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Introduction

The fuel efficient orbit transfer of a satellite is a widely studied problem (see [START_REF] Marec | Optimal Space trajectories[END_REF][START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF]). We can distinguish mainly between two formulations of this problem. The first one considers that the vehicle produces instantaneous change of velocity and is referred to as the impulse orbit transfer (see [START_REF] Naidu | Fuel-Optimal Trajectoris for Aeroassisted Coplanar Orbital Transfer Problem[END_REF][START_REF] Neustadt | A general theory of minimum-fuel space trajectories[END_REF][START_REF] Vinh | Optimal time-free nodal transfers between elliptical orbits[END_REF]). The second formulation takes into account the fact that all engines have a limited thrust and that the vehicle's dynamics has to be continuous in the position and velocity coordinates (see [START_REF] Leitmann | On a class of variational problems in rocket flight[END_REF]). In this continuous approach, we also separate the high-thrust and the low-thrust transfer, depending on the magnitude of the available acceleration.

In this paper, we focus on the high-thrust orbit transfer that we furthermore restrict to be coplanar. This problem can be naturally written as an optimal control problem. There exist various numerical methods to solve such a problem, and we usually separate them in two classes: direct and indirect methods. Direct methods (e.g. surveyed in [START_REF] Betts | Practical methods for optimal control and estimation using nonlinear programming[END_REF]) consist in discretizing the optimal control problem in order to rewrite it as a parametric optimization problem. Then a nonlinear large scale optimization solver is applied. The advantage of this approach is that it is straightforward and is usually quite robust. The main drawback is that, because of the discretization step, those methods are computationally demanding and that they are not very accurate in general when compared to the indirect approach (see [START_REF] Betts | Practical methods for optimal control and estimation using nonlinear programming[END_REF]). Indirect methods are based on the Pontryagin Maximum Principle (PMP, see [START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF]) that is a set of necessary conditions for a candidate trajectory and control strategy to be optimal. The idea is to use those necessary conditions to reduce the search of a solution to the search of the zero of the so-called shooting function (indirect methods are also called shooting methods in this context). The advantage is that shooting methods are very fast when they converge and that they produce high accuracy solutions. Their main drawback is that they typically use a Newton-like algorithm to look for the zero of the shooting function and thus, they may be hard to successfully initialize. We can also mention mixed methods that use a discretization of the PMP necessary conditions and then apply a large-scale optimization solver (see e.g. [START_REF] Bérend | An Interior-Point Approach to Trajectory Optimization[END_REF]).

Because of its fast convergence and high accuracy, we will turn to a shooting method to solve the coplanar orbit transfer problem with minimal fuel consumption. There already exist some methods to cope with the initialization drawback of this method. In [START_REF] Augros | Computation of optimal coplanar orbit transfers[END_REF], the authors use the impulse transfer solution to provide a good initial guess to the shooting algorithm. This method is based on the fact that limited thrust orbit transfer try to mimic impulse transfer, as outlined in [START_REF] Gergaud | Orbital transfer: some links between the low-thrust and the impulse cases[END_REF][START_REF] Neustadt | A general theory of minimum-fuel space trajectories[END_REF]. However this approach is only valid for nearly circular initial and final orbits. In [START_REF] Oberle | Existence and multiple solutions of the minimum-fuel orbit transfer problem[END_REF], a multiple shooting method parameterized by the number of thrust arcs is used to solve an Earth-Mars transfer, and the solving of an orbit transfer with n thrust arcs is based on the solution of the transfer with n -1 thrust arcs; however no specific method to initialize this iterative process is discussed. In [START_REF] Gergaud | Low thrust minimum fuel orbital transfer: an homotopic approach[END_REF][START_REF] Martinon | Using switching detection and variational equations for the shooting method[END_REF], differential or simplicial continuation methods linking the minimization of the L 2 -norm of the control to the minimization of the fuel consumption is used to solve the low-thrust orbit transfer around the Earth. However this approach is not adapted for high-thrust transfer. In [START_REF] Thorne | Minimum-Time Continuous Thrust Orbit Transfers[END_REF], simplified formulas are established by interpolating many numerical experiments, which permit to initialize successfully the shooting method for the minimal time orbit transfer problem, in a certain range of values and for nearly circular initial and final orbits. Based on that initial guess and on averaging techniques, the authors of [START_REF] Dargent | An integrated tool for low thrust optimal control orbit transfers in interplanetary trajectories[END_REF] implement in the software T3D continuation and smoothing processes in order to solve minimal time or minimal fuel consumption orbit transfer problems.

In this article we propose a novel way to initialize a shooting method for high-thrust coplanar orbit transfer with fixed final time. It is based on a continuation method starting with the solving of a simplified transfer on a flat Earth model and then continuously adding curvature to end up with the model we want to solve. Note that we restrict ourselves to fixed final time problems since it has already been numerically shown that the continuous transfer with maximization of the final mass does not have any solution (see [START_REF] Oberle | Existence and multiple solutions of the minimum-fuel orbit transfer problem[END_REF][START_REF] Gergaud | Orbital transfer: some links between the low-thrust and the impulse cases[END_REF]). This paper is organized as follows. First, we state the optimal control problem we want to solve, along with the necessary conditions given by the PMP. Then we introduce the simplified flat Earth model and modify it so as to introduce curvature and make it diffeomorphic to the round Earth model. The next section presents the continuation procedure and explains how to pass from the simplified model to the targeted optimal control problem. A refined analysis is then carried out to provide a robust and efficient algorithm to solve the simplified flat Earth model, which consists in simplifying and specializing the application of the shooting method, due to the particular structure of the problem. Finally, we give a numerical example in which we solve an orbit transfer from an unstable (on a collision course) Sun Synchronous Orbit (SSO) to a nearly circular final orbit. Since our approach involves diffeomorphic changes of coordinates, we explain in the Appendix the impact of a change of coordinates onto the set of adjoint vectors of the PMP.

The round Earth model and the optimal control problem

The model that we use for the coplanar orbit transfer problem is the following. Assume that the Earth is spherical with center O and consider an inertial geocentric frame (O, i, j, k). Since we consider the coplanar orbit transfer problem, we assume that the whole trajectory lies in the plane O + R i + R j. The satellite is modeled as a mass point M (t), with --→ OM (t) = r(t) e r , where ( e r , e ϕ ) denotes the usual Frénet frame defined by e r = sin ϕ i + cos ϕ j, e ϕ = cos ϕ isin ϕ j.

It is subject to the central gravitational field g(r) = µ r 2 , where µ is the Earth gravitational parameter, and to the thrust -→ T (t) ∈ R 2 . The mass of the satellite is denoted by m(t). The vehicle follows the two-dimensional controlled Kepler equation

d 2 --→ OM dt (t) = -g(r(t)) e r + - → T (t) m(t) , ṁ(t) = -β - → T (t) , (1) 
where β > 0 is the inverse of the thruster exhaust velocity. Moreover, the control

- → T (•) must satisfy the constraint - → T (•) T max , (2) 
where T max is the maximal allowed thrust, and denotes the usual Euclidean norm. Note that we do not consider any constraint on the direction of the thrust. However, such a constraint can be verified a posteriori and the numerical results show that the thrust direction mainly lies in two narrow cones (one per thrust arc). This can lead to indications on how to design the vehicle so as to place the thrusters efficiently.

Instead of Cartesian coordinates, we next use polar coordinates whose definition is recalled. Recall that r(t) = --→ OM (t) , and set

v(t) = d --→ OM dt (t) = ṙ(t) 2 + r(t) 2 φ(t) 2 .
Define the flight path angle γ(t) by

d --→ OM dt (t) = v(t)(sin γ(t) e r + cos γ(t) e ϕ ).
Define the coordinates q = (r, ϕ, v, γ, m), with (r, ϕ) the polar coordinates of the satellite, v its speed and γ the slope of the velocity vector. Then, the control system (1) is written in cylindrical coordinates as

ṙ(t) = v(t) sin γ(t) φ(t) = v(t) r(t) cos γ(t) v(t) = -g(r(t)) sin γ(t) + T max m(t) u 1 (t) γ(t) = v(t) r(t) - g(r(t)) v(t) cos γ(t) + T max m(t)v(t) u 2 (t) ṁ(t) = -βT max u(t) (3) 
where the normalized control u(t) = (u 1 (t), u 2 (t)) satisfies T (t) = u(t)T max and the constraint

u(t) = u 1 (t) 2 + u 2 (t) 2 1, (4) 
for almost every t. The optimal control problem under consideration then consists in steering the control system (3) from an initial configuration

r(0) = r 0 , ϕ(0) = ϕ 0 , v(0) = v 0 , γ(0) = γ 0 , m(0) = m 0 , (5) 
to some final configuration that is either of the form

r(t f ) = r f , v(t f ) = v f , γ(t f ) = γ f , (6) 
or of the form

ξ K f = v(t f ) 2 2 - µ r(t f ) -K f = 0, ξ e f = sin 2 γ + 1 - r(t f )v(t f ) 2 µ 2 cos 2 γ -e 2 f = 0. ( 7 
)
The conditions [START_REF] Bonnard | Geometric optimal control of elliptic Keplerian orbits[END_REF] mean that the satellite has to enter a specified orbit at a given point of it. The conditions [START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF] mean that the satellite must be steered to a final elliptic orbit of energy K f < 0 and eccentricity e f , without fixing the entry point on that orbit (see [START_REF] Zarrouati | Trajectoires Spatiales[END_REF] for the definition of K f and e f and their expression in Cartesian coordinates). Note that for both final conditions the orientation of the final orbit is not prescribed (ϕ(t f ) is free). The criterion to consider is the maximization of the final mass m(t f ). As mentioned in [START_REF] Gergaud | Orbital transfer: some links between the low-thrust and the impulse cases[END_REF][START_REF] Oberle | Existence and multiple solutions of the minimum-fuel orbit transfer problem[END_REF], this problem does not have a solution for free final time 1 , and therefore we assume the final time t f to be fixed. In what follows, this optimal control problem is referred to as (OCP).

According to the Pontryagin Maximum Principle, every optimal trajectory q(•) of (OCP), associated with a control u(•) on [0, t f ], is the projection of an extremal (q(•), p(•), p 0 , u(•)), where p(•) : [0, t f ] → R 5 is an absolutely continuous mapping called adjoint vector, p 0 is a non-positive real number, with (p(•), p 0 ) = (0, 0), and there holds

q(t) = ∂H ∂p (q(t), p(t), p 0 , u(t)), ṗ(t) = - ∂H ∂q (q(t), p(t), p 0 , u(t)), (8) 
for almost every t ∈ [0, t f ], where the Hamiltonian is defined by

H(q, p, p 0 , u) = p r v sin γ + p ϕ v r cos γ + p v -g(r) sin γ + T max m u 1 + p γ v r - g(r) v cos γ + T max mv u 2 -p m βT max u ,
with p = (p r , p ϕ , p v , p γ , p m ). This yields the adjoint equations

ṗr = p ϕ v r 2 cos γ - 2 r p v g(r) sin γ + 1 r p γ v r -2 g(r) v cos γ ṗϕ = 0 ṗv = -p r sin γ - 1 r p ϕ cos γ -p v 1 r + g(r) v 2 cos γ + p γ T max mv 2 u 2 ṗγ = -p r v cos γ + p ϕ v r sin γ + p v g(r) cos γ + p γ v r - g(r) v sin γ ṗm = T max m 2 p v u 1 + p γ v u 2 (9) 
Moreover, the maximization condition

H(q(t), p(t), p 0 , u(t)) = max w 1 H(q(t), p(t), p 0 , w) (10) 
holds almost everywhere on [0, t f ], and this quantity is constant since the dynamics are autonomous. Furthermore, one has the transversality conditions, that depend on the chosen final configuration. For (6) we simply have

p ϕ (t f ) = 0, p m (t f ) = -p 0 . (11) 
For [START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF], the conditions (11) hold as well, and additionally the vector (p r (t f ), p v (t f ), p γ (t f )) is a linear combination of the gradients (with respect to (r, v, γ)) of the two relations [START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF]. This can be written as

∂ r ξ K f (p γ ∂ v ξ e f -p v ∂ γ ξ e f ) + ∂ v ξ K f (p r ∂ γ ξ e f -p γ ∂ r ξ e f ) = 0, (12) 
where the expression has to be evaluated at the final time t f . The extremal (x(•), p(•), p 0 , u(•)) is said normal whenever p 0 = 0, and in that case it is usual to normalize the adjoint vector so that p 0 = -1; otherwise it is said abnormal.

A direct application of the maximization condition [START_REF] Fourer | AMPL: A modeling language for mathematical programming[END_REF] leads to the definition of the so-called switching function Φ(•) along a given extremal by

Φ(t) = 1 m(t) p v (t) 2 + p γ (t) 2 v(t) 2 -βp m (t),
for every t ∈ [0, t f ]. This function is such that u(t) = (u 1 (t), u 2 (t)) = (0, 0) whenever Φ(t) < 0, and

u 1 (t) = p v (t) p v (t) 2 + pγ (t) 2 v(t) 2 , u 2 (t) = p γ (t) v(t) p v (t) 2 + pγ (t) 2 v(t) 2
, whenever Φ(t) > 0. Note that these formulas are well defined since the functions p v (•) and p γ (•) do not vanish simultaneously identically on any subinterval2 . Note that the extremal control cannot be determined from the maximization condition in the case the switching function Φ(•) vanishes on a subinterval of [0, t f ]. The non-occurrence of this singular case can be checked from the numerical simulations, however note that the controllability aspects of the orbit transfer problem have been studied in [START_REF] Bonnard | Geometric optimal control of elliptic Keplerian orbits[END_REF][START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF][START_REF] Caillau | Coplanar control of a satellite around the Earth[END_REF][START_REF] Gergaud | Low thrust minimum fuel orbital transfer: an homotopic approach[END_REF], and it has been proved in these references that the singular case cannot occur in our problem.

Note that, if p 0 = 0, then, using the facts that ṗm = Tmax

m 2 p 2 v + p 2 γ v 2
and that p m (t f ) = 0, it follows that p m (•) 0 and thus Φ(•) > 0 on [0, t f ], which means that there is no ballistic arc along the flight (actually such an extremal coincides with a minimal-time extremal). In practice, almost all initial and final configurations considered impose that the optimal trajectory should involve (at least) one ballistic arc, and therefore, the case p 0 = 0 does not occur (this can be checked further in the numerical simulations). Hence, from now on we assume that p 0 = -1.

Based on these necessary conditions, recall that the (single) shooting method consists in finding a zero of the shooting function S defined as follows. Given t f > 0 and p 0 ∈ R 5 , denote by (q(t, p 0 ), p(t, p 0 )) the extremal solution of (8), starting from the initial condition q(0) given by (5) and from p(0) = p 0 . Then, the shooting function is defined by

S(t f , p 0 ) =       r(t f , p 0 ) -r f v(t f , p 0 ) -v f γ(t f , p 0 ) -γ f p ϕ (t f , p 0 ) p m (t f , p 0 ) -1       or       ξ K f (p 0 ) ξ e f (p 0 ) Eq. (12) p ϕ (t f , p 0 ) p m (t f , p 0 ) -1       , (13) 
depending on the chosen final conditions. The (single) shooting method thus consists of combining any numerical method for integrating a differential equation with a Newton-like method in order to determine a zero of the shooting function S.

As mentioned formerly, it is difficult to obtain convergence of this method, due to a difficulty of initialization and to the discontinuities of the control. However, we observe that, when assuming that the Earth is flat and the gravity is constant, the corresponding optimal control problem can be easily solved, in a very explicit way. We next introduce this very simplified model and explain our idea of passing continuously to the round Earth model.

Simplified flat Earth model

The motion of a vehicle in a flat Earth model with constant gravity is governed by the control system

ẋ(t) = v x (t) ḣ(t) = v h (t) vx (t) = T max m(t) u x (t) vh (t) = T max m(t) u h (t) -g 0 ṁ(t) = -βT max u x (t) 2 + u h (t) 2 (14) 
where x(t) denotes the downrange (or in-track), h(t) is the altitude, v x (t) is the horizontal component of the speed, v h (t) is the vertical component of the speed, and the control (u x (•), u h (•)) satisfies the constraint

u x (•) 2 + u h (•) 2 1. ( 15 
)
The constant g 0 stands for the gravity g 0 = µ r 2 T at zero altitude, with r T the Earth radius.

We denote by (OCP) flat the optimal control problem of maximizing the final mass m(t f ) for the control system [START_REF] Leitmann | On a class of variational problems in rocket flight[END_REF], with the initial and final conditions

x(0) = x 0 , h(0) = h 0 , v x (0) = v x0 , v h (0) = v h0 , m(0) = m 0 , (16) 
h(t f ) = h f , v x (t f ) = v xf , v h (t f ) = 0. ( 17 
)
If we had to make a connection to the round Earth model, these final conditions would correspond to (6) (and not [START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF]). Furthermore, contrarily to the round Earth model, here it is not needed to assume a fixed final time t f . Therefore, in (OCP) flat the final time t f is free. It happens that (OCP) flat can be explicitly and nearly analytically solved by applying the PMP. This is the object of Section 3 further, and this resolution leads to an very efficient algorithm based on a shooting method whose initialization is obvious. Based on that observation, it is tempting to try to use this efficient resolution in order to guess a good initialization for the shooting method applied to (OCP). To this aim, the idea is to use a continuation process by introducing parameters such that, when one makes these parameters evolve continuously, one passes from the flat Earth model to the initial round Earth model. Since the coordinates of the flat Earth model are Cartesian, and the coordinates of the round Earth model are polar, this will of course require, at the end of the process, a change of coordinates.

Before going into more details we can make one preliminary remark. In the continuation process, the gravity constant g 0 must be obviously deformed in order to end up with the gravity model g(r). However there is a serious difference between the flat Earth model (with constant or variable gravity) and the round Earth model: indeed, in the round Earth model, periodic trajectories with no thrust (u = 0) do exist, namely Keplerian orbits; whereas in the flat Earth model there do not exist any "horizontal trajectories" (that is, trajectories with a zero control having a constant altitude h), due to the presence of the gravity term. This obvious but important remark leads to the idea of deforming the flat Earth model by introducing some new terms into the dynamics, so that there may exist such horizontal trajectories with null thrust (zero control). Moreover, we would like this modified model to be equivalent, up to some change of coordinates, to the round Earth model.

This modified flat Earth model is derived in the next subsection, by defining a change of coordinates that is flattening circular orbits into horizontal trajectories, and then computing the control system from this change of coordinates.

Modified flat Earth model

Starting from the polar coordinates (r, ϕ, v, γ) of the round Earth model, let us define some Cartesian coordinates (x, h, v x , v h ). The idea of mapping circular orbits to horizontal trajectories leads to define x = rϕ. Then, x(t) represents the curvilinear abscissa of the point M (t). The altitude is logically defined by h = rr T , where r T denotes the radius of the Earth. Using the geometric definition of the angle γ, finally, one is led to define v x = v cos γ and v y = v sin γ. Summing up, we consider the change of coordinates and denote by F the corresponding diffeomorphism, such that

       x = rϕ h = r -r T v x = v cos γ v h = v sin γ ⇐⇒          r = r T + h ϕ = x r T +h v = v 2 x + v 2 h γ = arctan v h vx ( 18 
) v x0 x f v h0 h 0 h f r T ϕ f γ 0 v f γ f h f h 0 (v xf , v hf ) (r T + h f )ϕ f ↔ x f v 0
F (x, h, v x , v h ) = (r, ϕ, v, γ).
For the control, the transformation from cylindrical to Cartesian coordinates is

u x u h = cos γ -sin γ sin γ cos γ u 1 u 2 . ( 19 
)
Applying this change of coordinates to the control system (3) now leads, after easy computations, to the control system

                   ṙ(t) = v(t) sin γ(t) φ(t) = v(t) r(t) cos γ(t) v(t) = -g(r(t)) sin γ(t) + Tmax m(t) u 1 (t) γ(t) = v(t) r(t) -g(r(t)) v(t) cos γ(t) + Tmax m(t)v(t) u 2 (t) ṁ(t) = -βT max u(t) ⇐⇒                    ẋ(t) = v x (t) + v h (t) x(t) r T +h(t) ḣ(t) = v h (t) vx (t) = Tmax m(t) u x (t) -vx(t)v h (t) r T +h(t) vh (t) = Tmax m(t) u h (t) -g(r T + h(t)) + vx(t) 2 r T +h(t) ṁ(t) = -βT max u(t) (20) 
This modified formulation [START_REF] Stoer | Introduction to Numerical Analysis[END_REF] in Cartesian coordinates is equivalent (up to change of coordinates) to the initial formulation (3) in cylindrical coordinates. Therefore it still represents the true round Earth transfer problem. In particular, it admits the (null thrust) Keplerian orbits. Comparing this modified formulation with the simplified flat Earth formulation ( 14) (with constant gravity), we have two differences: the first one is of course the gravity term, which is constant in the simplified model [START_REF] Leitmann | On a class of variational problems in rocket flight[END_REF]; the second difference is the presence of new terms in the dynamics of x, v x and v h , in the right-hand side of [START_REF] Stoer | Introduction to Numerical Analysis[END_REF]. These new terms can be seen as corrective terms in the flat Earth model, which make possible in particular the existence of horizontal trajectories with no thrust.

The continuation procedure

To pass from the simplified flat Earth model [START_REF] Leitmann | On a class of variational problems in rocket flight[END_REF] to the modified flat Earth model [START_REF] Stoer | Introduction to Numerical Analysis[END_REF], we introduce two parameters. One of them permits to pass continuously from the constant gravity term to the variable gravity term, and the other introduces continuously the corrective terms. In brief, we consider the family of control systems

ẋ(t) = v x (t) + λ 2 v h (t) x(t) r T + h(t) ḣ(t) = v h (t) vx (t) = T max m(t) u x (t) -λ 2 v x (t)v h (t) r T + h(t) vh (t) = T max m(t) u h (t) - µ (r T + λ 1 h(t)) 2 + λ 2 v x (t) 2 r T + h(t) ṁ(t) = -βT max u x (t) 2 + u h (t) 2 (21)
parameterized by the parameters λ 1 and λ 2 , themselves varying between 0 and 1. For λ 1 = λ 2 = 0, one recovers the simplified flat Earth model ( 14) with constant gravity, and for λ 1 = λ 2 = 1 one recovers the modified flat Earth model [START_REF] Stoer | Introduction to Numerical Analysis[END_REF], which is diffeomorphic to the initial round Earth model [START_REF] Augros | Computation of optimal coplanar orbit transfers[END_REF]. Now, for all (λ 1 , λ 2 ) ∈ [0, 1] 2 , denote by (OCP) λ 1 ,λ 2 the optimal control problem of steering the system ( 21) from ( 16) to [START_REF] Neustadt | A general theory of minimum-fuel space trajectories[END_REF] and maximizing the final mass m(t f ). In what follows, we will explain how to implement a continuation procedure to pass from (OCP) 0,0 to (OCP) 1,1 . In this procedure, we decide to make a first continuation on the parameter λ 1 , keeping λ 2 = 0, passing from λ 1 = 0 (flat Earth model with constant gravity) to λ 1 = 1 (flat Earth model with variable gravity), and then a second continuation, keeping λ 1 = 1, passing from λ 2 = 0 to λ 2 = 1 (modified flat Earth model, equivalent to the initial round Earth model). Along the first continuation, the optimal control problems under consideration are with a free final time. However, since the problem (OCP) 1,1 does not have any optimal solution for free final time (as already mentioned), we decide to fix the final time for the optimal control problems in consideration along the second continuation. The value chosen for t f is the (free) final time obtained for (OCP) 1,0 , at the end of the first continuation. Note that this is not restrictive since numerical simulations show that the shooting method is relatively robust with respect to changes on the fixed t f . The continuation procedure is drawn on Figure 2.

As before, the application of the Pontryagin Maximum Principle to (OCP) λ 1 ,λ 2 leads to a shooting problem, as follows. For every optimal trajectory 

X(•) = (x(•), h(•), v x (•), v h (•), m(•)) of (OCP) λ 1 ,λ 2 , associated with a control U (•) = (u x (•), u h (•)) on [0, t f ] there exists an absolutely continuous mapping P (•) = (p x (•), p h (•), p vx (•), p v h (•), p m (•)) : [0, t f ] → R
(OCP) (0,0) continuation on λ 1 ∈ [0, 1] final time t f free (OCP) (1,1) (OCP) (1,0) continuation on λ2 ∈ [0, 1] final time t f fixed Figure 2: Continuation procedure p 0 0, satisfying (p(•), p 0 ) = (0, 0), such that Ẋ(t) = ∂H λ 1 ,λ 2 ∂P (X(t), P (t), p 0 , U (t)), Ṗ (t) = - ∂H λ 1 ,λ 2 ∂X (X(t), P (t), p 0 , U (t)), (22) 
for almost every t ∈ [0, t f ], where the Hamiltonian is defined by

H λ 1 ,λ 2 (X, P, p 0 , U ) = p x v x + λ 2 v h x r T + h + p h v h + p vx T max m u x -λ 2 v x v h r T + h + p v h T max m u h - µ (r T + λ 1 h) 2 + λ 2 v 2 x r T + h -p m βT max u .
Component-wise, the adjoint equations are

ṗx = -p x λ 2 v h r T + h ṗh = p x λ 2 xv h (r T + h) 2 -p vx λ 2 v x v h (r T + h) 2 -p v h 2µλ 1 (r T + λ 1 h) 3 - λ 2 v 2 x (r T + h) 2 ṗvx = -p x + p vx λ 2 v h r T + h -2p v h λ 2 v x r T + h ṗv h = -p x λ 2 x r T + h -p h + p vx λ 2 v x r T + h ṗm = T max m 2 (p vx u x + p v h u h ) (23) 
Moreover, the maximization condition (W is a free variable)

H λ 1 ,λ 2 (X(t), P (t), p 0 , U (t)) = max W 1 H(X(t), P (t), p 0 , W ) (24) 
holds almost everywhere on [0, t f ], and this quantity is moreover equal to 0 for (λ 1 , λ 2 ) ∈ [0, 1] × {0} (that is, along the first continuation) since the final time t f is free and the dynamics are autonomous. Furthermore, one has the transversality conditions

p x (t f ) = 0, p m (t f ) = -p 0 . ( 25 
)
Defining the switching function Φ(•)

λ 1 ,λ 2 by Φ λ 1 ,λ 2 (t) = 1 m(t) p vx (t) 2 + p v h (t) 2 -βp m (t),
for every t ∈ [0, t f ], one has U (t) = (u x (t), u h (t)) = (0, 0) whenever Φ(t) < 0, and 2 , whenever Φ(t) > 0. Note that these formulas are well defined since the functions p vx (•) and p v h (•) do not vanish simultaneously identically on any subinterval 3 . Assuming as before p 0 = -1 (see comments made for the round Earth model), the continuation method (see [START_REF] Allgower | Numerical Continuation Method. An Introduction[END_REF][START_REF] Stoer | Introduction to Numerical Analysis[END_REF]) consists of solving a series of shooting problems for sequences of parameters λ 1 and λ 2 , with the starting point λ 1 = λ 2 = 0. At each step, the previous solution is used as an initial guess for the shooting problem. For every couple (λ 1 , λ 2 ), the shooting function S λ 1 ,λ 2 is defined as follows. Given t f > 0 and P 0 ∈ R 5 , denote by (X(t, P 0 ), P (t, P 0 )) the extremal solution of [START_REF] Vinh | Optimal time-free nodal transfers between elliptical orbits[END_REF], starting from the initial condition X(0) given by (5) up to the change of coordinates [START_REF] Oberle | Existence and multiple solutions of the minimum-fuel orbit transfer problem[END_REF], and from P (0) = P 0 . Then, the shooting function is defined by

u x (t) = p vx (t) p vx (t) 2 + p v h (t) 2 , u h (t) = p v h (t) p vx (t) 2 + p v h (t)
S λ 1 ,λ 2 (P 0 , t f ) =         h(t f , P 0 ) -h f v h (t f , P 0 ) v x (t f , P 0 ) -v xf p x (t f , P 0 ) p m (t f , P 0 ) -1 H(t f ) if (λ 1 , λ 2 ) ∈ [0, 1] × {0}         . ( 26 
)
Note that in the case where t f is fixed, the shooting function has only five components.

The first part of the continuation procedure consists of solving iteratively by a Newton-like method the equation S λ 1 ,0 (P 0 , t f ) = 0 for a sequence of parameters λ 1 starting from 0 and ending at 1, and the second part of that procedure consists of solving S 1,λ 2 (P 0 , t f ) = 0 for a sequence of parameters λ 2 starting from 0 and ending at 1 (see Figure 2). Note that it is possible to consider other paths of parameters (λ 1 , λ 2 ) in the square [0, 1] 2 . Our choice here is first to introduce the variable gravity, and then the correcting terms. Note however that using the intermediate problem (OCP) 1,0 in our continuation enables us to find a more reasonable final time t f than if we had directly used as a fixed final time the optimal final time obtained from (OCP) 0,0 . Furthermore, the numerical simulations further will show that the continuation from (OCP) 0,0 to (OCP) 1,0 is very fast when compared to the second continuation from (OCP) 1,0 to (OCP) 1,1 . Hence, considering one more direct continuation path from (OCP) 0,0 to (OCP) 1,1 would not yield a significant gain in terms of execution time but might put the success of the continuation at risk. The starting point (0, 0) of the continuation process corresponds to the simplified flat Earth model with constant gravity, and hence we initialize the procedure with the solution of that simplified model, as detailed in Section 3.

This algorithmic procedure provides a way of solving (OCP) without any a priori knowledge on the optimal solution. The price to pay is that, instead of solving only one optimal control problem, one has to solve a series of (OCP) λ 1 ,λ 2 . However the whole procedure is time-efficient since the shooting method relies on a Newton-like method. Our procedure provides a way for bypassing the difficulty due to the initialization of the shooting method when applied directly to (OCP). Numerical simulations are given in Section 4.

One item remains however to be explained in our procedure. Indeed, the continuation process above leads, provided it has converged, to the solution of (OCP) 1,1 , which corresponds to the control system [START_REF] Stoer | Introduction to Numerical Analysis[END_REF]. As explained in Section 1.3, this control system is equivalent to the initial control system (3) via the change of coordinates [START_REF] Oberle | Existence and multiple solutions of the minimum-fuel orbit transfer problem[END_REF] and [START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF]. Hence, we must explain how the change of coordinates must act onto the adjoint vector, so as to recover the adjoint vector in the initial coordinates (p r , p ϕ , p v , p γ , p m ). Recalling that F denotes the diffeomorphism defined by [START_REF] Oberle | Existence and multiple solutions of the minimum-fuel orbit transfer problem[END_REF], we claim that ( t denotes the transpose operation)

t (p r , p ϕ , p v , p γ ) = t dF (x, h, v x , v h ) -1 • t (p x , p h , p vx , p v h ), (27) 
i.e., one passes from the adjoint vector in Cartesian coordinates to cylindrical coordinates by applying the transpose of the inverse of the differential of F . After easy computations, this yields

p r = x r T + h p x + p h p ϕ = (r T + h)p x p v = cos γ p vx + sin γ p v h p γ = v(-sin γ p vx + cos γ p v h ). ( 28 
)
This claim follows from a general fact recalled separately, in the Appendix (Section 6), for the sake of clarity. Note that p m remains unchanged.

Remark 1. Here we have considered (OCP) λ 1 ,λ 2 with final conditions [START_REF] Neustadt | A general theory of minimum-fuel space trajectories[END_REF], that correspond to [START_REF] Bonnard | Geometric optimal control of elliptic Keplerian orbits[END_REF], that is, they correspond to the case of injecting the vehicle on a precise point of a given orbit. To handle the case of final conditions [START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF] (that is, a final orbit of given energy and given eccentricity), we propose to implement an additional continuation process, consisting in passing from the transversality conditions (25) to the transversality conditions [START_REF] Gergaud | Low thrust minimum fuel orbital transfer: an homotopic approach[END_REF] expressed in this Cartesian reference frame. In that case, we propose to define the shooting function of the continuation method as a convex combination of both transversality conditions.

3 Analysis of the optimal control problem with the simplified flat Earth model

For this simplified optimal control problem, we consider similar terminal conditions as ( 5) and ( 6) except that we impose γ f to be zero and we express them in Cartesian coordinates.

The terminal conditions are given by

x(0) = x 0 , h(0) = h 0 , v x (0) = v x0 , v h (0) = v h0 , m(0) = m 0 x(t f ) free, h(t f ) = h f , v x (t f ) = v xf , v h (t f ) = 0, m(t f ) free, (29) 
Contrarily to the initial (OCP), we leave t f free because the simplified problem does not allow orbits and we thus have a solution for free final time.

We assume moreover that

h f > h 0 + v 2 h0 2g 0 . (30) 
Note that (30) discards the non interesting case of a zero fuel consumption trajectory. It also discards the case of a vehicle starting with an initial velocity so large that it needs to decelerate in order to reach the final configuration. This assumption is satisfied in practice.

Application of the Pontryagin Maximum Principle

Denoting the adjoint variables by p = (p x , p h , p vx , p v h , p m ), the Hamiltonian is

H = p x v x + p h v h + p vx T max m u x + p v h T max m u h -g 0 -βT max p m u 2 x + u 2 h ,
and hence the adjoint equations are

ṗx = 0, ṗh = 0, ṗvx = -p x , ṗv h = -p h , ṗm = T max m 2 (p vx u x + p v h u h ).
According to the boundary conditions (29), the transversality conditions yield p x (t f ) = 0 and p m (t f ) = -p 0 (with p 0 0). It follows that p x (•) is identically equal to 0, that p h (•) is constant (denoted p h in what follows), that p vx (•) is constant (denoted p vx in what follows), and that p v h (t) = -p h t + p v h (0). Since the final time t f is free and the system is autonomous, we infer that H = 0 along any extremal.

Setting Φ(t) = 1 m(t)

p 2 vx + p v h (t) 2 -βp m (t) for every t ∈ [0, t f ],
we infer from the maximization condition of the Hamiltonian that u(t) = (u x (t), u h (t)) = (0, 0) whenever Φ(t) < 0, and

u x (t) = p vx p 2 vx + p v h (t) 2 , u h (t) = p v h (t) p 2 vx + p v h (t) 2 , whenever Φ(t) > 0.

Analysis of extremal equations

First of all, notice that ṗm (t) = Proof. The argument goes by contradiction. If p vx = 0 and p v h (•) = 0 on a subinterval I, then differentiating with respect to t yields p h = 0, and then by Cauchy uniqueness p v h (•) = 0 on [0, t f ]. Hence, p m (•) is constant, equal to -p 0 . Besides, since H = 0, we infer that p 0 u(•) = 0 on [0, t f ]. From (30), the thrust u(•) cannot be identically equal to 0 on [0, t f ], and hence p 0 = 0. We have proved that (p(•), p 0 ) = (0, 0), which is a contradiction with the Pontryagin Maximum Principle. This lemma implies in particular that the formulas for the extremal controls above are well defined. Moreover, it follows from easy computations that the function t → Φ(t) is almost everywhere two times differentiable, and (recall that p x = 0)

Φ(t) = -p h p v h (t) m(t) p 2 vx + p v h (t) 2 , (31) 
Φ(t) = β u(t) m(t) Φ(t) - m(t) p 2 vx + p v h (t) 2 Φ(t) 2 + p 2 h m(t) p 2 vx + p v h (t) 2 . ( 32 
)
Lemma 2. The function t → Φ(t) is constant if and only if p h = 0.

Proof. If p h = 0 then it follows from (31) that Φ = 0. Conversely, if Φ = 0 then p h p v h = 0, and differentiating with respect to time yields p h = 0.

Lemma 3. The function t → Φ(t) does not vanish identically on any subinterval of [0, t f ].

Proof. The argument goes by contradiction. If Φ(•) = 0 on a subinterval I, then, from Lemma 2, p h = 0, and then using the adjoint equations, p v h (•) is constant. Moreover, there holds 0 = H = -p v h g 0 , and hence p v h (•) = 0 on [0, t f ]. In particular, this yields u h (•) = 0 on [0, t f ], and hence vh = -g 0 and v h (t) = v h0g 0 t. From (29), v h (t f ) = 0, hence t f = v h0 g 0 . Besides, integrating ẋ2 = v h , one gets h(t) = h 0 + v h0 t -g 0 2 t 2 , and thus h(t f ) = h 0 + v 2 h0 2g 0 . From (29) one has h(t f ) = h f , and we get a contradiction with (30).

This lemma shows that the singular case where the extremal controls cannot be inferred directly from the maximization condition does not occur. Lemma 4. If p h = 0 then the thrust u(•) T max is constant on [0, t f ], equal to T max . In other words, in that case the thrust is always maximal and there is no switching.

Proof. If p h = 0 then, from Lemma 2, Φ(•) is constant, and from Lemma 3 this constant Φ cannot be equal to 0. If Φ < 0, then u = 0 on [0, t f ], which is not possible since the thrust cannot be identically zero (this would contradict (30)). Hence, Φ > 0 and therefore

u(•) = 1 on [0, t f ]. Lemma 5. If p h = 0 then • either Φ(•) is increasing on [0, t f ],
• or Φ(•) is decreasing on [0, t f ],

• or Φ(•) has a unique minimum on [0, t f ], is decreasing before that minimum and then increasing.

Proof. If p h = 0 then, from Lemma 2, Φ(•) is not constant, hence Φ(•) is not identically equal to 0. If Φ(•) does not vanish on [0, t f ], then Φ(•) is strictly monotone, and this yields the two first cases of the result. If Φ(•) vanishes at some point t 1 of [0, t f ], then, using (32), for every t 1 ∈ [0, t f ] such that Φ(t 1 ) = 0 there must hold Φ(t 1 ) > 0 (since p h = 0), and therefore this point is a local minimum. This reasoning shows that every extremum of Φ(•) is a local minimum. It follows that the function Φ(•) cannot vanish more than one time, otherwise there would exist another local minimum, and hence there should then exist a local maximum between those two minima; but this is a contradiction since every extremum of Φ(•) is a local minimum. Therefore, the third point of the lemma follows.

Lemmas 4 and 5 imply that the thrust u(•) T max of the optimal trajectory is either constant, equal to T max , or has exactly one switching (and in that case, passing either from 0 to T max , or from T max to 0), or has exactly two switchings and passes from T max to 0 and then from 0 to T max . Actually, we next prove that the latter possibility cannot occur, and finally derive the following result.

We first state and prove the following lemma, useful for the proof of theorem 1 Lemma 6. If the modulus of the control u(•) has at least one switching on [0, t f ] then p 0 = 0.

Proof of Lemma 6. The argument goes by contradiction. If

p 0 = 0 then p m (t f ) = 0. Since p m (•) is nondecreasing, it follows that p m (t) 0 for every t ∈ [0, t f ]. From Lemma 1, p 2 vx + p v h (•) 2 does not vanish identically on any subinterval, hence Φ(•) = 1 m(•) p 2 vx + p v h (•) 2 -βp m (•) > 0 on [0, t f ],
and therefore u(•) = 1 on [0, t f ]. This contradicts the assumption of having one switching.

We are now in a position to prove the theorem.

Theorem 1. The optimal trajectory of (OCP) flat is a succession of at most two arcs with a control modulus u(•) being either equal to 1 or to 0. More precisely, the modulus u(•) T max of the thrust is

• either constant on [0, t f ] and equal to T max ,

• or of the type T max -0,

• or of the type 0 -T max .

Proof of Theorem 1. To prove the theorem, one has to prove that the strategy T max -0 -T max for the modulus of the thrust cannot occur. The argument goes by contradiction.

Assume that the modulus of the thrust u(•) T max is of this type, and denote by t 1 < t 2 the two switching times.

Let us first prove that the minimum of Φ(•) is reached at t = pv h (0) p h . Using (31), if Φ( t) = 0 then there must hold p h p v h ( t) = 0. Since Φ(•) is not constant, one has p h = 0, hence p v h ( t) = 0. Integrating the differential equation satisfied by p v h (•), one gets t = pv h (0) p h . By definition, this minimum is reached within the interval (0, t f ). In particular, we deduce that

0 < t 1 < t = p v h (0) p h < t 2 < t f . (33) 
On [t 1 , t 2 ], one has u(t) = 0, hence in particular m(•) and p m (•) are constant on this interval, and thus m(t 1 ) = m(t 2 ) and p m (t 1 ) = p m (t 2 ). Since the function

t → Φ(t) = p 2 vx + (p v h (0) -p h t) 2 m(t) -βp m (t)
vanishes by definition at t 1 and t 2 , it follows that

p 2 vx + (p v h (0) -p h t 1 ) 2 = p 2 vx + (p v h (0) -p h t 2 ) 2 ,
and hence

|p v h (0) -p h t 1 | = |p v h (0) -p h t 2 |. Since t 1 = t 2 , we infer that t 2 = 2 pv h (0) p h -t 1 .
Note that the latter equality means that the graph of Φ(•) on the interval [t 1 , t 2 ] is symmetric with respect to the point t =

pv h (0) p h
where the minimum is reached. Using the fact that H = 0 along an extremal and that p x = 0, one gets

p h v h (t) + u(t) T max Φ(t) -g 0 p v h (t) = 0, ( 34 
)
for every t ∈ [0, t f ]. In particular, at t = t f , one gets g 0 p v h (t f ) = T max Φ(t f ) > 0, which implies p v h (t f ) > 0. Since p v h (•)
is affine and vanishes at t, we get that p h < 0, p v h (•) 0 on [0, t] and 0 on [ t, t f ]. Now, note that u h (•) has the same sign as p v h (•) during the thrust arcs, hence it is negative on [0, t 1 ] and positive on [t 2 , t f ]. In particular, there holds vh (t) -g 0 , for every Remark 2. The conclusions of Theorem 1 might seem counterintuitive since we can think that a strategy T max -0 -T max should be a better choice (at least in view of the results for the round Earth model). However, we deal here with a flat Earth model with constant gravity, and thus no gravitational or centripetal help is obtained by introducing a ballistic arc.

t ∈ [0, t 2 ]. Note also that, since v h ( t) = 0, it follows that v h0 > 0. Set t = min( v h0 g 0 , t f ) ∈ [ t, t f ]. Then h( t) h 0 + t 0 (v h0 -g 0 t) dt + max 0, t-v h0 /g 0 0 (v h0 -g 0 t) dt h 0 + v 2 h0 2g 0 . Furthermore, u h (•)
Since the strategy where the thrust is maximal all along the flight is also a minimum time strategy and is not cost efficient, we next focus on the strategy T max -0 (with one switching). Note however that the former strategy can be viewed as a particular case of the latter one. The study of the strategy 0 -T max is similar.

Refined analysis of the strategy T max -0, and algorithmic procedure

Assume that we are in the case where the thrust has one switching, denoted t 1 , with 0 < t 1 < t f , and is of the form T max -0. Lemma 7. There holds

t f = pv h (0) p h and p h v h (t 1 ) + p h g 0 t 1 = g 0 p v h (0). Moreover, p h > 0, sign(p vx ) = sign(v xf -v x0 ) and p v h (0) > 0.
Proof. First of all, note that the identity (34) still holds in that case.

On [t 1 , t f ], one has u(•) = 0, and hence, from (34),

p h v h (•) = g 0 p v h (•). Taking t = t f yields p v h (t f ) = 0 since v h (t f ) = 0 from the boundary conditions (29). Since p v h (t) = -p h t + p v h (0), it follows that t f = pv h (0) p h (note that p h = 0 from Lemma 2). Moreover, for every t ∈ [t 1 , t f ], one has vh (t) = -g 0 , hence v h (t) = v h (t 1 ) -g 0 (t -t 1 ). Since p v h (t) = -p h t + p v h (0), we infer that p h v h (t 1 ) + p h g 0 t 1 = g 0 p v h (0). Since t f = pv h (0)
p h , necessarily p h and p v h (0) have the same sign. Let us prove by contradiction that, actually,

p v h (0) > 0. If p v h (0) < 0 then, since the function p v h (•) is affine and since p v h (t f ) = 0, there should hold p v h (t) 0 for every t ∈ [0, t f ].
Hence, u h (t) < 0 and vh (t) -g 0 on [0, t f ]. Integrating, we would obtain

h(t) h 0 + v h0 t - g 0 2 t 2 h 0 + v 2 h0 2g 0 .
At the final time t f , this would contradict (30). We thus conclude that p h > 0 and p v h (0) > 0.

For every t ∈ [0, t 1 [, one has vx (t) = Tmax m(t) u x (t) with u x (t) having the same sign than p vx , and for every t ∈]t 1 , t f ], one has u(•) = 0 and hence v x (•) remains constant. Then, we directly have sign(v xfv x0 ) = sign(u x (•)) = sign(p vx ). Lemma 7 enables to significantly simplify the application of the single shooting method to that case. We next explain the construction of this simplified algorithmic procedure. Usually, when applying the single shooting method, we have 5 unknowns, namely :

• the initial adjoint vector (p h , p vx , p v h (0), p m (0), p 0 ), defined up to a multiplicative scalar (note that p 0 = 0 from Lemma 6). This definition up to a multiplicative scalar is usually used to set p 0 = -1, which leaves only 4 components of the initial adjoint vector as unknowns. This particular normalization will however not be used here, see further.

• the final time t f , and 5 equations:

h(t f ) = h f , v x (t f ) = v xf , v h (t f ) = 0, p m (t f ) = -p 0 , H(t f ) = 0.
Recall that the adjoint vector (completed with p 0 ) is defined up to a multiplicative scalar, and instead of choosing the usual normalization p 0 = -1, since there holds p h > 0, we rather choose to normalize the adjoint vector so that p h = 1. Since the variable p 0 is only used here to tune the equation p m (t f ) = -p 0 , we can therefore forget about the variable p 0 and the equation p m (t f ) = -p 0 . This is a first simplification. Now there remain 4 unknowns, (p vx , p v h (0), p m (0)) and t f , and 4 equations:

h(t f ) = h f , v x (t f ) = v xf , v h (t f ) = 0, H(t f ) = 0.
Note that the knowledge of the value of p m (0) permits to determine the switching function Φ(•) and hence the switching time t 1 . It is therefore possible to replace the unknown p m (0) with the new unknown t 1 . Hence, from now on we have the 4 unknowns (p vx , p v h (0), t 1 , t f ), and the 4 previous equations.

Taking into account the fact that p h = 1, one can see from the previous computations and from Lemma 7 that the system of equations

v h (t f ) = 0, H(t f ) = 0,
is equivalent to the system of equations

t f = p v h (0), v h (t 1 ) + g 0 t 1 = g 0 p v h (0).
The final time t f being then directly determined by the value of p v h (0), we can reduce the problem to 3 unknowns (p vx , p v h (0), t 1 ) and 3 equations:

h(t f ) = h f , v x (t f ) = v xf , v h (t 1 ) + g 0 t 1 = g 0 p v h (0). Data: Terminal conditions (h 0 , v x0 , v h0 , h f , v xf )
and gravity constant g 0 . Result: shooting function unknowns (t 1 , p vx , p vh (0)) for the simplified flat Earth problem Initialization : choose some values p vx > 0 and p v h (0) > 0.

1 Integrate numerically (h(t), v x (t), v h (t)) from t = 0 to t 1 satisfying 2 v h (t 1 ) + g 0 t 1 = g 0 p v h (0) Set t f = p v h (0). 3 On [t 1 , t f ], compute explicitly 4 v x (t) = v x (t 1 ), h(t) = h(t 1 ) + v h (t 1 )(t -t 1 ) -g 0 2 (t -t 1 ) 2 . Solve the system h(t f ) = h f , v x (t f ) = v xf ,
with a Newton-like method.

5 Algorithm 1: Algorithmic procedure for solving the simplified flat Earth problem.

We finally end up with the following simplified algorithmic procedure, describe in Algorithm 1.

Note that it is possible to compute explicit expressions of and of v x (t) on the whole interval [0, t f ], however it happens that, from the numerical point of view, this does not save time and the procedure described above is more efficient.

The above algorithm is very easy to carry out and happens to be very efficient. The convergence is obtained instantaneously in term of execution time for almost every random choice of initialized values of p vx > 0 and p v h (0) > 0 (on a standard desktop machine, in Matlab). Here, reaching the convergence means finding a zero of the shooting function with an accuracy of at least 10 -8 (and 10 -12 for the accuracy of the integration of the state and costate dynamic).

This simple code is used as a first step in our continuation procedure described in Section 2.

The algorithm provides a solution in terms of (t 1 , t f , p vx , p v h (0)). Then, the unknowns (t f , px (0), ph (0), pvx (0), pv h (0), pm (0)) of the shooting function (26) associated with this simplified model are computed by

px (0) = 0, ph (0) = m 0 -βT max t 1 β p 2 vx (0) + (p v h (0) -t 1 ) 2 , pv h (0) = p v h (0)p h (0), pvx (0) = p vx (0)p v h (0), pm (0) = 1 βT max ph (0)v h0 + T max m 0 p2 vx (0) + p2 v h (0) -g 0 pv h (0) . (35) 
4 Numerical simulations

Continuation procedure

In this section we provide numerical simulations of the algorithmic procedure described in Section 2, which consists of solving, in a continuation process, a sequence of shooting problems initialized with the simple algorithm introduced in Section 3.3. Since the latter code converges without the need for a carefully selected initialization, we thus get a way of solving (OCP) without any a priori knowledge on the optimal solution. Consider (OCP) with the initial conditions To express this terminal configurations in Cartesian coordinates, one only needs to apply the change of coordinates [START_REF] Oberle | Existence and multiple solutions of the minimum-fuel orbit transfer problem[END_REF]. Note that, in the round Earth model, this corresponds to injecting the space engine on a precise point of a nearly circular final orbit (v f ≈ µ/r f , γ f = 0). Once this problem will be solved, we may also consider as a final condition the previous orbit, without fixing a precise point of the orbit, by passing the transversality conditions ( 12) by continuation (see Remark 1).

ϕ 0 =
Using the code developed in Section 3.3 and the transformation (35), we directly get the zero of the shooting function associated to (OCP) 0,0 (t f,(0,0) , p 0,0 (0)) ≈ (1433 s, 0, 0.755, 72.688, 1082.328, -0.137), with the final mass m 0,0 (t f ) ≈ 1676 kg.

This solution is used as the starting point to the continuation from (OCP) 0,0 to (OCP) 1,0 , the problem for the flat Earth model with variable gravity. This leads to the following zero of the shooting function (t f,(1,0) , p 1,0 (0)) ≈ (1483 s, 0, 3.851, 69.818, 2198.465, -0.236), associated with the final mass m 1,0 (t f ) ≈ 1505 kg.

We should note that m 1,0 (t f ) < m 0,0 (t f ) seems counterintuitive since the variable gravity is always lower than g 0 . However, the gravity does not only tend to decelerate the vehicle; it also helps to flatten the trajectory in order to reach v h (t f ) = 0.

At this step, we switch from (OCP) 1,0 with free final time t f to (OCP) 1,0 with a fixed final time. As mentioned in Section 2 this simply means that the shooting function has one less unknown and thus one less relation to satisfy at the end point of the extremal flow. This final time is t f ≈ 1483 s. Note that the solution of (OCP) 1,0 with free final time is the same as the solution with fixed time t f , there is just one less unknown. The solution p 1,0 (0) is then used to initialize the continuation from (OCP) 1,0 to (OCP) 1,1 . This leads to the solution p 1,1 (0) ≈ (0, 12.219, 6824.539, 5230.033, 0.310), associated with the final mass m 1,1 (t f ) ≈ 18922 kg. First we notice that the final mass of (OCP) 1,1 is far better than the ones of (OCP) 0,0 and (OCP) 1,0 . This could be expected because in (OCP) 1,1 the vehicle can use the centripetal forces that allow it to park on an intermediary orbit in between two thrust arcs.

Figure 3 shows the zero path of the shooting function from (OCP) 1,0 to (OCP) 1,1 .

We can see that this zero path does not look very smooth around several values of λ 2 , namely, for λ 2 ≈ 0.01, λ 2 ≈ 0.8, and λ 2 ≈ 0.82. Actually, focusing on the zero path around these values of λ 2 by enforcing the continuation to increase λ 2 with very small steps, we observe numerically that the zero path is continuous but is not C 1 (that is, it is not continuously differentiable) at those specific values of λ 2 . This phenomenon is due to the occurrence of a new switching time (that is, a zero of the switching function) along the continuation process. Indeed, when the final time coincides with a switching time, the shooting function is still continuous but is not C 1 (see [START_REF] Martinon | Using switching detection and variational equations for the shooting method[END_REF] for more details). To be more precise, here, if 0 λ 2 0.01 (by we mean that λ 2 c with c ≈ 0.01) then the modulus of the thrust u(•) T max is of the kind T max -0. For λ 2 ≈ 0.01 the final time coincides with a switching time after which we observe the appearance of a new thrust arc: indeed, if 0.01 λ 2 0.8 then the modulus of the thrust u(•) T max is of the kind T max -0 -T max . If 0.8 λ 2 0.82 then the latter thrust arc disappears and the strategy is of the kind T max -0, and if 0.82 λ 2 1 then the strategy is again of the kind T max -0 -T max (as it could be expected for λ 2 = 1).

Figure 4 compares the trajectory and control strategy of (OCP) 1,0 and (OCP) 1,1 . We observe that the solution of (OCP) 1,0 is clearly not acceptable because its altitude becomes negative. However (OCP) 1,0 is only a fictive problem and there is no need to only accept collision free trajectory until we solve (OCP) 1,1 . The main difference between the two control strategies is that (OCP) 1,0 (and (OCP) 0,0 ) only has one thrust arc while (OCP) 1,1 has two. Furthermore, the fact that the fuel consumption is directly proportional to the thrust duration explains that m 1,1 (t f ) could be expected to be better than m 1,0 (t f ).

As mentioned before, we decided to fix the final time t f of (OCP) 1,1 to the free final time obtained while solving (OCP) 1,0 . Notice that it is possible to solve (OCP) 1,1 with another value of fixed final time, by using a linear continuation on t f . For example, this continuation permits find a solution for t f = 2000 s. with a corresponding final mass m f ≈ 20050 kg. Also, since our final orbit is not strictly circular it can be interesting to consider final conditions (7) instead of [START_REF] Bonnard | Geometric optimal control of elliptic Keplerian orbits[END_REF]. As mentioned in Remark 1, this can be achieved using an additional continuation on the final conditions and transversality conditions.

The whole procedure is time efficient since it only takes approximately 3 seconds on a standard desktop computer, without any code optimization. The execution time is roughly decomposed as follows:

• Instantaneous for the solving of (OCP) 0,0 .

• 0.5 second for the first continuation from (OCP) 0,0 to (OCP) 1,0 .

• 2.5 seconds for the second continuation from (OCP) 1,0 to (OCP) 1,1 . different integration scheme, say a fourth-order Runge-Kutta, the accuracy of the direct method would be better but at the cost of a larger computational effort. However, even with a higher order integration scheme, the accuracy of the solution is limited by the way the control is discretized. As expected, the direct approach is computationally far more demanding.

Comparison with other initialization methods

An interesting comparison would be with the method presented in [START_REF] Augros | Computation of optimal coplanar orbit transfers[END_REF]. This method consists in using an approximate solution of the impulse transfer in order to explicitly compute estimates of the adjoint vector needed to perform a single shooting. Those estimates are possible when considering orbit transfer with nearly circular initial and final orbits. When dealing with this kind of Hohmann transfer, it is then preferable to use this method because the estimates are computed analytically and are enough to ensure the convergence of the shooting method. Since the shooting method converges nearly instantaneously, it seems unlikely for another method to perform better. And indeed, our approach cannot compete with [START_REF] Augros | Computation of optimal coplanar orbit transfers[END_REF] for Hohmann like orbit transfer. However, our approach is not restricted to nearly circular orbit transfer and is then a complement to the one of [START_REF] Augros | Computation of optimal coplanar orbit transfers[END_REF].

Another method, which propose initialization scheme for similar kind of problems is discussed in [START_REF] Gergaud | Low thrust minimum fuel orbital transfer: an homotopic approach[END_REF]. In this paper, the orbital transfer problem is first solved for the minimization of the square of the L 2norm of the control. Then a continuation is performed to link this criterion to the minimization of the L 1norm of the control. This last criterion is equivalent to the maximization of the final mass. However, the method is restricted to low-thrust orbit transfers only, while our method is designed for high-thrust orbit transfers.

Restriction to high-thrust orbit transfer

Our method was designed for high-thrust orbit transfers, that is for orbit transfers with acceleration of the same order of magnitude as the Earth's gravity. It is doubtful that it can be extended to low-thrust cases. Indeed, the first step of the method, the resolution of the simplified flat Earth problem, will not converge for low thrust.

Conclusion

We have given an algorithmic procedure to solve the problem of minimization of the fuel consumption for the coplanar orbit transfer problem by a shooting method approach, without any a priori knowledge on the optimal solution (and thus on the way to initialize the shooting method). Our method relies on the preliminary remark that, when studying the same problem within a simplified flat Earth model with constant gravity, the optimal control problem can be explicitly solved, and the solution leads to a very efficient algorithm that does not need any careful initial guess. Based on that remark, we have proposed a continuous deformation of this simplified model to the initial model (up to some change of coordinates), introducing continuously corrective terms into the flat Earth model. From the algorithmic point of view, the procedure then consists of solving a series of shooting problems, starting from the simplified flat Earth model which is easy to initialize, and ending up with the sought solution. The whole procedure is time-efficient and provides a way for bypassing the difficulty due to the initialization of the shooting method when it is applied directly to the initial problem.

Many questions remain open and from this point of view our work should be considered as preliminary. A first question is to investigate whether this procedure is systematically efficient, for any possible coplanar orbit transfer. Up to now we did not make any exhaustive tests, however it is very probable that one may encounter some difficulties, as in any continuation process, due to the intricate topology of the space of possible continuation paths, this space being not always arc-wise connected. Indeed, the flat Earth model only has one thrust arc while the round Earth model has two or more. Another question is to extend our study to the three-dimensional case, the final objective for an enterprise as Astrium Space Transportation being to have available a reliable and efficient tool to realize any possible orbit transfer without having to spend much time on the initialization of the algorithm.

Appendix: action of a change of coordinates onto the adjoint vector

To understand how a change of coordinates acts onto the adjoint vector, it is useful to come back to the geometric meaning of the Pontryagin Maximum Principle, recalling its intrinsic character. Let M (resp. N ) be a smooth manifold of dimension n (resp. m). Consider on M the control system ẋ(t) = f (x(t), u(t)), where f : M × N -→ T M is smooth, T M is the usual tangent bundle, and the controls are bounded measurable functions taking their values in a subset U of N . Let M 0 and M 1 be two subsets of M . Consider the optimal control problem of determining a trajectory x(•) solution of the control system, associated with a control u(•) on [0, t f ], so that x(0) ∈ M 0 , x(t f ) ∈ M 1 , and minimizing a cost function C(t f , u) = t f 0 f 0 (x(t), u(t))dt, where f 0 : M × N -→ R is smooth, and the final time t f may be fixed or not. According to the Pontryagin Maximum Principle, if x(•) is optimal then there exists p 0 0 and an absolutely continuous mapping p(•) on [0, t f ] (adjoint vector) satisfying (p(•), p 0 ) = (0, 0) and p(t) ∈ T * x(t) M , such that ẋ(t) = ∂H ∂p (x(t), p(t), p 0 , u(t)), ṗ(t) = -∂H ∂x (x(t), p(t), p 0 , u(t)), almost everywhere on [0, t f ], where H(x, p, p 0 , u) = p, f (x, u) + p 0 f 0 (x, u) is the Hamiltonian, and H(x(t), p(t), p 0 , u(t)) = M (x(t), p(t), p 0 ), almost everywhere on [0, t f ], where M (x(t), p(t), p 0 ) = max v∈U H(x(t), p(t), p 0 , v). If the final time t f is not fixed, there holds moreover M (x(t), p(t), p 0 ) = 0, for every t ∈ [0, t f ]. If M 0 and M 1 (or just one of both) are regular submanifolds of M , then the adjoint vector can be chosen so that p(0) ⊥ T x(0) M 0 and p(t f ) ⊥ T x(t f ) M 1 (transversality conditions).

Figure 1 :

 1 Figure 1: Correspondence between flat and round Earth coordinates.
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  and

  0, r 0 = 200 + r T km, v 0 = 5.5 km/s, γ 0 = 2 deg, m 0 = 40000 kg, (which correspond to a SSO orbit) and the final conditions r f = 800 + r T km, v f = 7.5 km/s, γ f = 0 deg, and problem parameters T max = 180 kN, Isp = 450 s.

Figure 3 :

 3 Figure 3: Evolution of the shooting function unknowns (p h , p vx , p v h , p m ) (abscissa) with respect to homotopic parameter λ 2 (ordinate).

Figure 4 :

 4 Figure 4: Trajectory and control strategy of (OCP) 1,0 (dashed) and (OCP) 1,1 (plain).

  The function t → p 2 vx + p v h (t) 2 does not vanish identically on any subinterval of [0, t f ].

	u(t) Tmax m(t) 2	p 2 vx + p v h (t) 2 , hence p m (•) is nondecreasing.
	More precisely, p m (•) is increasing whenever Φ(•) > 0 and constant whenever Φ(•) < 0.
	Lemma 1.	

  is positive and increasing on [t 2 , t f ], andv hf = 0, hence v h (•) is nonpositive on [ t, t f ]. It then follows that h(t) h f , for every t ∈ [ t, t f ].In particular, we have h( t) h f . This leads to h 0 +

	v 2 h0 2g 0	h f and raises a contradiction with Assumption
	(30).	

Indeed, it has been observed in those references that it is always possible to save some fuel by allowing a larger final time and more revolutions around the Earth. In other words, denoting by m(t f ) the maximal possible value of the final mass, for the problem with a fixed final time t f , the function t f → m(t f ) is increasing.

Indeed otherwise, it would follow from[START_REF] Dargent | An integrated tool for low thrust optimal control orbit transfers in interplanetary trajectories[END_REF] combined with[START_REF] Gergaud | Orbital transfer: some links between the low-thrust and the impulse cases[END_REF] that pr(•) and pϕ(•) vanish identically as well on the same subinterval. Then, by Cauchy uniqueness, it would follow that pr(•), pϕ(•), pv(•) and pγ(•) are identically equal to 0 on [0, t f ], and that pm(•) is constant, equal to -p 0 . Then, necessarily there must hold p 0 = 0, and we can take p 0 = -1. Therefore the Hamiltonian reduces to H = -βTmax u along such an extremal, and the maximization condition implies that u = 0 on [0, t f ]. This raises a contradiction.

Indeed otherwise, it would follow from[START_REF] Wächter | On the implementation of an interior-point filter linesearch algorithm for large-scale nonlinear programming[END_REF] combined with (25) that px(•) and p h (•) vanish identically as well on the same subinterval. Then, by Cauchy uniqueness, it would follow that px(•), p h (•), pv x (•) and pv h (•) are identically equal to 0 on [0, t f ], and that pm(•) is constant, equal to -p 0 . Then, necessarily there must hold p 0 = 0, and we can take p 0 = -1. Therefore the Hamiltonian reduces to H = -βTmax u along such an extremal, and the maximization condition implies that u = 0 on [0, t f ]. This raises a contradiction.

• 0.3 second for the possible additional continuation on the transversality conditions (see Remark 1).

The accuracy on the solution is 10 -12 . Accuracy and execution time are very good since our method is based on the shooting method, which consists in particular of a Newton-like method.

Comparison with a direct method

In this section, we compare our approach with a direct method consisting of solving (OCP) 1,1 using a full discretization of the state and control and to a rewriting of the dynamic as nonlinear constraints of the resulting nonlinear optimization problem (N LP ) (as mentioned in the introduction, we refer to [START_REF] Betts | Practical methods for optimal control and estimation using nonlinear programming[END_REF] for details on direct methods). We choose a discretization leading to

where

are the values of the control at each t i . The relation between X i+1 and (X i , U i , U i+1 ) represents the dynamic and the integral is approximated thanks to a numerical integration scheme (for example Euler or fourth order Runge-Kutta). Note that with this rewriting we can take the control to be piecewise constant or piecewise linear.

To make the comparison with our continuation method, we rewrite the dynamics with a Euler or Heun integration scheme and we set the final time to the same value as the one found with (OCP) 1,0 . We use the modeling language AMPL (see [START_REF] Fourer | AMPL: A modeling language for mathematical programming[END_REF]) combined with the optimization routine IPOPT (see [START_REF] Wächter | On the implementation of an interior-point filter linesearch algorithm for large-scale nonlinear programming[END_REF]) to solve (N LP ). To initialize the method, we choose to propagate a control strategy with 2 thrust arcs with durations and directions that are roughly the same as the one found with our method (a random initialization would not work). Starting with a coarse uniform time discretization of 100 points with the Euler integration scheme, and using the solution to initialize a time discretization of 1000 points with Heun integration scheme, we find a solution that is close (up to the accuracies of both methods) to the one we found with our approach. The execution time of this direct method is of 5 seconds for N = 100 and of 165 seconds for N = 1000. We recall that the execution time for our method on this example was 3 seconds. It is important to note that even with a time discretization of 1000 points, the accuracy of the solution (of the integration) of the direct approach is of the order of 10 -6 (10 -2 for N = 100 and Euler scheme) while the accuracy of the shooting method we used was of the order of 10 -12 (thanks to the high order integration method). Of course, with a Settled in such a way on a manifold, we recall that the Pontryagin Maximum Principle is intrinsic, i.e., its statement does not depend on the specific choice of coordinates. This intrinsic version has been proved e.g. in [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF].

Let now M 1 (resp. N 1 ) be another smooth manifold of dimension n (resp. m), and let φ : M → M 1 (resp. ψ : N → N 1 ) be a diffeomorphism. Then, it is well known in differential geometry that the differential dφ maps diffeomorphically the tangent bundle T M into T M 1 , and that the transpose (also called adjoint) of its inverse t dΦ -1 maps diffeomorphically the cotangent bundle T * M into T * M 1 . From this remark and from the intrinsic character of the Pontryagin Maximum Principle, we derive the following claim.

Let x 1 (t) = φ(x(t)) and u 1 (t) = ψ(u(t)). The trajectory x 1 (•), associated to the control u 1 (•), is solution of the control system ẋ1 (t) = f 1 (x 1 (t), u 1 (t)) = dφ(x(t)).f (φ -1 (x 1 (t), ψ -1 (u 1 (t)), and corresponds to x(•) via the change of coordinates φ on the state and ψ on the control. Then, the adjoint vector p 1 (•) associated with the trajectory x(•) is given by p 1 (•) = t dφ(x(•)) -1 p(•).

(37)

The formula (37) may of course be proved directly, without any geometric insight, by using Cauchy uniqueness arguments.