + h(t)

v̇h(t) =
Tmax

m(t)
uh(t)− µ

(rT + λ1h(t))2
+ λ2

vx(t)2

rT + h(t)

ṁ(t) = −βTmax

√
ux(t)2 + uh(t)2

(21)

parameterized by the parameters λ1 and λ2, themselves varying between 0 and 1. For
λ1 = λ2 = 0, one recovers the simplified flat Earth model (14) with constant gravity, and
for λ1 = λ2 = 1 one recovers the modified flat Earth model (20), which is diffeomorphic
to the initial round Earth model (3).

Now, for all (λ1, λ2) ∈ [0, 1]2, denote by (OCP)λ1,λ2
the optimal control problem of

steering the system (21) from (16) to (17) and maximizing the final mass m(tf ). In what
follows, we will explain how to implement a continuation procedure to pass from (OCP)0,0
to (OCP)1,1. In this procedure, we decide to make a first continuation on the parameter
λ1, keeping λ2 = 0, passing from λ1 = 0 (flat Earth model with constant gravity) to
λ1 = 1 (flat Earth model with variable gravity), and then a second continuation, keeping
λ1 = 1, passing from λ2 = 0 to λ2 = 1 (modified flat Earth model, equivalent to the initial
round Earth model). Along the first continuation, the optimal control problems under
consideration are with a free final time. However, since the problem (OCP)1,1 does not
have any optimal solution for free final time (as already mentioned), we decide to fix the
final time for the optimal control problems in consideration along the second continuation.
The value chosen for tf is the (free) final time obtained for (OCP)1,0, at the end of the
first continuation. Note that this is not restrictive since numerical simulations show that
the shooting method is relatively robust with respect to changes on the fixed tf . The
continuation procedure is drawn on Figure 2.

As before, the application of the Pontryagin Maximum Principle to (OCP)λ1,λ2
leads

to a shooting problem, as follows. For every optimal trajectory

X(·) = (x(·), h(·), vx(·), vh(·),m(·))

of (OCP)λ1,λ2
, associated with a control U(·) = (ux(·), uh(·)) on [0, tf ] there exists an

absolutely continuous mapping P (·) = (px(·), ph(·), pvx(·), pvh(·), pm(·)) : [0, tf ] → R5 and
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model)

(equivalent to round Earth

modified flat Earth model

variable gravity

flat Earth model,

constant gravity
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(OCP)(0,0)
continuation on λ1 ∈ [0, 1]

final time tf free
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2 ∈
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e

t
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fi
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Figure 2: Continuation procedure

p0 6 0, satisfying (p(·), p0) 6= (0, 0), such that

Ẋ(t) =
∂Hλ1,λ2

∂P
(X(t), P (t), p0, U(t)),

Ṗ (t) = −∂Hλ1,λ2

∂X
(X(t), P (t), p0, U(t)),

(22)

for almost every t ∈ [0, tf ], where the Hamiltonian is defined by

Hλ1,λ2(X,P, p0, U) = px

(
vx + λ2vh

x

rT + h

)
+ phvh + pvx

(
Tmax

m
ux − λ2

vxvh
rT + h

)
+ pvh

(
Tmax

m
uh −

µ

(rT + λ1h)2
+ λ2

v2
x

rT + h

)
− pmβTmax‖u‖.

Component-wise, the adjoint equations are

ṗx = −px
λ2vh
rT + h

ṗh = px
λ2xvh

(rT + h)2
− pvx

λ2vxvh
(rT + h)2

− pvh
(

2µλ1

(rT + λ1h)3
− λ2v

2
x

(rT + h)2

)
ṗvx = −px + pvx

λ2vh
rT + h

− 2pvh
λ2vx
rT + h

ṗvh = −px
λ2x

rT + h
− ph + pvx

λ2vx
rT + h

ṗm =
Tmax

m2
(pvxux + pvhuh)

(23)
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Moreover, the maximization condition (W is a free variable)

Hλ1,λ2(X(t), P (t), p0, U(t)) = max
‖W‖61

H(X(t), P (t), p0,W ) (24)

holds almost everywhere on [0, tf ], and this quantity is moreover equal to 0 for (λ1, λ2) ∈
[0, 1] × {0} (that is, along the first continuation) since the final time tf is free and the
dynamics are autonomous. Furthermore, one has the transversality conditions

px(tf ) = 0, pm(tf ) = −p0. (25)

Defining the switching function Φ(·)λ1,λ2 by

Φλ1,λ2(t) =
1

m(t)

√
pvx(t)2 + pvh(t)2 − βpm(t),

for every t ∈ [0, tf ], one has U(t) = (ux(t), uh(t)) = (0, 0) whenever Φ(t) < 0, and

ux(t) =
pvx(t)√

pvx(t)2 + pvh(t)2
, uh(t) =

pvh(t)√
pvx(t)2 + pvh(t)2

,

whenever Φ(t) > 0. Note that these formulas are well defined since the functions pvx(·)
and pvh(·) do not vanish simultaneously identically on any subinterval3.

Assuming as before p0 = −1 (see comments made for the round Earth model), the
continuation method (see [2, 20]) consists of solving a series of shooting problems for
sequences of parameters λ1 and λ2, with the starting point λ1 = λ2 = 0. At each step,
the previous solution is used as an initial guess for the shooting problem. For every
couple (λ1, λ2), the shooting function Sλ1,λ2 is defined as follows. Given tf > 0 and P0 ∈
R5, denote by (X(t, P0), P (t, P0)) the extremal solution of (22), starting from the initial
condition X(0) given by (5) up to the change of coordinates (18), and from P (0) = P0.
Then, the shooting function is defined by

Sλ1,λ2(P0, tf ) =



h(tf , P0)− hf
vh(tf , P0)

vx(tf , P0)− vxf
px(tf , P0)

pm(tf , P0)− 1
H(tf ) if (λ1, λ2) ∈ [0, 1]× {0}

 . (26)

Note that in the case where tf is fixed, the shooting function has only five components.
The first part of the continuation procedure consists of solving iteratively by a Newton-like
method the equation Sλ1,0(P0, tf ) = 0 for a sequence of parameters λ1 starting from 0 and

3Indeed otherwise, it would follow from (23) combined with (25) that px(·) and ph(·) vanish identically
as well on the same subinterval. Then, by Cauchy uniqueness, it would follow that px(·), ph(·), pvx(·) and
pvh(·) are identically equal to 0 on [0, tf ], and that pm(·) is constant, equal to −p0. Then, necessarily there
must hold p0 6= 0, and we can take p0 = −1. Therefore the Hamiltonian reduces to H = −βTmax‖u‖ along
such an extremal, and the maximization condition implies that u = 0 on [0, tf ]. This raises a contradiction.
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ending at 1, and the second part of that procedure consists of solving S1,λ2(P0, tf ) = 0 for
a sequence of parameters λ2 starting from 0 and ending at 1 (see Figure 2). Note that it
is possible to consider other paths of parameters (λ1, λ2) in the square [0, 1]2. Our choice
here is first to introduce the variable gravity, and then the correcting terms. Note however
that using the intermediate problem (OCP)1,0 in our continuation enables us to find a
more reasonable final time tf than if we had directly used as a fixed final time the optimal
final time obtained from (OCP)0,0. Furthermore, the numerical simulations further will
show that the continuation from (OCP)0,0 to (OCP)1,0 is very fast when compared to
the second continuation from (OCP)1,0 to (OCP)1,1. Hence, considering one more direct
continuation path from (OCP)0,0 to (OCP)1,1 would not yield a significant gain in terms
of execution time but might put the success of the continuation at risk.

The starting point (0, 0) of the continuation process corresponds to the simplified flat
Earth model with constant gravity, and hence we initialize the procedure with the solution
of that simplified model, as detailed in Section 3.

This algorithmic procedure provides a way of solving (OCP) without any a priori
knowledge on the optimal solution. The price to pay is that, instead of solving only one
optimal control problem, one has to solve a series of (OCP)λ1,λ2

. However the whole
procedure is time-efficient since the shooting method relies on a Newton-like method.
Our procedure provides a way for bypassing the difficulty due to the initialization of the
shooting method when applied directly to (OCP). Numerical simulations are given in
Section 4.

One item remains however to be explained in our procedure. Indeed, the continuation
process above leads, provided it has converged, to the solution of (OCP)1,1, which cor-
responds to the control system (20). As explained in Section 1.3, this control system is
equivalent to the initial control system (3) via the change of coordinates (18) and (19).
Hence, we must explain how the change of coordinates must act onto the adjoint vector,
so as to recover the adjoint vector in the initial coordinates (pr, pϕ, pv, pγ , pm). Recalling
that F denotes the diffeomorphism defined by (18), we claim that (t denotes the transpose
operation)

t(pr, pϕ, pv, pγ) = tdF (x, h, vx, vh)−1 · t(px, ph, pvx , pvh), (27)

i.e., one passes from the adjoint vector in Cartesian coordinates to cylindrical coordinates
by applying the transpose of the inverse of the differential of F . After easy computations,
this yields

pr =
x

rT + h
px + ph

pϕ = (rT + h)px
pv = cos γ pvx + sin γ pvh
pγ = v(− sin γ pvx + cos γ pvh).

(28)

This claim follows from a general fact recalled separately, in the Appendix (Section 6), for
the sake of clarity. Note that pm remains unchanged.

Remark 1. Here we have considered (OCP)λ1,λ2
with final conditions (17), that cor-

respond to (6), that is, they correspond to the case of injecting the vehicle on a precise
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point of a given orbit. To handle the case of final conditions (7) (that is, a final orbit of
given energy and given eccentricity), we propose to implement an additional continuation
process, consisting in passing from the transversality conditions (25) to the transversality
conditions (12) expressed in this Cartesian reference frame. In that case, we propose to
define the shooting function of the continuation method as a convex combination of both
transversality conditions.

3 Analysis of the optimal control problem with the simpli-
fied flat Earth model

For this simplified optimal control problem, we consider similar terminal conditions as (5)
and (6) except that we impose γf to be zero and we express them in Cartesian coordinates.
The terminal conditions are given by

x(0) = x0, h(0) = h0, vx(0) = vx0, vh(0) = vh0, m(0) = m0

x(tf ) free, h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0, m(tf ) free,
(29)

Contrarily to the initial (OCP), we leave tf free because the simplified problem does not
allow orbits and we thus have a solution for free final time.

We assume moreover that

hf > h0 +
v2
h0

2g0
. (30)

Note that (30) discards the non interesting case of a zero fuel consumption trajectory. It
also discards the case of a vehicle starting with an initial velocity so large that it needs
to decelerate in order to reach the final configuration. This assumption is satisfied in
practice.

3.1 Application of the Pontryagin Maximum Principle

Denoting the adjoint variables by p = (px, ph, pvx , pvh , pm), the Hamiltonian is

H = pxvx + phvh + pvx
Tmax

m
ux + pvh

(
Tmax

m
uh − g0

)
− βTmaxpm

√
u2
x + u2

h,

and hence the adjoint equations are

ṗx = 0, ṗh = 0, ṗvx = −px, ṗvh = −ph, ṗm =
Tmax

m2
(pvxux + pvhuh).

According to the boundary conditions (29), the transversality conditions yield px(tf ) = 0
and pm(tf ) = −p0 (with p0 6 0). It follows that px(·) is identically equal to 0, that ph(·)
is constant (denoted ph in what follows), that pvx(·) is constant (denoted pvx in what
follows), and that pvh(t) = −pht+ pvh(0). Since the final time tf is free and the system is
autonomous, we infer that H = 0 along any extremal.
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Setting Φ(t) = 1
m(t)

√
p2
vx + pvh(t)2 − βpm(t) for every t ∈ [0, tf ], we infer from the

maximization condition of the Hamiltonian that u(t) = (ux(t), uh(t)) = (0, 0) whenever
Φ(t) < 0, and

ux(t) =
pvx√

p2
vx + pvh(t)2

, uh(t) =
pvh(t)√

p2
vx + pvh(t)2

,

whenever Φ(t) > 0.

3.2 Analysis of extremal equations

First of all, notice that ṗm(t) = ‖u(t)‖Tmax

m(t)2

√
p2
vx + pvh(t)2, hence pm(·) is nondecreasing.

More precisely, pm(·) is increasing whenever Φ(·) > 0 and constant whenever Φ(·) < 0.

Lemma 1. The function t 7→
√
p2
vx + pvh(t)2 does not vanish identically on any subinter-

val of [0, tf ].

Proof. The argument goes by contradiction. If pvx = 0 and pvh(·) = 0 on a subinterval
I, then differentiating with respect to t yields ph = 0, and then by Cauchy uniqueness
pvh(·) = 0 on [0, tf ]. Hence, pm(·) is constant, equal to −p0. Besides, since H = 0, we
infer that p0‖u(·)‖ = 0 on [0, tf ]. From (30), the thrust ‖u(·)‖ cannot be identically equal
to 0 on [0, tf ], and hence p0 = 0. We have proved that (p(·), p0) = (0, 0), which is a
contradiction with the Pontryagin Maximum Principle.

This lemma implies in particular that the formulas for the extremal controls above are
well defined. Moreover, it follows from easy computations that the function t 7→ Φ(t) is
almost everywhere two times differentiable, and (recall that px = 0)

Φ̇(t) =
−phpvh(t)

m(t)
√
p2
vx + pvh(t)2

, (31)

Φ̈(t) =
β‖u(t)‖
m(t)

Φ̇(t)− m(t)√
p2
vx + pvh(t)2

Φ̇(t)2 +
p2
h

m(t)
√
p2
vx + pvh(t)2

. (32)

Lemma 2. The function t 7→ Φ(t) is constant if and only if ph = 0.

Proof. If ph = 0 then it follows from (31) that Φ̇ = 0. Conversely, if Φ̇ = 0 then phpvh = 0,
and differentiating with respect to time yields ph = 0.

Lemma 3. The function t 7→ Φ(t) does not vanish identically on any subinterval of [0, tf ].

Proof. The argument goes by contradiction. If Φ(·) = 0 on a subinterval I, then, from
Lemma 2, ph = 0, and then using the adjoint equations, pvh(·) is constant. Moreover,
there holds 0 = H = −pvhg0, and hence pvh(·) = 0 on [0, tf ]. In particular, this yields
uh(·) = 0 on [0, tf ], and hence v̇h = −g0 and vh(t) = vh0 − g0t. From (29), vh(tf ) = 0,
hence tf = vh0

g0
. Besides, integrating ẋ2 = vh, one gets h(t) = h0 + vh0t − g0

2 t
2, and thus

h(tf ) = h0 + v2h0
2g0

. From (29) one has h(tf ) = hf , and we get a contradiction with (30).
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This lemma shows that the singular case where the extremal controls cannot be inferred
directly from the maximization condition does not occur.

Lemma 4. If ph = 0 then the thrust ‖u(·)‖Tmax is constant on [0, tf ], equal to Tmax. In
other words, in that case the thrust is always maximal and there is no switching.

Proof. If ph = 0 then, from Lemma 2, Φ(·) is constant, and from Lemma 3 this constant
Φ cannot be equal to 0. If Φ < 0, then u = 0 on [0, tf ], which is not possible since the
thrust cannot be identically zero (this would contradict (30)). Hence, Φ > 0 and therefore
‖u(·)‖ = 1 on [0, tf ].

Lemma 5. If ph 6= 0 then

• either Φ(·) is increasing on [0, tf ],

• or Φ(·) is decreasing on [0, tf ],

• or Φ(·) has a unique minimum on [0, tf ], is decreasing before that minimum and then
increasing.

Proof. If ph 6= 0 then, from Lemma 2, Φ(·) is not constant, hence Φ̇(·) is not identically
equal to 0. If Φ̇(·) does not vanish on [0, tf ], then Φ(·) is strictly monotone, and this yields
the two first cases of the result. If Φ̇(·) vanishes at some point t1 of [0, tf ], then, using
(32), for every t1 ∈ [0, tf ] such that Φ̇(t1) = 0 there must hold Φ̈(t1) > 0 (since ph 6= 0),
and therefore this point is a local minimum. This reasoning shows that every extremum
of Φ(·) is a local minimum. It follows that the function Φ̇(·) cannot vanish more than one
time, otherwise there would exist another local minimum, and hence there should then
exist a local maximum between those two minima; but this is a contradiction since every
extremum of Φ(·) is a local minimum. Therefore, the third point of the lemma follows.

Lemmas 4 and 5 imply that the thrust ‖u(·)‖Tmax of the optimal trajectory is either
constant, equal to Tmax, or has exactly one switching (and in that case, passing either
from 0 to Tmax, or from Tmax to 0), or has exactly two switchings and passes from Tmax

to 0 and then from 0 to Tmax. Actually, we next prove that the latter possibility cannot
occur, and finally derive the following result.

We first state and prove the following lemma, useful for the proof of theorem 1

Lemma 6. If the modulus of the control ‖u(·)‖ has at least one switching on [0, tf ] then
p0 6= 0.

Proof of Lemma 6. The argument goes by contradiction. If p0 = 0 then pm(tf ) = 0.
Since pm(·) is nondecreasing, it follows that pm(t) 6 0 for every t ∈ [0, tf ]. From
Lemma 1,

√
p2
vx + pvh(·)2 does not vanish identically on any subinterval, hence Φ(·) =

1
m(·)

√
p2
vx + pvh(·)2 − βpm(·) > 0 on [0, tf ], and therefore ‖u(·)‖ = 1 on [0, tf ]. This

contradicts the assumption of having one switching.

We are now in a position to prove the theorem.
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Theorem 1. The optimal trajectory of (OCP)flat is a succession of at most two arcs
with a control modulus ‖u(·)‖ being either equal to 1 or to 0. More precisely, the modulus
‖u(·)‖Tmax of the thrust is

• either constant on [0, tf ] and equal to Tmax,

• or of the type Tmax − 0,

• or of the type 0− Tmax.

Proof of Theorem 1. To prove the theorem, one has to prove that the strategy Tmax− 0−
Tmax for the modulus of the thrust cannot occur. The argument goes by contradiction.
Assume that the modulus of the thrust ‖u(·)‖Tmax is of this type, and denote by t1 < t2
the two switching times.

Let us first prove that the minimum of Φ(·) is reached at t̄ = pvh (0)

ph
. Using (31),

if Φ̇(t̄) = 0 then there must hold phpvh(t̄) = 0. Since Φ(·) is not constant, one has
ph 6= 0, hence pvh(t̄) = 0. Integrating the differential equation satisfied by pvh(·), one gets
t̄ = pvh (0)

ph
. By definition, this minimum is reached within the interval (0, tf ). In particular,

we deduce that
0 < t1 < t̄ =

pvh(0)
ph

< t2 < tf . (33)

On [t1, t2], one has ‖u(t)‖ = 0, hence in particular m(·) and pm(·) are constant on this
interval, and thus m(t1) = m(t2) and pm(t1) = pm(t2). Since the function

t 7→ Φ(t) =

√
p2
vx + (pvh(0)− pht)2

m(t)
− βpm(t)

vanishes by definition at t1 and t2, it follows that√
p2
vx + (pvh(0)− pht1)2 =

√
p2
vx + (pvh(0)− pht2)2,

and hence |pvh(0)− pht1| = |pvh(0)− pht2|. Since t1 6= t2, we infer that t2 = 2pvh (0)

ph
− t1.

Note that the latter equality means that the graph of Φ(·) on the interval [t1, t2] is
symmetric with respect to the point t̄ = pvh (0)

ph
where the minimum is reached.

Using the fact that H = 0 along an extremal and that px = 0, one gets

phvh(t) + ‖u(t)‖TmaxΦ(t)− g0pvh(t) = 0, (34)

for every t ∈ [0, tf ]. In particular, at t = tf , one gets g0pvh(tf ) = TmaxΦ(tf ) > 0, which
implies pvh(tf ) > 0. Since pvh(·) is affine and vanishes at t̄, we get that ph < 0, pvh(·) 6 0
on [0, t̄] and > 0 on [t̄, tf ].

Now, note that uh(·) has the same sign as pvh(·) during the thrust arcs, hence it is
negative on [0, t1] and positive on [t2, tf ]. In particular, there holds v̇h(t) 6 −g0, for every
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t ∈ [0, t2]. Note also that, since vh(t̄) = 0, it follows that vh0 > 0. Set t̃ = min(vh0
g0
, tf ) ∈

[t̄, tf ]. Then

h(t̃) 6 h0 +
∫ t̃

0
(vh0 − g0t) dt+ max

(
0,
∫ t̃−vh0/g0

0
(vh0 − g0t) dt

)
6 h0 +

v2
h0

2g0
.

Furthermore, uh(·) is positive and increasing on [t2, tf ], and vhf = 0, hence vh(·) is non-
positive on [t̄, tf ]. It then follows that h(t) > hf , for every t ∈ [t̄, tf ]. In particular, we

have h(t̃) > hf . This leads to h0 + v2h0
2g0

> hf and raises a contradiction with Assumption
(30).

Remark 2. The conclusions of Theorem 1 might seem counterintuitive since we can think
that a strategy Tmax − 0− Tmax should be a better choice (at least in view of the results
for the round Earth model). However, we deal here with a flat Earth model with constant
gravity, and thus no gravitational or centripetal help is obtained by introducing a ballistic
arc.

Since the strategy where the thrust is maximal all along the flight is also a minimum
time strategy and is not cost efficient, we next focus on the strategy Tmax − 0 (with one
switching). Note however that the former strategy can be viewed as a particular case of
the latter one. The study of the strategy 0− Tmax is similar.

3.3 Refined analysis of the strategy Tmax− 0, and algorithmic procedure

Assume that we are in the case where the thrust has one switching, denoted t1, with
0 < t1 < tf , and is of the form Tmax − 0.

Lemma 7. There holds tf = pvh (0)

ph
and phvh(t1) + phg0t1 = g0pvh(0). Moreover, ph > 0,

sign(pvx) = sign(vxf − vx0) and pvh(0) > 0.

Proof. First of all, note that the identity (34) still holds in that case.
On [t1, tf ], one has ‖u(·)‖ = 0, and hence, from (34), phvh(·) = g0pvh(·). Taking

t = tf yields pvh(tf ) = 0 since vh(tf ) = 0 from the boundary conditions (29). Since

pvh(t) = −pht + pvh(0), it follows that tf = pvh (0)

ph
(note that ph 6= 0 from Lemma 2).

Moreover, for every t ∈ [t1, tf ], one has v̇h(t) = −g0, hence vh(t) = vh(t1) − g0(t − t1).
Since pvh(t) = −pht+ pvh(0), we infer that phvh(t1) + phg0t1 = g0pvh(0).

Since tf = pvh (0)

ph
, necessarily ph and pvh(0) have the same sign. Let us prove by

contradiction that, actually, pvh(0) > 0. If pvh(0) < 0 then, since the function pvh(·) is
affine and since pvh(tf ) = 0, there should hold pvh(t) 6 0 for every t ∈ [0, tf ]. Hence,
uh(t) < 0 and v̇h(t) 6 −g0 on [0, tf ]. Integrating, we would obtain

h(t) 6 h0 + vh0t−
g0
2
t2 6 h0 +

v2
h0

2g0
.

At the final time tf , this would contradict (30). We thus conclude that ph > 0 and
pvh(0) > 0.
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For every t ∈ [0, t1[, one has v̇x(t) = Tmax
m(t) ux(t) with ux(t) having the same sign than

pvx , and for every t ∈]t1, tf ], one has ‖u(·)‖ = 0 and hence vx(·) remains constant. Then,
we directly have sign(vxf − vx0) = sign(ux(·)) = sign(pvx).

Lemma 7 enables to significantly simplify the application of the single shooting method
to that case. We next explain the construction of this simplified algorithmic procedure.
Usually, when applying the single shooting method, we have 5 unknowns, namely :

• the initial adjoint vector (ph, pvx , pvh(0), pm(0), p0), defined up to a multiplicative
scalar (note that p0 6= 0 from Lemma 6). This definition up to a multiplicative
scalar is usually used to set p0 = −1, which leaves only 4 components of the initial
adjoint vector as unknowns. This particular normalization will however not be used
here, see further.

• the final time tf ,

and 5 equations:

h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0, pm(tf ) = −p0, H(tf ) = 0.

Recall that the adjoint vector (completed with p0) is defined up to a multiplicative scalar,
and instead of choosing the usual normalization p0 = −1, since there holds ph > 0, we
rather choose to normalize the adjoint vector so that ph = 1. Since the variable p0 is only
used here to tune the equation pm(tf ) = −p0, we can therefore forget about the variable
p0 and the equation pm(tf ) = −p0. This is a first simplification.

Now there remain 4 unknowns, (pvx , pvh(0), pm(0)) and tf , and 4 equations:

h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0, H(tf ) = 0.

Note that the knowledge of the value of pm(0) permits to determine the switching function
Φ(·) and hence the switching time t1. It is therefore possible to replace the unknown pm(0)
with the new unknown t1. Hence, from now on we have the 4 unknowns (pvx , pvh(0), t1, tf ),
and the 4 previous equations.

Taking into account the fact that ph = 1, one can see from the previous computations
and from Lemma 7 that the system of equations

vh(tf ) = 0, H(tf ) = 0,

is equivalent to the system of equations

tf = pvh(0), vh(t1) + g0t1 = g0pvh(0).

The final time tf being then directly determined by the value of pvh(0), we can reduce the
problem to 3 unknowns (pvx , pvh(0), t1) and 3 equations:

h(tf ) = hf , vx(tf ) = vxf , vh(t1) + g0t1 = g0pvh(0).
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Data: Terminal conditions (h0, vx0, vh0, hf , vxf ) and gravity constant g0.
Result: shooting function unknowns (t1, pvx, pvh(0)) for the simplified flat Earth

problem
Initialization : choose some values pvx > 0 and pvh(0) > 0.1

Integrate numerically (h(t), vx(t), vh(t)) from t = 0 to t1 satisfying2

vh(t1) + g0t1 = g0pvh(0)
Set tf = pvh(0).3

On [t1, tf ], compute explicitly4

vx(t) = vx(t1), h(t) = h(t1) + vh(t1)(t− t1)− g0
2 (t− t1)2.

Solve the system h(tf ) = hf , vx(tf ) = vxf , with a Newton-like method.5

Algorithm 1: Algorithmic procedure for solving the simplified flat Earth problem.

We finally end up with the following simplified algorithmic procedure, describe in Algo-
rithm 1.

Note that it is possible to compute explicit expressions of h(t) and of vx(t) on the
whole interval [0, tf ], however it happens that, from the numerical point of view, this does
not save time and the procedure described above is more efficient.

The above algorithm is very easy to carry out and happens to be very efficient. The
convergence is obtained instantaneously in term of execution time for almost every random
choice of initialized values of pvx > 0 and pvh(0) > 0 (on a standard desktop machine, in
Matlab). Here, reaching the convergence means finding a zero of the shooting function
with an accuracy of at least 10−8 (and 10−12 for the accuracy of the integration of the
state and costate dynamic).

This simple code is used as a first step in our continuation procedure described in
Section 2.

The algorithm provides a solution in terms of (t1, tf , pvx , pvh(0)). Then, the unknowns
(tf , p̄x(0), p̄h(0), p̄vx(0), p̄vh(0), p̄m(0)) of the shooting function (26) associated with this
simplified model are computed by

p̄x(0) = 0, p̄h(0) =
m0 − βTmaxt1

β
√
p2
vx(0) + (pvh(0)− t1)2

,

p̄vh(0) = pvh(0)p̄h(0), p̄vx(0) = pvx(0)p̄vh(0),

p̄m(0) =
1

βTmax

(
p̄h(0)vh0 +

Tmax

m0

√
p̄2
vx(0) + p̄2

vh
(0)− g0p̄vh(0)

)
.

(35)

4 Numerical simulations

4.1 Continuation procedure

In this section we provide numerical simulations of the algorithmic procedure described
in Section 2, which consists of solving, in a continuation process, a sequence of shooting
problems initialized with the simple algorithm introduced in Section 3.3. Since the latter
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code converges without the need for a carefully selected initialization, we thus get a way
of solving (OCP) without any a priori knowledge on the optimal solution.

Consider (OCP) with the initial conditions

ϕ0 = 0, r0 = 200 + rT km, v0 = 5.5 km/s, γ0 = 2 deg, m0 = 40000 kg,

(which correspond to a SSO orbit) and the final conditions

rf = 800 + rT km, vf = 7.5 km/s, γf = 0 deg,

and problem parameters
Tmax = 180 kN, Isp = 450 s.

To express this terminal configurations in Cartesian coordinates, one only needs to apply
the change of coordinates (18). Note that, in the round Earth model, this corresponds to
injecting the space engine on a precise point of a nearly circular final orbit (vf ≈

√
µ/rf ,

γf = 0). Once this problem will be solved, we may also consider as a final condition the
previous orbit, without fixing a precise point of the orbit, by passing the transversality
conditions (12) by continuation (see Remark 1).

Using the code developed in Section 3.3 and the transformation (35), we directly get
the zero of the shooting function associated to (OCP)0,0

(tf,(0,0), p0,0(0)) ≈ (1433 s, 0, 0.755, 72.688, 1082.328,−0.137),

with the final mass m0,0(tf ) ≈ 1676 kg.
This solution is used as the starting point to the continuation from (OCP)0,0 to

(OCP)1,0, the problem for the flat Earth model with variable gravity. This leads to
the following zero of the shooting function

(tf,(1,0), p1,0(0)) ≈ (1483 s, 0, 3.851, 69.818, 2198.465,−0.236),

associated with the final mass m1,0(tf ) ≈ 1505 kg.
We should note that m1,0(tf ) < m0,0(tf ) seems counterintuitive since the variable

gravity is always lower than g0. However, the gravity does not only tend to decelerate the
vehicle; it also helps to flatten the trajectory in order to reach vh(tf ) = 0.

At this step, we switch from (OCP)1,0 with free final time tf to (OCP)1,0 with a fixed
final time. As mentioned in Section 2 this simply means that the shooting function has
one less unknown and thus one less relation to satisfy at the end point of the extremal
flow. This final time is tf ≈ 1483 s. Note that the solution of (OCP)1,0 with free final
time is the same as the solution with fixed time tf , there is just one less unknown. The
solution p1,0(0) is then used to initialize the continuation from (OCP)1,0 to (OCP)1,1.
This leads to the solution

p1,1(0) ≈ (0, 12.219, 6824.539, 5230.033, 0.310),

associated with the final mass m1,1(tf ) ≈ 18922 kg.
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Figure 3: Evolution of the shooting function unknowns (ph, pvx , pvh , pm) (abscissa) with
respect to homotopic parameter λ2 (ordinate).

First we notice that the final mass of (OCP)1,1 is far better than the ones of (OCP)0,0
and (OCP)1,0. This could be expected because in (OCP)1,1 the vehicle can use the
centripetal forces that allow it to park on an intermediary orbit in between two thrust
arcs.

Figure 3 shows the zero path of the shooting function from (OCP)1,0 to (OCP)1,1.
We can see that this zero path does not look very smooth around several values of

λ2, namely, for λ2 ≈ 0.01, λ2 ≈ 0.8, and λ2 ≈ 0.82. Actually, focusing on the zero path
around these values of λ2 by enforcing the continuation to increase λ2 with very small
steps, we observe numerically that the zero path is continuous but is not C1 (that is, it
is not continuously differentiable) at those specific values of λ2. This phenomenon is due
to the occurrence of a new switching time (that is, a zero of the switching function) along
the continuation process. Indeed, when the final time coincides with a switching time, the
shooting function is still continuous but is not C1 (see [13] for more details). To be more
precise, here, if 0 6 λ2 . 0.01 (by . we mean that λ2 6 c with c ≈ 0.01) then the modulus
of the thrust ‖u(·)‖Tmax is of the kind Tmax−0. For λ2 ≈ 0.01 the final time coincides with
a switching time after which we observe the appearance of a new thrust arc: indeed, if
0.01 . λ2 . 0.8 then the modulus of the thrust ‖u(·)‖Tmax is of the kind Tmax− 0−Tmax.
If 0.8 . λ2 . 0.82 then the latter thrust arc disappears and the strategy is of the kind
Tmax − 0, and if 0.82 . λ2 6 1 then the strategy is again of the kind Tmax − 0− Tmax (as
it could be expected for λ2 = 1).

Figure 4 compares the trajectory and control strategy of (OCP)1,0 and (OCP)1,1.
We observe that the solution of (OCP)1,0 is clearly not acceptable because its altitude
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Figure 4: Trajectory and control strategy of (OCP)1,0 (dashed) and (OCP)1,1 (plain).

becomes negative. However (OCP)1,0 is only a fictive problem and there is no need
to only accept collision free trajectory until we solve (OCP)1,1. The main difference
between the two control strategies is that (OCP)1,0 (and (OCP)0,0) only has one thrust
arc while (OCP)1,1 has two. Furthermore, the fact that the fuel consumption is directly
proportional to the thrust duration explains that m1,1(tf ) could be expected to be better
than m1,0(tf ).

As mentioned before, we decided to fix the final time tf of (OCP)1,1 to the free final
time obtained while solving (OCP)1,0. Notice that it is possible to solve (OCP)1,1 with
another value of fixed final time, by using a linear continuation on tf . For example, this
continuation permits find a solution for tf = 2000 s. with a corresponding final mass
mf ≈ 20050 kg.

Also, since our final orbit is not strictly circular it can be interesting to consider final
conditions (7) instead of (6). As mentioned in Remark 1, this can be achieved using an
additional continuation on the final conditions and transversality conditions.

The whole procedure is time efficient since it only takes approximately 3 seconds on a
standard desktop computer, without any code optimization. The execution time is roughly
decomposed as follows:

• Instantaneous for the solving of (OCP)0,0.

• 0.5 second for the first continuation from (OCP)0,0 to (OCP)1,0.

• 2.5 seconds for the second continuation from (OCP)1,0 to (OCP)1,1.

23



• 0.3 second for the possible additional continuation on the transversality conditions
(see Remark 1).

The accuracy on the solution is 10−12. Accuracy and execution time are very good since
our method is based on the shooting method, which consists in particular of a Newton-like
method.

4.2 Comparison with a direct method

In this section, we compare our approach with a direct method consisting of solving
(OCP)1,1 using a full discretization of the state and control and to a rewriting of the
dynamic as nonlinear constraints of the resulting nonlinear optimization problem (NLP )
(as mentioned in the introduction, we refer to [4] for details on direct methods). We choose
a discretization leading to

(NLP )



min
z∈D

−XN
5 ,

Xi+1 = Xi +
∫ ti+1

ti
Ẋ(t,Xi, U i, U i+1)dt, i = 0, · · · , N − 1

X0 = (x0, h0, v0, γ0,m0) ∈ R5,
XN

2,3,4 = (hf , vf , γf ) ∈ R3,

z = (X0, · · · , XN , U0, · · · , UN ),
D = R5×(N+1) × UN+1,

(36)

where ti = i tf
N , i = 0, . . . , N define the uniform time discretization. The optimization

parameters Xi, i = 0, · · · , N are the values of the state at each ti and U i ∈ U , i = 0, · · · , N
are the values of the control at each ti. The relation between Xi+1 and (Xi, U i, U i+1)
represents the dynamic and the integral is approximated thanks to a numerical integration
scheme (for example Euler or fourth order Runge-Kutta). Note that with this rewriting
we can take the control to be piecewise constant or piecewise linear.

To make the comparison with our continuation method, we rewrite the dynamics with
a Euler or Heun integration scheme and we set the final time to the same value as the
one found with (OCP)1,0. We use the modeling language AMPL (see [10]) combined with
the optimization routine IPOPT (see [23]) to solve (NLP ). To initialize the method, we
choose to propagate a control strategy with 2 thrust arcs with durations and directions
that are roughly the same as the one found with our method (a random initialization
would not work). Starting with a coarse uniform time discretization of 100 points with
the Euler integration scheme, and using the solution to initialize a time discretization of
1000 points with Heun integration scheme, we find a solution that is close (up to the
accuracies of both methods) to the one we found with our approach. The execution time
of this direct method is of 5 seconds for N = 100 and of 165 seconds for N = 1000.
We recall that the execution time for our method on this example was 3 seconds. It is
important to note that even with a time discretization of 1000 points, the accuracy of
the solution (of the integration) of the direct approach is of the order of 10−6 (10−2 for
N = 100 and Euler scheme) while the accuracy of the shooting method we used was
of the order of 10−12 (thanks to the high order integration method). Of course, with a
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different integration scheme, say a fourth-order Runge-Kutta, the accuracy of the direct
method would be better but at the cost of a larger computational effort. However, even
with a higher order integration scheme, the accuracy of the solution is limited by the way
the control is discretized. As expected, the direct approach is computationally far more
demanding.

4.3 Comparison with other initialization methods

An interesting comparison would be with the method presented in [3]. This method
consists in using an approximate solution of the impulse transfer in order to explicitly
compute estimates of the adjoint vector needed to perform a single shooting. Those
estimates are possible when considering orbit transfer with nearly circular initial and final
orbits. When dealing with this kind of Hohmann transfer, it is then preferable to use
this method because the estimates are computed analytically and are enough to ensure
the convergence of the shooting method. Since the shooting method converges nearly
instantaneously, it seems unlikely for another method to perform better. And indeed, our
approach cannot compete with [3] for Hohmann like orbit transfer. However, our approach
is not restricted to nearly circular orbit transfer and is then a complement to the one of
[3].

Another method, which propose initialization scheme for similar kind of problems
is discussed in [12]. In this paper, the orbital transfer problem is first solved for the
minimization of the square of the L2 − norm of the control. Then a continuation is
performed to link this criterion to the minimization of the L1−norm of the control. This
last criterion is equivalent to the maximization of the final mass. However, the method is
restricted to low-thrust orbit transfers only, while our method is designed for high-thrust
orbit transfers.

4.4 Restriction to high-thrust orbit transfer

Our method was designed for high-thrust orbit transfers, that is for orbit transfers with
acceleration of the same order of magnitude as the Earth’s gravity. It is doubtful that it
can be extended to low-thrust cases. Indeed, the first step of the method, the resolution
of the simplified flat Earth problem, will not converge for low thrust.

5 Conclusion

We have given an algorithmic procedure to solve the problem of minimization of the fuel
consumption for the coplanar orbit transfer problem by a shooting method approach,
without any a priori knowledge on the optimal solution (and thus on the way to initialize
the shooting method). Our method relies on the preliminary remark that, when studying
the same problem within a simplified flat Earth model with constant gravity, the optimal
control problem can be explicitly solved, and the solution leads to a very efficient algorithm
that does not need any careful initial guess. Based on that remark, we have proposed a
continuous deformation of this simplified model to the initial model (up to some change of
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coordinates), introducing continuously corrective terms into the flat Earth model. From
the algorithmic point of view, the procedure then consists of solving a series of shooting
problems, starting from the simplified flat Earth model which is easy to initialize, and
ending up with the sought solution. The whole procedure is time-efficient and provides a
way for bypassing the difficulty due to the initialization of the shooting method when it
is applied directly to the initial problem.

Many questions remain open and from this point of view our work should be considered
as preliminary. A first question is to investigate whether this procedure is systematically
efficient, for any possible coplanar orbit transfer. Up to now we did not make any exhaus-
tive tests, however it is very probable that one may encounter some difficulties, as in any
continuation process, due to the intricate topology of the space of possible continuation
paths, this space being not always arc-wise connected. Indeed, the flat Earth model only
has one thrust arc while the round Earth model has two or more. Another question is
to extend our study to the three-dimensional case, the final objective for an enterprise
as Astrium Space Transportation being to have available a reliable and efficient tool to
realize any possible orbit transfer without having to spend much time on the initialization
of the algorithm.

6 Appendix: action of a change of coordinates onto the
adjoint vector

To understand how a change of coordinates acts onto the adjoint vector, it is useful to
come back to the geometric meaning of the Pontryagin Maximum Principle, recalling its
intrinsic character.

Let M (resp. N) be a smooth manifold of dimension n (resp. m). Consider on M the
control system ẋ(t) = f(x(t), u(t)), where f : M ×N −→ TM is smooth, TM is the usual
tangent bundle, and the controls are bounded measurable functions taking their values in
a subset U of N . Let M0 and M1 be two subsets of M . Consider the optimal control
problem of determining a trajectory x(·) solution of the control system, associated with
a control u(·) on [0, tf ], so that x(0) ∈ M0, x(tf ) ∈ M1, and minimizing a cost function
C(tf , u) =

∫ tf
0 f0(x(t), u(t))dt, where f0 : M ×N −→ R is smooth, and the final time tf

may be fixed or not. According to the Pontryagin Maximum Principle, if x(·) is optimal
then there exists p0 6 0 and an absolutely continuous mapping p(·) on [0, tf ] (adjoint
vector) satisfying (p(·), p0) 6= (0, 0) and p(t) ∈ T ∗x(t)M , such that

ẋ(t) =
∂H

∂p
(x(t), p(t), p0, u(t)), ṗ(t) = −∂H

∂x
(x(t), p(t), p0, u(t)),

almost everywhere on [0, tf ], where H(x, p, p0, u) = 〈p, f(x, u)〉+ p0f0(x, u) is the Hamil-
tonian, and H(x(t), p(t), p0, u(t)) = M(x(t), p(t), p0), almost everywhere on [0, tf ], where
M(x(t), p(t), p0) = maxv∈U H(x(t), p(t), p0, v). If the final time tf is not fixed, there holds
moreover M(x(t), p(t), p0) = 0, for every t ∈ [0, tf ]. If M0 and M1 (or just one of both) are
regular submanifolds of M , then the adjoint vector can be chosen so that p(0) ⊥ Tx(0)M0

and p(tf ) ⊥ Tx(tf )M1 (transversality conditions).
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Settled in such a way on a manifold, we recall that the Pontryagin Maximum Principle
is intrinsic, i.e., its statement does not depend on the specific choice of coordinates. This
intrinsic version has been proved e.g. in [1].

Let now M1 (resp. N1) be another smooth manifold of dimension n (resp. m), and
let φ : M → M1 (resp. ψ : N → N1) be a diffeomorphism. Then, it is well known in
differential geometry that the differential dφ maps diffeomorphically the tangent bundle
TM into TM1, and that the transpose (also called adjoint) of its inverse tdΦ−1 maps
diffeomorphically the cotangent bundle T ∗M into T ∗M1. From this remark and from the
intrinsic character of the Pontryagin Maximum Principle, we derive the following claim.

Let x1(t) = φ(x(t)) and u1(t) = ψ(u(t)). The trajectory x1(·), associated to the control
u1(·), is solution of the control system

ẋ1(t) = f1(x1(t), u1(t)) = dφ(x(t)).f(φ−1(x1(t), ψ−1(u1(t)),

and corresponds to x(·) via the change of coordinates φ on the state and ψ on the control.
Then, the adjoint vector p1(·) associated with the trajectory x(·) is given by

p1(·) = tdφ(x(·))−1p(·). (37)

The formula (37) may of course be proved directly, without any geometric insight, by
using Cauchy uniqueness arguments.
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